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Abstract. In this paper, we combine the (α,β )-admissible mappings and the simulation function to produce a

generalized version of the Suzuki generalized rational type Z-contraction mapping. This concept is also used in

the definition of extended rectangular b-metric spaces to obtain several popular fixed point theorems.
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1. INTRODUCTION

Bakhtin [1] explicitly presented and investigated the b-metric space, an intriguing generalized

metric space, in 1989. Since then, other researchers have expanded and developed fixed point

theorems in b-metric spaces. Recent work on fixed point theorems in b-metric spaces can be

found in [2, 3, 4, 5].

A novel class of contractive type mappings called α-ψ contractive type mapping was pre-

sented by Samet et al. [6] expanded upon and generalized the fixed point conclusions that have
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already been published in the literature, particularly the Banach contraction principle. Further-

more, different fixed point theorems for this generalized class of contractive mappings were

derived by Karapinar and Samet [7] by generalizing the α-ψ-contractive type mappings.

Much research has been done on common fixed points of mappings that satisfy specific con-

tractive requirements. In this study, some coincidence theorems and common fixed point theo-

rems for the Z(α,β )-contractive pair of mappings are obtained.

2. PRELIMINARIES

Throughout this paper, we will refer to R as the set of all real numbers and N as the set of all

non-negative integers.

Definition 2.1. [1] Let Ω be a nonempty set and the mapping d : Ω×Ω→ [0,+∞) satisfies:

(1) d(κ,ϖ) = 0, if and only if κ = ϖ for all κ,ϖ ∈Ω;

(2) d(κ,ϖ) = d(ϖ ,κ) for all κ,ϖ ∈Ω;

(3) there exist a real number s≥ 1 such that d(κ,ϖ)≤ s[d(κ,u)+d(u,ϖ)] for all κ,ϖ ,u∈

Ω.

Then d is called a b-metric on Ω and (Ω,d) is called a b-metric space with coefficient s.

Kamran et al. [8] proposed a binary function in 2017, which was used to introduce a new

metric-type space.

Definition 2.2. [8] Let Ω be a nonempty set, θ : Ω×Ω→ [1,+∞) and let d : Ω×Ω→ [0,∞)

satisfies:

(1) d(κ,ϖ) = 0, if and only if κ = ϖ for all κ,ϖ ∈Ω;

(2) d(κ,ϖ) = d(ϖ ,κ) for all κ,ϖ ∈Ω;

(3) d(κ,ϖ)≤ θ(κ,ϖ)[d(κ,u)+d(u,ϖ)] for all κ,ϖ ,u ∈Ω.

Then d is called an extended b-metric on Ω and (Ω,d) is called an extended b-metric space

with θ .

Branciari [9] provided a generalized metric in 2000, replacing the triangle inequality with

quadrilateral inequality.
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Definition 2.3. [9] Let Ω be a nonempty set and let d : Ω×Ω→ [0,+∞] be a mapping such

that for all κ,ϖ ∈Ω :

(1) d(κ,ϖ) = 0, if and only if κ = ϖ ;

(2) d(κ,ϖ) = d(ϖ ,κ);

(3) d(κ,ϖ)≤ d(κ,u)+d(u,v)+d(v,ϖ) for all distinct points u,v ∈Ω\{κ,ϖ}.

Then d is called a rectangular metric on Ω and (Ω,d) is called a rectangular metric space.

George et al. [10] introduced the rectangular b-metric, a hybrid of the b-metric and the

rectangular metric, in 2015.

Definition 2.4. [10] Let Ω be a nonempty set, s≥ 1 be a given real number, and let d : Ω×Ω→

[0,+∞] be a mapping such that for all κ ∈Ω :

(1) d(κ,ϖ) = 0, if and only if κ = ϖ ;

(2) d(κ,ϖ) = d(ϖ ,κ);

(3) d(κ,ϖ)≤ s[d(κ,u)+d(u,v)+d(v,ϖ)] for all distinct points u,v ∈Ω\{κ,ϖ}.

Then d is called a rectangular metric on Ω and (Ω,d) is called a rectangular b-metric space.

Asim et al. [11] presented a more generalized metric space called extended rectangular b-

metric space.

Definition 2.5. [11] Let Ω be a nonempty set, ϕ : Ω×Ω→ [1,+∞) and let d : Ω×Ω→ [0,+∞]

be a mapping such that for all κ,ϖ ∈Ω :

(1) d(κ,ϖ) = 0, if and only if κ = ϖ ;

(2) d(κ,ϖ) = d(ϖ ,κ);

(3) d(κ,ϖ)≤ ϕ(κ,ϖ)[d(κ,u)+d(u,v)+d(v,ϖ)] for all distinct points u,v ∈Ω\{κ,ϖ}.

