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Abstract. In this paper, we present a generalization of Suzuki’s fixed point theorem [J. Math. Anal. Appl.,

340 (2008), 2, 1088-1095] for nonexpansive mappings to a system of mappings. Furthermore, we establish an

existence result for two systems of mappings under the assumption of coordinatewise commutativity. Additionally,

we provide some examples to support our findings.
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1. INTRODUCTION

The theory of existence of fixed points for nonexpansive mappings was initiated by the Brow-

der [2] Göhde [7] and Kirk [11], independently, in 1965. The nonexpansive condition (2.1)

forces the mapping f to be uniformly continuous in their domain. In 2008, Suzuki [21] in-

troduced a new class of mappings, known as Suzuki-type generalized nonexpansive mappings,

which does not force the mapping f to be continuous in domain and also includes the class of
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nonexpansive mappings. A detailed study of nonexpansive mappings and their generalizations

can be found in [1, 2, 6, 12, 15, 18].

Definition 1.1. [21]. Let f be a mapping on a subset Y of a Banach space E. Then, the mapping

f is said to a Suzuki-type generalized nonexpansive or satisfy the condition (C) if

(C)
1
2
‖u− f u‖ ≤ ‖u− v‖ implies ‖ f u− f v‖ ≤ ‖u− v‖

for all u,v ∈ Y .

Suzuki [21] established the following interesting result for Suzuki-type generalized nonexpan-

sive mappings:

Theorem 1.2. Let Y be a weakly compact convex subset of a uniformly convex Banach space in

every direction E and f be a mapping on Y . If f satisfies condition (C) then f has a fixed point.

In 1975, Matkowski [13, 14] generalized the celebrated Banach contraction principle by prov-

ing a fixed point theorem for a system of mappings on the product of metric spaces. The fol-

lowing year, Czerwik [3] proved a fixed point result for a system of multivalued mappings. He

also established a generalization of Eldestein’s fixed point theorem to a system of mappings in

the same year (see [4]). After that, a large number of existence results for one or more than one

systems of mappings have been proved by several mathematicians (see [9, 10, 16, 17, 19, 20]).

The purpose of this paper is to present a generalization of Suzuki’s result [21] for nonexpan-

sive mappings to a system of mappings. We achieve this by proving an existence and conver-

gence theorem for a system of mappings on the product of Banach spaces. Additionally, we

establish an existence result for two systems of mappings under the assumption of coordinate-

wise commutativity. Our results generalize the work of Suzuki [21], Matkowski [13], Czerwik

[4] and many others.

2. PRELIMINARIES

Let (E,‖.‖) be a Banach space and Y be a non-empty subset of E. We denote the set of

natural numbers by N, the set of real numbers by R, and the set of fixed points of mapping
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f : Y → E by F( f ). A mapping f is called a nonexpansive if

(2.1) ‖ f u− f v‖ ≤ ‖u− v‖ for all u,v ∈ Y.

If for all u,v∈E with ‖u‖= ‖v‖= 1,u 6= v, we have ‖u+v‖< 2 then E is called strictly convex.

Recall that, E is uniformly convex in every direction (UCED, for short) for ε ∈ (0,2] and w ∈ E

with ‖w‖= 1, if there exists δ (ε,w)> 0 such that

‖u+ v‖ ≤ 2(1−δ (ε,w))

for all u,v ∈ E with ‖u‖ ≤ 1,‖v‖ ≤ 1 and u−v ∈ {tw : t ∈ [−2,−ε]∪ [+ε,+2]}. E is said to be

uniformly convex if E is UCED and for all ε ∈ (0,2],

inf{δ (ε,w) : ‖w‖= 1}> 0.

Lemma 2.1. [5]. Let (µn) and (νn) be two bounded sequences in a Banach space E and let

t ∈ (0,1). Suppose that µn+1 = tνn +(1− t)µn and ‖νn+1−νn‖ ≤ ‖µn+1− µn‖ for all n ∈ N.

