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Abstract. This study presents an interesting method based on Picard-Ishikwa fixed point iterative method to solve

nonlinear third-order boundary value problems. We develop a sequence called Picrad-Ishikawa Green’s iterative

method and show that the sequence converges strongly to the fixed point of an integral operator. Our result improve

many existing results in this direction.
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1. INTRODUCTION

The concept of fixed point theory is one of the vital tools of modern mathematical analysis

and possesses several applications in different fields such as physics, mathematical engineering,

approximation theory, game theory, economics, optimization theory, biology, chemistry, opti-

mization theory and so on. A point c in a nonempty closed subset D of a Banach space B is

called a fixed point of the mapping T : D→ D if T c = c. In recent years, many results have
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published in fixed point theory (see, for example [18, 19, 20, 21, 22, 35, 36, 37, 29, 30, 31] and

the references in them).

Fixed point of nonlinear operators can be approximated Since the location via iteration meth-

ods. There exist several iterative methods in the literature. Some of these method include Picard

[27] iteration, Krasnosel’kii [16] iteration, Mann [23] iteration, Ishikawa [6] iteration, Noor

[24] iteration, Picard-Man [7] iteration, Picard-krasnosel’kii [25] iteration, Abbas [1] iteration,

Agarwal [2] iteration, Thakur [32] iteration and Picard-Ishikawa iteration [26].

Very recently, Okeke [26] introduced the Picard-Ishikawa iterative method as follows:

m0 ∈ D,

vk = (1−qk)mk +qkT mk,

uk = (1− pk)mk + pkT vk,

mk+1 = Tuk,

k ∈ N,(1)

where {qk} and {pk} are sequences in [0,1]. The author showed that Picard-Ishikawa iterative

method (1) converges faster than all of Picard, Krasnosel’skii, Mann, Ishikawa, Noor, Picard-

Mann and Picard-Krasnosel’skii iterative methods.

A boundary value problem for a given differential equation consists of finding a solution of

the given differential equation subject to a given set of boundary conditions.

Boundary value problems emanate in many branches of physics as any physical differential

equation will have them. Problems involving wave equation, are in most cases expressed as

boundary value problems. Several important boundary value problem include; storm-Louisville

problems.

Third-order differential equations arise in a variety of different areas of applied mathematics

and physics, for example, in the deflection of a curved beam having a constant or varying

cross section, a three layer beam, electromagnetic waves, or gravity driven flows. Third-order

boundary value problems were discussed in many papers in recent years, for instance, see [4, 5,

8, 17, 28, 33, 34] and references therein.

Solutions of boundary value problems can sufficiently be approximated by some efficient

numerical methods. Some of these numerical methods are finite difference method, standard

5-point formula, standard analytic method and iterative method.
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In recent years, several fixed point iterative methods based on Green’s function have been

developed for solving second and third order nonlinear boundary value problems. Some of

these methods are: Picard–Green’s, Krasnoselskii-Green’s, Mann-Green’s, Ishikawa Green’s

and Khan–Green’s iterative methods, e.g. see [3, 9, 10, 11, 12, 13, 14, 15] and the references

therein.

Very recently, Khuri and Louhichi [38] presented a fascinating approach which is based on

embedding Green’s function into Ishikawa fixed point iterative method for solutions nonlinear

third-order boundary value problems.

Motivated by the above results, in this study, we develop a strategy based on Picard-Ishikawa

fixed point iterative method (1) to solve a nonlinear third order BVPs in a form of Green’s

function with boundary value problems. Our iterative method outperforms several well known

iterative methods existing in the literature.

1.1. Brief demonstration of Green’s functions. Consider the following general linear third-

order BVPs,

Li[η ] = g(ψ)η ′′′+w(ψ)η ′′+ z(ψ)η ′+ r(ψ)η = ϕ(ψ),(2)

where a≤ ψ ≤ b and subject to the boundary conditions:

B1[η ] = µ1η(a)+µ2η
′(a)+µ3η

′′(a) = µ,

B2[η ] = ζ1η(b)+ζ2(b)η ′(b)+ζ3η
′′(b) = ζ ,

B3[η ] = τ1η(c)+ τ2η
′(c)+ τ3η

′′(c) = τ,(3)

where c = a or b.