Then d is called an extended rectangular b-metric on Ω and (Ω,dϕ) is called an extended

rectangular b-metric space.

Definition 2.6. [11] Let (Ω,dϕ) be an extended rectangular b-metric space.

(1) a sequence {κn} in Ω is said to be a Cauchy sequence if limn,m→∞ d(κn,κm) = 0;

(2) a sequence {κn} in Ω is said to be convergent to z if limn→∞ d(κn,z) = 0;
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(3) (Ω,dϕ) is said to be complete if every Cauchy sequence in Ω convergent to some point

in Ω.

Definition 2.7. [12] Let (Ω,dϕ) be an extended rectangular b-metric space and {κn} be a

sequence in Ω. Self-mapping V and Q on Ω is said to be compatible, if dϕ(V κn,z)→ 0 and

dϕ(Qκn,z)→ 0, then dϕ(V Qκn,QV κn)→ 0, as n→+∞.

Definition 2.8. [13] Let Ω be a nonempty set and V,Q : Ω→ Ω be self-mappings. {V,Q} is

called weakly compatible, for every z ∈Ω, if V z = Qz then QV z =V Qz.

Definition 2.9. [12] Let (Ω,dϕ) and (Y,dϕ) be the extended rectangular b-metric spaces. A

mapping V : Ω→ Y is said to be continuous on Ω if and only if every sequence {κn} that is

convergent to z, then the sequence {V κn} is convergent to V z.

Definition 2.10. [14] Let Ω be a non-empty set, N is a natural number such that N ≥ 2 and

V1,V2, . . . ,VN : Ω→ Ω are given self-mappings on Ω. If w = V1z = V2z = · · · = VNz for some

z ∈ Ω, then z is called a coincidence point of V1,V2, . . . ,VN−1 and VN , and w is called a point

of coincidence of V1,V2, . . . ,VN−1 and TN . If w = z, then z is called a common fixed point of

V1,V2, . . . ,VN−1 and TN .

Let V,Q : Ω→Ω be two mappings. We denote by C(V,Q) the set of coincidence points of Q

and V ; that is,

C(V,Q) = {z ∈Ω : V z = Qz}.

Next, we introduce the simulation function was introduced by Khojasteh et al. [15].

Definition 2.11. [15] A function η : R+×R+ → R is said to be a simulation function, if it

satisfies the following conditions:

(1) η(0,0) = 0;

(2) η(κ,ϖ)< ϖ −κ, for κ,ϖ > 0;

(3) if {κn},{ϖn} are sequences in (0,+∞) such that limn→∞ κn = limn→∞ ϖn > 0, then

limsup
n→∞

(κn,ϖn)< 0.

We denote the set of all simulation functions by Z.
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Definition 2.12. [15] Let (Ω,d) be a metric space, V : Ω→Ω be a mapping and η ∈Z. Then,

V is called a Z-contraction with respect to η if the following condition holds:

η(d(V κ,V ϖ),d(κ,ϖ))> 0,

where κ,ϖ ∈Ω, with κ 6= ϖ .

Theorem 2.1. [15] Every Z-contraction on a complete metric space has a unique fixed point.

Definition 2.13. [16] We say that η : R+×R+ → R be a η-simulation function, there exists

ψ ∈Ψ such that

(η1) η(ϖ ,κ)< ψ(κ)−ψ(ϖ) for κ,ϖ > 0;

(η2) If {ϖn} and {κn} are sequence in (0,∞) such that lim
n→∞

ϖn = lim
n→∞

κn > 0, then

limsup
n→∞

η(ϖn,κn)< 0.

Let Zψ is the set of all η-simulation function.

Definition 2.14. [6] Let V be a self map on a nonempty space Ω and α : Ω×Ω→ [0,+∞). We

say that V is α admissible if, for all κ,ϖ ∈Ω, we have

α(κ,ϖ)≥ 1 implies α(V κ,V ϖ)≥ 1.

Definition 2.15. [17] Let V,Q be self maps on a nonempty space X and α : Ω×Ω→ [0,+∞).

We say that V is Q-α admissible if, for all κ,ϖ ∈Ω, we have

α(Qκ,Qκ)≥ 1 implies α(V κ,V ϖ)≥ 1.