Then lim
n→∞
‖νn−µn‖= 0.

Lemma 2.2. [21]. For a Banach space E the following are equivalent:

(1) E is UCED.

(2) If {νn} is a bounded sequence in E, then a function f on E defined by f (ν) =

limsup
n→∞

‖νn−ν‖ is strictly quasi-convex that is,

f (λν +(1−λ )µ)< max{ f (ν), f (µ)}

for all λ ∈ (0,1) and ν ,µ ∈ E with ν 6= µ .

Let (B j,‖ ·‖ j), j = 1, . . . ,n be Banach spaces. Define B := B1×·· ·×Bn and C :=C1×·· ·×

Cn, where C j is a non-empty subset of B j for j = 1,2, . . . ,n. Assume that Pj,S j : C→ C j for

j = 1,2, . . . ,n, are mappings, and denote by P := (P1, . . . ,Pn) and S := (S1, . . . ,Sn) the systems

of mappings.

We denote a point in B by υ = (υ1, . . . ,υn) and a sequence in B by (υm) = (υm
1 , . . . ,υ

m
n ).

Two systems of mappings (P1, . . . ,Pn) and (S1, . . . ,Sn) are said to be coordinatewise commuting
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[20] on C if for all υ ∈C,

Pj(S1υ , . . . ,Snυ) = S j(P1υ , . . . ,Pnυ), j = 1,2, . . . ,n.

3. MAIN RESULTS

Firstly, we define a new class of a system of mappings on the product of Banach spaces.

Definition 3.1. Let (B j,‖ · ‖ j), j = 1,2, . . . ,n, be Banach spaces, and let C j be a non-empty

subset of B j for each j = 1,2, . . . ,n. Assume that Pj : C→C j for j = 1,2, . . . ,n, are mappings.

Then, the system of mappings (P1, . . . ,Pn) is said to satisfy condition (D) if there exists a non-

negative matrix (a jk) for j,k = 1,2, . . . ,n, with characteristic roots (λ j, j = 1,2, . . . ,n) such

that

max{|λ j| : j = 1,2, . . . ,n} ≤ 1

and fulfil the following inequalities:

(D)
1
2
‖υ j−Pjυ‖ j ≤ ‖υ j−ϑ j‖ j =⇒ ‖Pjυ−Pjϑ‖ j ≤

n

∑
k=1

a jk‖υk−ϑk‖k

for all υ ,ϑ ∈C; υ j,ϑ j ∈C j and j = 1,2, . . . ,n.

Notice that by considering n = 1, P1 = f , a11 = 1, B1 = E and C1 = Y in Definition 3.1, the

condition (D) reduces to the condition (C).

Example 3.2. Let B1 = B2 = [0,3] be Banach spaces endowed with the usual norm

‖υ j−ϑ j‖ j = |υ j−ϑ j|, j = 1,2. Let Pj : B1×B2→ B j, j = 1,2 be such that

P1(υ1,υ2) =


0, if υ1 6= 3,

1, if υ1 = 3,

P2(υ1,υ2) =


0, if υ2 6= 3,

1, if υ2 = 3.

Then, the system of mappings (P1,P2) satisfies condition (D) for a11 = a22 = 1,a12 = 1/2

and a21 = 0. To see this, let for υ j = 3, 1
2‖υ j − Pj(υ1,υ2)‖ j =

1
2 |3− 1| = 1 and 1

2‖υ j −

Pj(υ1,υ2)‖ j ≤ ‖υ j − ϑ j‖ j for all ϑ j ∈ [0,2]. Then, ‖Pj(υ1,υ2)− Pj(ϑ1,ϑ2)‖ j = |1− 0| =

1 ≤ ‖υ j−ϑ j‖ j, j = 1,2. Similarly, for υ j 6= 3, 1
2‖υ j−Pj(υ1,υ2)‖ j =

1
2 |υ j− 0| = υ j/2 and
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for ϑ j ∈ [0,3] such that υ j/2 ≤ ‖υ j−ϑ j‖ j = |υ j−ϑ j|, we have ‖Pj(υ1,υ2)−Pj(ϑ1,ϑ2)‖ j ≤

‖υ j−ϑ j‖ j, j = 1,2.

