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Abstract. In this article, we consider the AI-iteration process for approximating the fixed points of enriched

contraction and enriched nonexpansive mappings. Firstly, we prove the strong convergence of the AI-iteration

process to the fixed points of enriched contraction mappings. Furthermore, we present a numerical experiment to

demonstrate the efficiency of the AI-iterative method over some existing methods. Secondly, we establish the weak

and strong convergence results of AI-iteration method for enriched nonexpansive mappings in uniformly convex

Banach spaces. Thirdly, the stability analysis results of the considered method is presented. Finally, we apply our

results to the solution of fractional boundary value problems in Banach spaces.
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1. INTRODUCTION

The Banach contraction principle [1] is an essential tool for solving fixed points problems

for contraction mappings defined on a complete metric space. This principle has widely been
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used by many authors for proving the existence and uniqueness of solutions of nonlinear func-

tional equations such as integral equations, ordinary differential equations and partial differ-

ential equations. In certain cases, the existence of solutions of a fixed point problem is guar-

anteed, but finding the exact solution may be impossible [2]. The iterative method have been

introduced by several authors to obtain the approximate solutions of such problems (see, for

example, [9, 10, 11, 12, 13] and the references in them). It is important to mention that the

proof of the Banach contraction principle is based on convergence of the most simplest it-

erative process called the sequence of successive approximations or Picard iterative process

and it is well known that the approximation of this method to the fixed point of nonexpan-

sive mappings may fail even when the fixed points of such mappings exist. Due to limita-

tion of the Picard method, several methods have been constructed for approximating the fixed

points of nonexpansive mappings and other generalizations of nonexpanisve mappings (see,

[3, 2, 7, 4, 5, 14, 6, 33, 34, 35, 36, 37, 8] and references in them).

Let C be a nonempty subset of a Banach space B. Then the set {p ∈ C : p = T p} of all

fixed points of the self mapping T defined C is denoted by F(T ). The mapping T is called a

contraction if there exists δ ∈ [0,∞) such that ‖T x−Ty‖ ≤ δ‖x−y‖, for all x,y∈C. T is called

nonexpansive if ‖T x−Ty‖ ≤ ‖x− y‖,∀x,y ∈ C and it called quasinonexpansive if F(T ) 6= /0,

then ‖T x− p‖ ≤ ‖x− p‖, ∀p ∈ F(T ) and x ∈C.

In [18], Berinde and Păcurar introduced a new class of mappings called enriched (b,γ)-

contraction mappings.

Definition 1.1. A mapping T : C→C is said to be an enriched (b,γ)-contraction mapping if for

x,y ∈C, there exists b ∈ [0,∞) and γ ∈ (0,b+1) such that

‖b(x− y)+T x−Ty‖ ≤ γ‖x− y‖.(1)

Remark 1.2. It is not hard to see that, if b = 0, then the class of enriched (b,γ)-contraction

mappings properly includes the class of contraction mappings.

Again, Berinde [19] introduced another class of mappings called enriched nonexansive map-

pings.
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Definition 1.3. A mapping T : C→ C is said to be an enriched nonexpansive mapping if for

x,y ∈C, there exists b ∈ [0,∞) such that

‖b(x− y)+T x−Ty‖ ≤ ‖x− y‖.(2)

Remark 1.4. Observe that the class of enriched nonexpansive mappings is a super class of

the class of nonexpansive mappings. Indeed, if b = 0, it is obvious that the class of e properly

includes the class of nonexpansive mappings.

The class of enriched nonexpansive mappings have been studied by many researchers in

recent years [19, 2, 20, 14].

Remark 1.5. [22] Suppose T is a self mapping defined on C. Then, for any λ ∈ [0,1), the

averaged mapping Tλ on C given by

Tλ x = (1−λ )x+λT x

satisfies F(T ) = F(Tλ ). Obviously, T0 = I and T1 = T are the trivial cases.