Definition 2.16. [17] Let Ω be a non empty set, V : Ω→Ω and α,β : Ω×Ω→ [0,+∞), we say

that V is an (α,β )-admissible mapping if α(κ,ϖ)≥ 1 and β (κ,ϖ)≥ 1 implies α(V κ,V ϖ)≥ 1

and β (V κ,V ϖ)≥ 1 for all κ,ϖ ∈Ω.

Also, we denote Ψ and Φ the sets of functions ψ,φ : [0,∞)→ [0,∞) satisfying the following

conditions, respectively

(1) ψ(t) = φ(t) = 0 if and only if t = 0;

(2) ψ(t),φ(t)> 0 for all t > 0;
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(3) liminfτ→t ψ(τ) and limsupτ→t φ(τ) exist for all t > 0.

Let

Ψ = {ψ : [0,∞)→ [0,∞) | ψ is continuous and ψ(t) = 0↔ t = 0}.

Also, we denote

Φ = {φ : [0,∞)→ [0,∞) | φ is continuous and φ(t) = 0↔ t = 0}.

Lemma 2.1. [18] If a sequence {κn} in Ω is not Cauchy, then there exist ε > 0 and two subse-

quence {κm(k)} and {κn(k)} of {κn} such that m(k) is smallest index for which m(k)> n(k)> k,

(2.1) d(κm(k),κn(k))≥ ε

and

(2.2) d(κm(k)−1,κn(k))< ε.

Moreover, suppose that limn→∞ d(κn,κn+1) = 0. Then we have:

(1) limk→∞ d(κm(k),κn(k)) = ε;

(2) limk→∞ d(κm(k)−1,κn(k)−1) = ε;

(3) limk→∞ d(κm(k),κn(k)−1) = ε;

(4) limk→∞ d(κm(k)−1,κn(k)) = ε .

3. MAIN RESULTS

Definition 3.1. Let (Ω,dϕ) be an extended rectangular b-metric space with function ϕ : Ω×

Ω→ [1,+∞) and α,β : Ω×Ω→ [0,+∞). Let V and Q be two self-maps on Ω. We say that the

pair (V,Q) is Suzuki generalized rational type Z(α,β )-contraction if for any κ,ϖ ∈Ω and L≥ 0

such that

(3.1)

1
2

min{dϕ(V κ,Qκ),dϕ(V ϖ ,Qϖ)} ≤max{dϕ(Qκ,Qϖ),dϕ(V κ,V ϖ)} implies

η(α(Qκ,Qϖ)B(κ,ϖ),A(κ,ϖ))≥ 0,

where η ∈ Zψ ,

B(κ,ϖ) = β (Qκ,Qϖ)dϕ(V κ,V ϖ)

and
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A(κ,ϖ) = max
{

dϕ(Qκ,Qϖ),dϕ(Qκ,V κ),dϕ(V ϖ ,Qϖ),

G(κ,ϖ)+H(κ,ϖ)

1+dϕ(Qκ,V κ)+dϕ(V ϖ ,Qϖ)
,

G(κ,ϖ)+H(κ,ϖ)

1+dϕ(V κ,V ϖ)+dϕ(Qκ,Qϖ)

}
+Lmin{dϕ(V κ,Qκ),dϕ(V ϖ ,Qϖ),dϕ(Qκ,Qϖ),dϕ(V κ,Qϖ)}

with

G(κ,ϖ) = dϕ(V κ,Qϖ)dϕ(Qκ,Qϖ)

and

H(κ,ϖ) = dϕ(V κ,Qκ)dϕ(V κ,V ϖ).

Theorem 3.1. Let (Ω,dϕ) be a complete extended rectangular b-metric space and V,Q : Ω→Ω

be a compatible pair of self-maps such that V (Ω)⊆Q(Ω). Assume that the pair (V,Q) is Suzuki

generalized rational type Z(α,β )-contraction and satisfy the following conditions:

(1) V is α-admissible with respect to Q;

(2) there exists κ0 ∈Ω such that α(Qκ0,V κ0)≥ 1 and β (Qx0,V x0)≥ 1;

(3) If {Qκn} is a sequence in Ω such that α(Qκn,Qκn+1) ≥ 1 for all n and Qκn →

Qz ∈ Q(Ω) as n→ +∞, then there exists a subsequence {Qκn(k)} of {Qκn} such that

α(Qκn(i),Qz)≥ 1 for all k;

(4) Q(Ω) is closed.

Then V and Q have a unique coincidence point in Ω.