Now, we present some important lemmas which are very essential for our main findings.

Lemma 3.3. Let C j be a subset of a Banach space B j for each j = 1,2, . . . ,n, and let Pj : C→C j

for j = 1,2, . . . ,n, be mappings. If the system of mappings (P1, . . . ,Pn) satisfies the condition

(D), then the following statements are true for each j = 1,2, . . . ,n, and υ j,ϑ j ∈C j:

(a) ‖Pjυ−Pj(P1υ , . . . ,Pnυ)‖ j ≤
n
∑

k=1
a jk‖υk−Pkυ‖k.

(b) Either 1
2‖υ j−Pjυ‖ j ≤ ‖υ j−ϑ j‖ j or 1

2‖Pjυ−Pj(P1υ , . . . ,Pnυ)‖ j ≤ ‖Pjυ−ϑ j‖ j.

(c) Either ‖Pjυ −Pjϑ‖ j ≤
n
∑

k=1
a jk‖υk−ϑk‖k or ‖Pj(P1υ , . . . ,Pnυ)−Pjϑ‖ j ≤

n
∑

k=1
a jk‖Pkυ −

ϑk‖k, where υ ,ϑ ∈C.

Proof. Since, for each j = 1,2, . . . ,n, and υ j ∈ C j, it is obvious that 1
2‖υ j −Pjυ‖ j ≤ ‖υ j −

Pjυ‖ j. Then by condition (D), we have

‖Pjυ−Pj(P1υ , . . . ,Pnυ)‖ j ≤
n

∑
k=1

a jk‖υk−Pkυ‖k.

To prove (b), we argue by contradiction that

1
2
‖υ j−Pjυ‖ j > ‖υ j−ϑ j‖ j and

1
2
‖Pjυ−Pj(P1υ , . . . ,Pnυ)‖ j > ‖Pjυ−ϑ j‖ j

for all υ j,ϑ j ∈C j and j = 1,2, . . . ,n. Then by (a) and the triangle inequality, we have

‖υ j−Pjυ‖ j ≤ ‖υ j−ϑ j‖ j +‖Pjυ−ϑ j‖ j

<
1
2
‖υ j−Pjυ‖ j +

1
2
‖Pjυ−Pj(P1υ , . . . ,Pnυ)‖ j

≤ 1
2
‖υ j−Pjυ‖ j +

1
2

n

∑
k=1

a jk‖υk−Pkυ‖k, j = 1,2, . . . ,n.

This implies that

(3.1) ‖υ j−Pjυ‖ j <
n

∑
k=1

a jk‖υk−Pkυ‖k, j = 1,2, . . . ,n.

We may assume, without loss of generality, that

‖υk−Pkυ‖k ≤ rk for k = 1,2, . . . ,n.
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From Perron-Frobenius’s theorem [8, pp. 534-535], there exist positive real numbers r j > 0, j =

1,2, . . . ,n, such that
n

∑
k=1

a jkrk ≤ r j, j = 1,2, . . . ,n.

This follows from (3.1) that

‖υ j−Pjυ‖ j < r j, j = 1,2, . . . ,n.

Since above inequities are strict, so there exists h ∈ [0,1) such that

‖υ j−Pjυ‖ j ≤ hr j, h ∈ [0,1) and j = 1,2, . . . ,n.

Repeating this step m times we get

‖υ j−Pjυ‖ j ≤ hmr j, h ∈ [0,1) and j = 1,2, . . . ,n.