Recently, Ofem and Igbokwe [23] introduced the AI-iterative method to approximate the

fixed points of contraction mappings. The authors showed that their method converges faster

than some well known methods in the literature. For {σn} ∈ (0,1), the AI-iterative method is

given as follows: 

p1 ∈C,

zk = (1−σk)pk +σkTλ pk,

wk = Tλ zk,

qk = Tλ wk,

pk+1 = Tλ qk,

k ∈ N.(3)

Motivated by the above results, in this work, firstly, we prove the strong convergence of the

AI-iteration process to the fixed points of enriched (b,γ)-contraction mappings. Furthermore,

we present a numerical experiment to demonstrate the efficiency of AI-iterative method over

some existing methods. Secondly, we establish the weak and strong convergence results of

AI-iteration method for enriched nonexpansive mappings in uniformly convex Banach spaces.
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Thirdly, we show the stability analysis results of the considered method. Finally, we apply our

results to the solution of fractional boundary value problems in Banach spaces.

2. PRELIMINARIES

In this section, we recall some definitions and lemmas that will be used in obtaining our main

results.

Definition 2.1. Let B be a Banach space. If for each ε ∈ (0,2], there exists δ > 0 such that for

p,q ∈ B with ‖p‖ ≤ 1, ‖q‖ ≤ 1 and ‖p−q‖> ε , implies
∥∥ p+q

2

∥∥< 1−δ . Then B is said to be

a uniformly convex Banach space (UCBS).

Definition 2.2. A Banach B is said to fulfill the Opial’s property if for any sequence {pk} ∈ B

which converges weakly to p ∈ B implies

limsup
k→∞

‖pk− p‖< limsup
k→∞

‖pk−q‖, ∀q ∈ B with q 6= p.

Definition 2.3. Let {pk} be a bounded sequence in a Banach space B and let C be a nonempty

closed convex subset of B. For p ∈ B, we take

r(p,{pk}) = limsup
k→∞

‖pk− p‖.

The asymptotic radius of {pk} relative to C is given as:

r(C,{pk}) = inf{r(p,{pk}) : g ∈C}.

The asymptotic center of {pk} relative to C is defined by

A(C,{pk}) = {p ∈C : r(p,{pk}) = r(C,{pk})}.

It is well known that in a UCBS, the set A(C,{pk}) is a singleton.

Definition 2.4. Let B be a Banach space and C be a nonempty closed convex subset of B. Then,

the self mapping T : C→C is said to demiclosed with respect to p∈B, if for each sequence {pk}

which is weakly convergent to p ∈C and {T pk} converges strongly to q implies that T p = q.
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Lemma 2.5. [29] Let B be a UCBS and {rk} be any sequence fulfilling 0 < h≤ rk ≤ q < 1 for

all k ≥ 1. Suppose {pk} and {qk} are any sequences in B with

limsup
k→∞

‖pk‖ ≤ z,

limsup
k→∞

‖qk‖ ≤ z and

limsup
k→∞

‖rk pk +(1− rk)qk‖ = z

hold for some z≥ 0. Then lim
k→∞
‖pk−qk‖= 0.

Lemma 2.6. [28] Let {ak} and {ωk} be sequences of positive real numbers satisfying the fol-

lowing inequality:

ak+1 ≤ (1−ωk)ak + ek,

where ωk ∈ (0,1) for all k ∈ 0 with ∑
∞
k=0 ωk = ∞. If lim

k→∞

ek
ωk

, then lim
k→∞

ak = 0.

Definition 2.7. [31] The condition (I) is said to be satisfied by the mapping T : C→ C, if a

nondecreasing function h : [0,∞)→ [0,∞) exists with h(0) = 0 and for all c > 0 then h(c) > 0

with ‖p−T p‖ ≥ h(d(p,F(T )) for all p ∈C, where d(p,F(T )) = infp∗∈F(T ) ‖p− p∗‖.

Definition 2.8. [15] Let tk be an approximate sequence of pk in a subset C of a Banach space B.

Then a given iterative process pk+1 = f (T, pk) for some function f , converging to a fixed point

p∗ of self mapping T defined on C, is said to be T -stable or stable with respect to T provided

that lim
k→∞

vk = 0 if and only if lim
k→∞

tk = p∗ where vk is given by

vk = ‖tk+1− f (T, tk)‖,∀k ≥ 1.