The Green’s function is defined to be the solution for the following equation

(4) −Li[G(ψ,s)] = δ (ψ− s)

where δ is the Kronecker Delta which is subject to B1[G(ψ,s)] =B2[G(ψ,s)] =B3[G(ψ,s)] = 0.

It is worth mentioning that for operators that are not self adjoint, we replace the right hand side

of (4) by −δ (ψ− s). For ψ 6= s, we solve Li[G(ψ,s)] = 0 and get

G(ψ,s) =

 e1η1 + e2η2 + e3η3, a < ψ < s,

d1η1 +d2η2 +d3η3, s < ψ < b,
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where η1,η2,η3 are linearly independent solutions of Li[η ] = 0 and the constants are derived

through the following properties:

(V1) G satisfies the associated homogeneous boundary conditions

(5) B1[G(ψ,s)] = B2[G(ψ,s)] = 0,

(V2) Continuity of G at ψ = s

(6) e1η1(s)+ e2η2(s)+ e3η3(s) = d1η1(s)+d2η2(s)+d3η3(s),

(V3) Continuity of G′ at ψ = s:

(7) e1η
′
1(s)+ e2η

′
2(s)+ e3η

′
3(s) = d1η

′
1(s)+d2η

′
2(s)+d3η

′
3(s),

(V4) At ψ = s, G′′ has a jump discontinuity:

(8)
1

g(s)
+ e1η

′′
1 (s)+ e2η

′′
2 (s)+ e3η

′′
3 (s) = d1η

′′
1 (s)+d2η

′′
2 (s)+d3η

′′
3 (s).

1.2. Picard-Ishikawa Green’s fixed point iterative method. Applying the Green’s function

to Picard-Ishikawa iterative method (1), the following differential equation will be considered:

(9) Li[ρ]+No[ρ] = ϕ(ψ,ρ),

where Li[ρ] and No[ρ] are linear and nonlinear operators in ρ , respectively, and ϕ(ψ,ρ) is a

function in ρ which could be linear or nonlinear.

We now define the following linear integral operator in terms of Green’s function as follows:

(10) Ψ[ρ] =
∫ b

a
G(ψ,s)ds,

where G is the Green’s function that is corresponding to the linear differential operator Li[ρ].

Observe that Ψ has a fixed point if and only if ρ is a solution of (9).

From (10), we have the following:

Ψ[ρ] =
∫ b

a
G(ψ,s)[Li[ρ]+No[ρ]−ϕ(s,ρ)−No[ρ]+ϕ(s,ρ)]ds

=
∫ b

a
G(ψ,s)(Li[ρ]+No[ρ]−ϕ(ψ,s))ds+

∫ b

a
G(ψ,s)(ϕ(s,ρ)−No[ρ])ds
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= ρ +
∫ b

a
G(ψ,s)(Li[ρ]+No[ρ]−ϕ(s,ρ))ds.

Now, by applying the Picard-Ishikawa fixed point iterative method (1), we obtain
vk = (1−qk)mk +qkΨ[mk],

uk = (1− pk)mk + pkΨ[vk],

fk+1 = Ψ[uk],

(11)

where {qk} and {pk} are sequences in [0,1]. Then for all k ∈ N, this results to
vk = (1−qk)mk +qk[ fm +

∫ b
a G(ψ,s)(Li[mk]+No[mk]−ϕ(s,mk))ds],

uk = (1− pk)mk + pk[vk +
∫ b

a G(ψ,s)(Li[vk]+No[vk]−ϕ(s,ρ))ds],

mk+1 = uk +
∫ b

a G(ψ,s)(Li[uk]+No[uk]−ϕ(s,uk))ds,

(12)