Making m→ ∞, we get ‖υ j−Pjυ‖ j = 0 for each j = 1,2, . . . ,n, which contradict our assump-

tion. Thus the conclusion (b) holds. From conclusion (b) and the condition (D) one can easily

get conclusion (c). �

Lemma 3.4. Let C j be a subset of a Banach space B j for each j = 1,2, . . . ,n and Pj : C→

C j, j = 1,2, . . . ,n be mappings. If the system of mappings (P1, . . . ,Pn) satisfies the condition

(D) then

‖υ j−Pjϑ‖ ≤ 2‖υ j−Pjυ‖ j +
n

∑
k=1

a jk‖υk−Pkυ‖k +
n

∑
k=1

a jk‖υk−ϑk‖k

holds for all υ j,ϑ j ∈C j and j = 1,2, . . . ,n.

Proof. By Lemma 3.3, either

‖Pjυ−Pjϑ‖ j ≤
n

∑
k=1

a jk‖υk−ϑk‖k or ‖Pj(P1υ , . . . ,Pnυ)−Pjϑ‖ j ≤
n

∑
k=1
‖Pkυ−ϑk‖k

holds. In the first case, we have

‖υ j−Pjϑ‖ j ≤ ‖υ j−Pjυ‖ j +‖Pjυ−Pjϑ‖ j ≤ ‖υ j−Pjυ‖ j +
n

∑
k=1

a jk‖υk−ϑk‖k.

In the second case, we have

‖υ j−Pjϑ‖ j ≤ ‖υ j−Pjυ‖+‖Pjυ−Pj(P1υ , . . . ,Pnυ)‖ j +‖Pj(P1υ , . . . ,Pnυ)−Pjϑ‖ j
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≤ 2‖υ j−Pjυ‖ j +
n

∑
k=1

a jk‖Pkυ−ϑk‖k

≤ 2‖υ j−Pjυ‖ j +
n

∑
k=1

a jk‖υk−Pkυ‖k +
n

∑
k=1

a jk‖υk−ϑk‖k.

�

Lemma 3.5. Let B j, j = 1,2, . . . ,n, be Banach spaces and C j ⊆B j, j = 1,2, . . . ,n, be the closed

convex sets. Assume that Pj : C→ C j, j = 1,2, . . . ,n, are mappings that satisfy the condition

(D). Then, the set F(P) = {(ρ1, . . . ,ρ2) ∈ C : Pj(ρ1, . . . ,ρn) = ρ j, j = 1,2, . . . ,n} is closed.

Moreover, if B j, j = 1,2, . . . ,n, are strictly convex and C j, j = 1,2, . . . ,n, are convex, then

F(P) is also convex.

Proof. Let (ρm) = (ρm
1 , . . . ,ρ

m
n ) be a sequence in F(P) converging to some point ρ =

(ρ1, . . . ,ρn) ∈C. Since 1
2‖ρ

m
j −Pjρ

m
j ‖ j = 0≤ ‖ρm

j −ρ j‖ j for m ∈ N, j = 1,2, . . . ,n, we have

‖ρm
j −Pjρ‖ j = ‖Pjρ

m−Pjρ‖ j

≤
n

∑
k=1

a jk‖ρm
k −ρk‖k.

Making m→ ∞, we get

lim
m→∞
‖ρm

j −Pjρ‖ j = 0, j = 1,2, . . . ,n.

That is, {ρm
j } converges to Pjρ for j = 1,2, . . . ,n. Therefore ρ ∈ F(P) and F(P) is closed.

Next, we assume that B j, j = 1,2, . . . ,n, are strictly convex and C j, j = 1, . . . ,n, are convex.

We fixed h ∈ (0,1) and υ = (υ1, . . . ,υn), ϑ = (ϑ1, . . . ,ϑn) ∈ F(P) with υ 6= ϑ and put ρ j =

hυ j +(1−h)ϑ j ∈C j, j = 1, . . . ,n. Then, we have

‖υ j−ϑ j‖ j ≤ ‖υ j−Pjρ‖ j +‖ϑ j−Pjρ‖ j

≤ ‖Pjυ−Pjρ‖ j +‖Pjϑ −Pjρ‖ j

≤
n

∑
k=1

a jk‖υk−ρk‖k +
n

∑
k=1

a jk‖ϑk−ρk‖k

≤
n

∑
k=1

a jk (‖υk−ρk‖k +‖ϑk−ρk‖k)
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=
n

∑
k=1

a jk ((1−h)‖υk−ϑk‖k +h‖υk−ϑk‖k)

=
n

∑
k=1

a jk‖υk−ϑk‖k.