Proof. In view of condition (2), let κ0 ∈ Ω be such that α(Qκ0,V κ0) ≥ 1. Because V (Ω) ⊆

Q(Ω), we can choose a point κ1 ∈ Ω such that V κ0 = Qκ1. Continuing this process having

chosen κ1,κ2,κ3, . . . , κn, we choose κn+1 in Ω such that

(3.2) V κn = Qκn+1, n = 0,1,2, . . . .

From condition (1), V is α-admissible with respect to Q, we have

α(Qκ0,V κ0) = α(Qκ0,Qκ1)≥ 1 implies α(V κ0,V κ1) = α(Qκ1,Qκ2)≥ 1.

Using mathematical induction, we get

(3.3) α(Qκn,Qκn+1)≥ 1, n = 0,1,2, . . . .
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Similarly, we obtain

β (Qκn,Qκn+1)≥ 1, n = 0,1,2, . . . .(3.4)

If V κn+1 =V κn for some n, then by (3), we have Qκn+1 =V κn+1, so that κn+1 is a coincidence

point of V and Q and the proof is completed. For this, we suppose that dϕ(V κn,V κn+1)> 0 for

all n. Applying the inequality (3.1) and using (3.3), (3.4), we obtain

1
2

min{dϕ(V κn,Qκn),dϕ(V κn+1,Qκn+1)} ≤max{dϕ(Qκn,Qκn+1),dϕ(V κn,V κn+1)} implies

(3.5) η(α(Qκn,Qκn+1)B(κn,κn+1),A(κn,κn+1))≥ 0,

and

ψ(A(κn,κn+1))−ψ(α(Qκn,Qκn+1)B(κn,κn+1))> 0.

Hence,

ψ(A(κn,κn+1))> ψ(α(Qκn,Qκn+1)B(κn,κn+1)).

From definition of ψ , we have

(3.6) A(κn,κn+1)> α(Qκn,Qκn+1)B(κn,κn+1),

which

(3.7) B(κn,κn+1) = β (Qκn,Qκn+1)dϕ(V κn,V κn+1)

and

(3.8)

A(κn,κn+1) = max
{

dϕ(Qκn,Qκn+1),dϕ(Qκn,V κn),dϕ(V κn+1,Qκn+1),

G(κn,κn+1)+H(κn,κn+1)

1+dϕ(Qκn,V κn)+dϕ(V κn+1,Qκn+1)
,

G(κn,κn+1)+H(κn,κn+1)

1+dϕ(V κn,V κn+1)+dϕ(Qκn,Qκn+1)

}
+Lmin{dϕ(V κn,Qκn),dϕ(V κn+1,Qκn+1),dϕ(Qκn,Qκn+1),dϕ(V κn,Qκn+1)}

with

(3.9) G(κn,κn+1) = dϕ(V κn,Qκn+1)dϕ(Qκn,Qκn+1)

and

(3.10) H(κn,κn+1) = dϕ(V κn,Qκn)dϕ(V κn,V κn+1).
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Therefore,

(3.11)

A(κn,κn+1) = max
{

dϕ(V κn−1,V κn),dϕ(V κn−1,V κn),dϕ(V κn+1,V κn),

G(κn,κn+1)+H(κn,κn+1)

1+dϕ(V κn−1,V κn)+dϕ(V κn+1,V κn)
,

G(κn,κn+1)+H(κn,κn+1)

1+dϕ(V κn,V κn+1)+dϕ(V κn−1,V κn)

}
+Lmin{dϕ(V κn,V κn−1),dϕ(V κn+1,V κn),dϕ(V κn−1,V κn),dϕ(V κn,V κn)}

with

(3.12) G(κn,κn+1) = dϕ(V κn,V κn)dϕ(V κn−1,V κn) = 0

and

(3.13) H(κn,κn+1) = dϕ(V κn,V κn−1)dϕ(V κn,V κn+1).

From (3.10), (3.11) and (3.12), we obtain

(3.14)

A(κn,κn+1) = max
{

dϕ(V κn−1,V κn),dϕ(V κn−1,V κn),dϕ(V κn+1,V κn),

G(κn,κn+1)+H(κn,κn+1)

1+dϕ(V κn−1,V κn)+dϕ(V κn+1,V κn)
,

dϕ(V κn,V κn−1)dϕ(V κn,V κn+1)

1+dϕ(V κn,V κn+1)+dϕ(V κn−1,V κn)

}
+Lmin{dϕ(V κn,V κn−1),dϕ(V κn+1,V κn),0}.