Thus, we have
vk = mk +qk

∫ b
a G(ψ,s)(Li[mk]+No[mk]−ϕ(s,mk))ds,

uk = (1− pk)mk + pk[vk +
∫ b

a G(ψ,s)(Li[vk]+No[vk]−ϕ(s,vk))ds],

mk+1 = uk +
∫ b

a G(ψ,s)(Li[uk]+No[uk]−ϕ(s,uk))ds,

(13)

Remark 1.1. The new iteration method (13) is independent of all Picard-Green iteration,

Mann-Green iteration, Ishikawa-Green iteration, Khan-Green iteration methods which are well

konwn methods in the literature.

2. CONVERGENCE ANALYSIS

In this section, we prove the convergence theorem of the proposed iterative method (13).

Also, we show that our new method (13) convergence at a rate faster than the fixed point it-

erative methods based on Green’s function. Without loss of generality, we will consider the

convergence analysis of our method for the following nonlinear BVP:

(14) −η
′′′(ψ) = ϕ(η(ψ),η ′(ψ),η ′′(ψ)), subject to x(1) = Q,x′′(1) = P,x(2) =W.

Solving the associated homogeneous equation η
′′′
= 0 implies

G(ψ,s) =

 e1t2 + e2t + e3, 1≤ ψ ≤ s≤ 2

d1t2 +d2t +d3, 1≤ s≤ ψ ≤ 2
(15)
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The unknowns e1,e2,e3,d1,d2 and d3 can be obtained using the properties (V1)−−(V4). After

finding the unknowns, we then have the following Green’s function.

G(ψ,s) =


−1

2s2 +2s−2+
(1

2s2−2s+2
)

t, if 1≤ ψ ≤ s≤ 2

−s2 +2s−2+
(1

2s2−2s+2
)

t− 1
2t2, if 1≤ s≤ ψ ≤ 2.

Thus, Picard-Ishikawa Green’s iteration process (13) now have the form
vk = mk +qk

∫ 2
1 G(ψ,s)(m

′′′
k −ϕ(s,mk,m′k,m

′′
k ))ds,

uk = (1− pk)mk + pk[vk +
∫ 2

1 G(ψ,s)(v
′′′
k −ϕ(s,vk,v′k,v

′′
k ))ds],

mk+1 = uk +
∫ 2

1 G(ψ,s)(u
′′′
k −ϕ(s,uk,u′k,u

′′
k ))ds,

k ∈ N,(16)

where the initial iterate f0 fulfilled the corresponding equation m
′′′
= 0 and the boundary con-

ditions m0(1) = Q, m′′0(1) = P and m0(2) = W . Next, we define the operator ϒ : C2([1,2])→

C2([1,2]) by

(17) ϒG(m) = m+
∫ 2

1
G(ψ,s)(m(3)−ϕ(s,m,m′,m′′))ds.

Then (16) reduces to the following form
vm = (1−qk)mk +qkϒG(mk),

uk = (1− pk)mk + pkϒG(vk),

mk+1 = ϒG(uk),

m ∈ N.(18)

On the other hand, by using method of integration by parts three times to evaluate∫ 2
1 G(ψ,s)m

′′′
(s)ds in (17) and since

∫ 2
1

∂ 3G
∂ 3s3 (ψ,s)m(s)ds =

∫ 2
1 δ (x− s)m(s)ds, we have that

(19) ϒG(m) = (2−ψ)Q+
1
2
(ψ2−3ψ +2)P+(ψ−1)W −

∫ 2

1
G(ψ,s)ϕ(s,m,m′,m′′)ds.

Next, we prove that under some standard assumptions on the function ϕ , the integral oper-

ator ϒG is a contraction on the Banach space C2([1,2]) with respect to the norm ‖m‖C2 =
2
∑

i=0
sup
[1,2]

∣∣∣m(i)
∣∣∣.