From the strict convexity of B j, j = 1,2, . . . ,n, there exists µ ∈ [0,1] such that Pjρ = µυ j +

(1−µ)ϑ j, j = 1, . . . ,n. Since for each j = 1,2, . . . ,n, we have

(1−µ)‖υ j−ϑ j‖ j = ‖Pjυ−Pjρ‖ j ≤
n

∑
k=1

a jk‖υk−ρk‖k ≤ (1−h)
n

∑
k=1

a jk‖υk−ϑk‖k

and

µ‖υ j−ϑ j‖ j = ‖Pjϑ −Pjρ‖ j ≤
n

∑
k=1

a jk‖ϑk−ρk‖k = h
n

∑
k=1

a jk‖υk−ϑk‖k.

By the above inequalities, we have 1− µ ≤ 1− h and µ ≤ h. These imply h = µ . Therefore,

we obtain ρ ∈ F(P). �

Now, we state a convergence result to a system of mappings which satisfies the condition (D).

Theorem 3.6. Let (B j,‖.‖ j), j = 1,2, . . . ,n, be Banach spaces and C j ⊆ B j, j = 1,2, . . . ,n, be

non-empty convex sets. Assume that Pj : C→ C j, j = 1,2, . . . ,n, are mappings such that the

system of mappings (P1, . . . ,Pn) satisfies the condition (D). Define, for each j = 1,2, . . . ,n, a

sequence (υm
j ) in C j by υ1

j ∈C j and

υ
m+1
j = αPjυ

m +(1−α)υm
j

for m ∈ N and α ∈ [1/2,1). Then

(3.2) lim
m→∞
‖Pjυ

m−υ
m
j ‖= 0, j = 1,2, . . .n.

Proof. Let υ1
j ∈ C j be a fixed arbitrary element for j = 1,2, . . . ,n or (υ1

1 , . . . ,υ
1
n ) = υ1 ∈ C.

Define a sequence (υm+1
j ) ∈C j for α ∈ [1/2,1) such that

(3.3) υ
m+1
j = αPjυ

m +(1−α)υm
j , j = 1,2, . . . ,n, m ∈ N.

Then, from (3.5) and the condition (D), we have

1
2
‖υm

j −Pjυ
m‖ j ≤ α‖υm

j −Pjυ
m‖ j ≤ ‖υm

j −υ
m+1
j ‖ j
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implies

‖Pjυ
m−Pjυ

m+1‖ j ≤
n

∑
k=1

a jk‖υm
k −υ

m+1
k ‖k, j = 1,2, . . . ,n.

According to Perron-Frobenius’s theorem [8], there exist (r1,r2, . . . ,rn), r j > 0, j = 1,2, . . . ,n

such that
n

∑
k=1

a jkrk ≤ r j.

Let B = B1×·· ·×Bn and C =C1×·· ·×Cn. Define a norm ‖.‖ on B as

‖υ‖=
n

∑
k=1

rk‖υk‖k for all υ ∈ B.

It is easy to prove that (B,‖.‖) forms a Banach space. Define P : C→C, where C⊂ B, such that

P(υ) = (P1υ , . . . ,Pnυ) for all υ ∈C.

Then,

‖Pυ
m−Pυ

m+1‖=
n

∑
j=1

r j‖Pjυ
m−Pjυ

m+1‖ j

≤
n

∑
j=1

r j

[
n

∑
k=1

a jk‖υm
k −υ

m+1
k ‖k

]

≤
n

∑
k=1

(
n

∑
j=1

r ja jk

)
‖υm

k −υ
m+1
k ‖k

≤
n

∑
k=1

rk‖υm
k −υ

m+1
k ‖k = ‖υm−υ

m+1‖.