Since dϕ(V κn,V κn+1)≤ 1+dϕ(V κn,V κn+1)+dϕ(V κn−1,V κn), from (3.13), we have

(3.15) A(κn,κn+1) = max
{

dϕ(V κn−1,V κn),dϕ(V κn+1,V κn)
}
.

If A(κn,κn+1) = dϕ(V κn+1,V κn) and (3.6), we obtain

(3.16) dϕ(V κn+1,V κn)< dϕ(V κn+1,V κn),

a contradiction. Thus, for all n≥ 1, we have

(3.17) A(κn,κn+1) = dϕ(V κn−1,V κn).

From (3.6), we have

(3.18) α(V κn−1,V κn)β (V κn−1,V κn)dϕ(V κn,V κn+1)< dϕ(V κn−1,V κn).

So,

(3.19) dϕ(V κn+1,V κn)< dϕ(V κn−1,V κn).
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The sequence {dϕ(V κn+1,V κn)} is non increasing i.e. decreasing. So, there exist r ≥ 0 such

that

lim
n→∞

dϕ(V κn−1,V κn) = r.

We prove that

(3.20) lim
n→∞

dϕ(V κn−1,V κn) = 0.

Now, we assume on the contrary such that r > 0. By (3.16), we have

(3.21) lim
n→∞

α(V κn−1,V κn)β (V κn−1,V κn)dϕ(V κn+1,V κn) = r.

Since r > 0 and letting ϖn = α(V κn−1,V κn)β (V κn−1,V κn)dϕ(V κn+1,V κn) and κn =

dϕ(V κn+1,V κn) such that limn→∞ ϖn = limn→∞ κn = r, then by (η2), we obtain

limsup
n→∞

η(ϖn,κn)< 0.

Since η(ϖn,κn)≥ 0, so

0≤ limsup
n→∞

η(ϖn,κn)< 0,

which is contradiction. So our assumption is false. Hence r = 0. Again we show that {κn} is a

Cauchy sequence in (Ω,dϕ) i.e.

(3.22) lim
n,m→∞

dϕ(V κn,V κm) = 0.

Suppose on the contrary i.e. {κn} is not a Cauchy sequence. Then there exist ε > 0 for which

we can assume subsequences κn(k) and κn(k) of {κn} with n(k) > m(k) > k such that for every

k,

(3.23) dϕ(V κn(k),V κm(k))≥ ε

and n(k) is the smallest number such that (3.23) holds. From (3.23), we obtain

(3.24) dϕ(V κn(k),V κm(k))< ε.
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Then by triangular inequality and (3.22), we have

(3.25)

ε ≤ dϕ(V κn(k),V κm(k))

≤ dϕ(V κn(k),V κn(k)−1)+dϕ(V κn(k)−1,V κm(k))

< dϕ(V κn(k),V κn(k)−1)+ ε.

Taking n→ ∞ in above equation and applying (3.20), we obtain

ε ≤ lim
n→∞

dϕ(V κn(k),V κm(k))< ε.

Thus,

(3.26) lim
n→∞

dϕ(V κn(k),V κm(k)) = ε.

Similarly, it is easy to show that

(3.27) lim
n→∞

dϕ(V κn(k),V κm(k)+1) = ε

and

(3.28) lim
n→∞

dϕ(V κn(k)−1,V κm(k)) = ε.

Using (3.6) and (η2), we obtain

(3.29)
0≤ limsup

n→∞

η(α(V κn(k)−1,V κm(k))β (V κn(k)−1,V κm(k))dϕ(V κn(k),V κm(k)+1),dϕ(V κn(k)−1,V κm(k)))

< 0,

which is contradict due to our assumption. So {κn} is a Cauchy sequence. Therefore {V κn}=

{Qκn+1} is a Cauchy sequence in Ω. Since Q(Ω) is closed there exists z ∈Ω such that

(3.30) lim
n→∞

Qκn = lim
n→∞

V κn+1 = Qz.

We now show that z is a coincidence point of V and Q. On contrary, assume that dϕ(V z,Qz)> 0.

Using condition (3) and (3.30), we have α(Qκn(k,Qz)≥ 1 for all k. Therefore

1
2

min{dϕ(V κn(k),Qκn(k)),dϕ(V z,Qz)} ≤max{dϕ(Qκn(k),Qκn(k)),dϕ(V κn(k),V z)}.
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Letting k→ ∞ in the above inequality yields

1
2

min{dϕ(V z,Qz),dϕ(V z,Qz)} ≤max{dϕ(Qz,Qz),dϕ(V z,V z)}

= max{0,0}

= 0,

which is a contradiction. Hence, our supposition is wrong and dϕ(V z,Qz) = 0, that is, V z = Qz.