Theorem 2.1. Suppose that the function, which appears in definition of the operator TG fulfills

the following Lipschitz condition:
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(20)

|ϕ(s,m,m′,m′′)−ϕ(s,h,h′,h′′)| ≤Θ1|m(s)−h(s)|+Θ2|m′(s)−h′(s)|+Θ3|m′′(s)−h′′(s)|,

where Θ1,Θ2 and Θ3 are positive constants satisfying

(21)
1
8

max{Θ1,Θ2,Θ3}< 1,

then TG is a contraction on the Banach space (C2([1,2]),‖ · ‖C2) and the GA Green’s iterative

method (18) converges strongly to the fixed point of TG.

Proof.

|TG(ψ1)−TG(ψ2)| =

∣∣∣∣∫ 2

1
G(ψ,s)((ϕ(s,m1,m′1,m

′′
1)−ϕ(s,m2,m′2,m

′′
2))ds

∣∣∣∣
≤

∫ 2

1
|G(ψ,s)||(ϕ(s,m1,m′1,m

′′
1)−ϕ(s,m2,m′2,m

′′
2)|ds

≤

(
sup

[1,2]×[1,2]|
|G(ψ,s)|

)∫ 2

1
|(ϕ(s,m1,m′1,m

′′
1)−ϕ(s,m2,m′2,m

′′
2)|ds

= G
(

3
2
,1
)∫ 2

1
|(ϕ(s,m1,m′1,m

′′
1)−ϕ(s,m2,m′2,m

′′
2)|ds

=
1
8

∫ 2

1
|(ϕ(s,m1,m′1,m

′′
1)−ϕ(s,m2,m′2,m

′′
2)|ds

≤ 1
8

∫ 2

1
[Θ1|m1(s)−m2(s)|+Θ2|m′1(s)−m′2(s)|+Θ3|m′′1(s)−m′′2(s)|]

≤ 1
8

max{Θ1,Θ2,Θ3}
∫ 2

1

(
2

∑
i=0

sup
[1,2]

∣∣∣m(i)
1 −m(i)

2

∣∣∣)

≤ 1
8

max{Θ1,Θ2,Θ3}‖ψ1−ψ2‖C2

= v‖ψ1−ψ2‖C2.

Where v = 1
8 max{Θ1,Θ2,Θ3}< 1. Thus, we know from Banach contraction principle that ϒG

is a contraction.

Next, we prove that the sequence {mk} defined by GA Green’s iterative method (18) con-

verges strongly to the fixed point of ϒG. Since ϒG is a contraction, then by Banach contraction

principle, we know that TG has a unique fixed point in (C2([1,2]),‖ · ‖C2), say `. We will now
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show that fm→ c as k→ ∞. Using (18), we have

‖vm− c‖ = ‖(1−qk)mk +qkϒG(mk)− c‖

≤ (1−qk)‖mk− c‖+qk‖ϒG(mk)− c‖

≤ (1−qk)‖mk− c‖+qkβ‖mk− c‖

= (1− (1−β )qk)‖mk− c‖.(22)

And using (22), we have

‖uk− c‖ = ‖(1− pk)mk + pkϒG(vk)− c‖

≤ (1− pk)‖mk− c‖+ pk‖ϒG(vm)− c‖

≤ (1− pk)‖mk− c‖+ pkβ‖vk− c‖

≤ (1− (1−β )qk)(1− (1−β )pm)‖mk− c‖.(23)

Since 0 < β < 1 and pk,qk ∈ [0,1], then it follows that (1− (1−β )qk)< 1,

(1− (1−β )pk)< 1.
(24)

Thus, using (24), then (23) becomes

‖uk− c‖ ≤ ‖mk− c‖.(25)

Finally, from (25), we get

‖mk+1− v‖ = ‖ϒG(uk)− c‖

≤ β‖uk− c‖

≤ β‖mk− c‖(26)

By induction, we have

‖mk+1− c‖ ≤ β
(k+1)‖m0− c‖.(27)

Since 0 < β < 1, then we have that {mk} converges strongly to c. �
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