It follows that

‖Pυ
m−Pυ

m+1‖ ≤ ‖υm−υ
m+1‖.

By Lemma 2.1, we get

lim
m→∞
‖υm−Pυ

m‖= 0

which implies

lim
m→∞
‖υm

j −Pjυ
m‖ j = 0, j = 1,2, . . . ,n.

�

Now, we state an existence result for the new class of system of mappings on the finite product

of Banach space.
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Theorem 3.7. Let C j be a weakly compact convex subset of a UCED Banach space B j for each

j = 1,2, . . . ,n. Assume that P : C→ C j, j = 1,2, . . .n are mappings on C and the system of

mappings (P1, . . . ,Pn) satisfies the condition (D), then the system of equations

(3.4) Pj(υ1, . . . ,υn) = υ j, j = 1,2, . . . ,n

has a solution (ρ1, . . . ,ρn) ∈C.

Proof. Take an arbitrary fixed υ1
j ∈C j, j = 1,2, . . . ,n and define a sequence (υm+1

j ) ∈C j such

that

υ
m+1
j =

1
2
[Pjυ

m +υ
m
j ], m ∈ N, j = 1,2, . . .n.

Then, following the proof of Theorem 3.6 for α = 1/2, we get

limsup
m→∞

‖υm
j −Pjυ

m‖ j = 0, j = 1,2, . . . ,n.

Define a continuous convex function f j : C j→ [0,∞) such that

f j(v j) = limsup
m→∞

‖υm
j − v j‖ j

for each j = 1,2, . . . ,n and all v j ∈C j, m ∈ N. Since C j, j = 1,2, . . . ,n are weakly compact

and f j is weakly lower semi-continuous, there exists ρ j ∈C j such that

f j(ρ j) = min{ f j(v j) : v j ∈C j}.

By Lemma 3.4, we have

‖υm
j −Pjρ‖ j ≤ 2‖υm

j −Pjυ
m‖ j +

n

∑
k=1

a jk‖υm
k −Pkυ

m‖k +
n

∑
k=1

a jk‖υm
k −ρk‖k.

Making limsup
m→∞

on the both side of above inequalities, we get

(3.5) f j(Pjρ) ≤
n

∑
k=1

a jk fk(ρk), j = 1,2, . . . ,n.

According to Perron-Frobenius’s theorem [8], there exist (r1,r2, . . . ,rn), r j > 0, j = 1,2, . . . ,n,

such that
n

∑
k=1

a jkrk ≤ r j for j = 1,2, . . . ,n.
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Let B = B1×·· ·×Bn and C =C1×·· ·×Cn. Define a norm ‖.‖ on B as

‖v‖=
n

∑
k=1

rk‖vk‖k for all v ∈ B,

and P : C→C and f : C→ [0,∞) such that P := (P1, . . . ,Pn) and f := ( f1, . . . , fn) respectively.

If ρ = (ρ1, . . . ,ρn), vm = (vm
1 , . . . ,v

m
n ) ∈ B, then

‖υm−ρ‖=
n

∑
k=1

rk‖υm
k −ρk‖k.

Taking limsup
m→∞

on the both side, we get

f (ρ) = limsup
m→∞

‖υm−ρ‖=
n

∑
k=1

rk limsup
m→∞

‖υm
k −ρk‖k =

n

∑
k=1

rk fk(ρk).

Therefore,

f (Pρ) = limsup
m→∞

‖υm−Pρ‖=
n

∑
j=1

r j limsup
m→∞

‖υm
j −Pjρ‖ j

=
n

∑
j=1

r j f j(Pjρ)

≤
n

∑
k=1

(
n

∑
j=1

r ja jk

)
fk(ρk) (from (3.5))

≤
n

∑
k=1

rk fk(ρk) = f (ρ).