This shows that V and Q have a coincidence point. �

Theorem 3.2. In addition to the hypotheses of Theorem 3.1, suppose that for all ρ,σ ∈C(V,Q),

if α(Qρ,Qσ) ≥ 1 and the pair (V,Q) is weakly compatible. Then V and Q have a unique

common fixed point.

Proof. From the proof of Theorem 3.1, we have {Qκn} is a non decreasing sequence and con-

verges to Qz and V z = Qz. Also, since V and Q are weakly compatible, we have

V z =V Qz = QV z = Qz.

Let u =V z = Qz, we obtain

u =Vu = Qu.

So that V and Q have a common fixed point. To prove uniqueness, let u and u′ be two common

fixed points of V and Q i.e.,

u =Vu = Qu and u′ =Vu′ = Qu′.

Since

(3.31)

1
2

min{dϕ(Vu,Qu),dϕ(Vu′,Qu′)}= 0

≤max{dϕ(Qu,Qu′),dϕ(Vu,Vu′)}

implies

(3.32) η(α(Qu,Qu′)B(u,u′),A(u,u′))≥ 0

and

(3.33) ψ(A(u,u′))−ψ(α(Qu,Qu′)B(u,u′))> 0.
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So,

(3.34) ψ(A(u,u′))> ψ(α(Qu,Qu′)B(u,u′)).

From definition of ψ , we have

(3.35) A(u,u′)> α(Qu,Qu′)B(u,u′).

which

(3.36) B(u,u′) = β (Qu,Qu′)dϕ(Vu,Vu′)

and

(3.37)

A(u,u′) = max
{

dϕ(Qu,Qu′),dϕ(Qu,Vu),dϕ(Vu′,Qu′),

G(u,u′)+H(u,u′)
1+dϕ(Qu,Vu)+dϕ(Vu′,Qu′)

,
G(u,u′)+H(u,u′)

1+dϕ(Vu,Vu′)+dϕ(Qu,Qu′)

}
+Lmin{dϕ(Vu,Qu),dϕ(Vu′,Qu′),dϕ(Qu,Qu′),dϕ(Vu,Qu′)}

with

(3.38) G(u,u′) = dϕ(Vu,Qu′)dϕ(Qu,Qu′)

and

(3.39) H(u,u′) = dϕ(Vu,Qu)dϕ(Vu,Vu′) = 0.

From (3.36), (3.37), (3.36) and (3.39), we obtain

(3.40)

A(u,u′) = max
{

dϕ(Qu,Qu′),0,0,

dϕ(Vu,Qu′)dϕ(Qu,Qu′),
dϕ(Vu,Qu′)dϕ(Qu,Qu′)

1+dϕ(Vu,Vu′)+dϕ(Qu,Qu′)

}
+Lmin{0,0,dϕ(Qu,Qu′),dϕ(Vu,Qu′)}.

Since dϕ(Vu,Qu′)≤ 1+dϕ(Vu,Vu′)+dϕ(Qu,Qu′), from (3.40), we have

(3.41)

A(u,u′) = max
{

dϕ(Qu,Qu′),0,0,

dϕ(Vu,Qu′)dϕ(Qu,Qu′),dϕ(Qu,Qu′)
}

+Lmin{0,0,dϕ(Qu,Qu′),dϕ(Vu,Qu′)}.
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If A(u,u′) = dϕ(Qu,Qu′) and (3.35), we obtain

(3.42) dϕ(Vu,Vu′)< dϕ(Qu,Qu′) = dϕ(Vu,Vu′),

a contradiction. Thus, for all n≥ 1, we have

(3.43) A(u,u′) = dϕ(Vu,Qu′)dϕ(Qu,Qu′).

From (3.43), and(3.36) and (3.35), we obtain

(3.44) α(Qu,Qu′)β (Qu,Qu′)dϕ(Vu,Vu′)< dϕ(Vu,Qu′)dϕ(Qu,Qu′).

Therefore V and Q have a unique common fixed point in Ω.

CONCLUSION

This work derives new relation-theoretic coincidence and common fixed point conclusions

for some mappings of V and Q using Suzuki generalized rational type Z(α,β )-contraction in

extended rectangular b-metric space. We improve and broaden a number of recent discoveries.
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