Since f (ρ) is the minimum therefore f (Pρ) = f (ρ) holds. This implies that f j(Pjρ) = f j(ρ j)

for each j = 1,2, . . . ,n. If Pjρ 6= ρ j for some j then by strict quasi-convexity, we have

f j(ρ j)≤ f j

(
ρ j +Pjρ

2

)
< max{ f j(ρ j), f j(Pjρ)}= f j(ρ j).

This is a contraction. Hence Pjρ = ρ j, for all j = 1,2, . . . ,n. �

Now, we present an illustrative example in support of our finding.

Example 3.8. Let B1 = B2 = R be Banach spaces endowed with the usual norm ‖υ j−ϑ j‖ j =

|υ j−ϑ j|, j = 1,2 and C j = [−1,1]⊂ B j, j = 1,2. Let Pj : C1×C2→C j, j = 1,2, be such that

P1(υ1,υ2) =−υ2 and P2(υ1,υ2) =−υ1 for all (υ1,υ2) ∈ B1×B2.
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Then, the system of mappings (P1,P2) satisfies the condition (D) on C1×C2 for a11 = a22 =

1,a12 = 0 and a21 = 0. To see this, let for any (υ1,υ2), (ϑ1,ϑ2) ∈ C1 ×C2, we have

‖Pj(υ1,υ2)−P(ϑ1,ϑ2)‖ j = |υ j−ϑ j|= aii‖υ j−ϑ j‖ j for j = 1,2. Thus all the assumptions of

Theorem 3.7 are satisfied and the system of mappings (P1,P2) has a solution (0,0) in C1×C2.

Now, we prove an existence result for two systems of mappings using Theorem 3.2.

Theorem 3.9. Let C j be a weakly compact convex subset of a UCED Banach space B j for

j = 1,2, . . . ,n, and Pj,S j : C→C j, j = 1,2, . . . ,n, are mappings on C. Assume that (S1, . . . ,Sn)

and (P1, . . . ,Pn) are two systems of coordinatewise commuting mappings satisfying the condition

(D) on C. Then, the systems of equations

(3.6) Pj(υ1, . . . ,υn) = υ j = S j(υ1, . . . ,υn), j = 1,2, . . . ,n,

have a common solution in C.

Proof. Suppose that the system (P1, . . . ,Pn) satisfies the condition (D). Then by Theorem 3.7,

there exists (ϑ1, . . . ,ϑn) ∈C such that

Pj(ϑ1, . . . ,ϑn) = ϑ j, j = 1,2, . . . ,n.

This follows that F(P), as defined in Lemma 3.5, is a nonempty and from Lemma 3.5, the set

F(P) is also closed and convex.

We define A := F(P)∩F(S) then A is closed and convex. Now we will prove that A 6= /0.

Let ϑ ∈ F(P). Since two systems of mappings (S1, . . . ,Sn) and (P1, . . . ,Pn) are coordinatewise

commuting, we have

Pj(S1ϑ , . . . ,Snϑ) = S j(P1ϑ , . . . ,Pnϑ) = S jϑ , j = 1,2, . . . ,n.

These imply (S1ϑ , . . . ,Snϑ) ∈ F(P). By coordinatewise commutativity, we also have

S jϑ = Pj(S1ϑ , . . . ,Snϑ) = S j(S1ϑ , . . . ,Snϑ), j = 1,2, . . . ,n.

Hence (S1ϑ , . . . ,Snϑ) ∈ A 6= /0, meaning (S1ϑ , . . . ,Snϑ) is a common solution of the systems

of equations (3.6).

�
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4. CONCLUSION

In this paper, we have introduced a new class of systems of mappings which includes both the

class of nonexpansive mappings and Suzuki-type generalized nonexpansive mappings. We have

presented some existence and convergence results for this new class of systems of mappings.

Our results extend the work of Matkowski [13] and Czerwik [3] to a broader class of systems

of mappings and open up a scope for new research to explore additional properties of theses

mappings in this direction.
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