3. CONVERGENCE ANALYSIS FOR (b,γ )-CONTRACTION MAPPINGS

In this section, we establish the convergence analysis of (b,γ)-contraction and enriched non-

expansive mappings.

Theorem 3.1. Let C be a nonempty closed and convex subset of a Banach space B and T :C→C

a (b,γ)-contraction mapping with F(T) 6= 0. Then, the sequence {pk} defined by (3) converges

to a fixed point of T .
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Proof. Let b = 1
λ
−1, it follows that λ ∈ (0,1). Then (1) becomes

‖( 1
λ
−1)(p−q)+T p−T q‖ ≤ γ‖p−q‖,(4)

which can equivalently be written as

‖Tλ p−Tλ q‖ ≤ δ‖p−q‖,(5)

where θ = λγ . As γ ∈ (0,b+ 1), θ ∈ (0,1). Hence, the averaged operator Tλ is a contraction

with contractive constant θ . Let p∗ ∈ F(T ). Then, from (3) we have

‖zk− p∗‖= ‖(1−σk)pk +σkTλ pk− p∗‖

≤ (1−σk)‖pk− p∗‖+σk‖Tλ pk− p∗‖

≤ (1−σk)‖pk− p∗‖+σkθ‖pk− p∗‖

= (1− (1−θ)σk)‖pk− p∗‖.(6)

Again, from (3), we have

‖wk− p∗‖= ‖Tλ zk− p∗‖

≤ θ‖zk− p∗‖.(7)

Also, from (3), we have

‖qk− p∗‖= ‖Tλ wk− p∗‖

≤ θ‖wk− p∗‖.(8)

Finally, from (3), we get

‖pk+1− p∗‖= ‖Tλ qk− p∗‖

≤ θ‖qk− p∗‖.(9)

Combining (6), (7),(8) and (9), we have

‖pk+1− p∗‖ ≤ θ
3(1− (1−θ)σk)‖pk− p∗‖.(10)
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Inductively, we have

‖pk+1− p∗‖ ≤ θ
3k(1− (1−θ)σk)‖p0− p∗‖.(11)

Since 0 < θ 3n(1− (1−θ)σn)< 1, it follows that {pk} converges to p∗. �

Next, we give an example to demonstrate that the AI-iteration process (3) converges faster

than S [6], Thakur [30], and M [14] iteration methods.

Example 3.2. Let B =R and C = [0,10]. Let T : C→C be a mapping defined by T p = 10− p,

for all p ∈ C. Let all the control parameters in the compared methods be σk = 3
4 and the

starting point p1 = 6. Observe that T is
(3

5 ,
5
8

)
-enriched contraction with fixed point 5. Hence,

T5
8
= 25−p

4

From Table 1 and Figure 1, it is evident that AI-iteration process converges faster to 5 than

the compared methods.

TABLE 1. Convergence behaviour of various iterative methods for Example 3.2.
Step S-iteration Thakur M-iteration AI-iteration

1 6.0000000000 6.0000000000 6.0000000000 6.0000000000
2 5.4843750000 5.4316406250 5.2792968750 5.2421875000
3 5.2346191406 5.1863136292 5.0780067444 5.0586547852
4 5.1136436462 5.0804205313 5.0217870399 5.0142054558
5 5.0550461411 5.0347127684 5.0060850522 5.0034403838
6 5.0266629746 5.0149834411 5.0016995361 5.0008332180
7 5.0129148783 5.0064674619 5.0004746751 5.0002017950
8 5.0062556442 5.0027916193 5.0001325753 5.0000488722
9 5.0030300777 5.0012049763 5.0000370279 5.0000118362
10 5.0014676939 5.0005201167 5.0000103418 5.0000028666
11 5.0007109142 5.0002245035 5.0000028884 5.0000006943
12 5.0003443491 5.0000969048 5.0000008067 5.0000001681
13 5.0001667941 5.0000418281 5.0000002253 5.0000000007
14 5.0000807909 3.0000180547 5.0000000629 5.0000000000
15 5.0000391331 5.0000077931 5.0000000176 5.0000000000
16 5.0000189551 5.0000033638 5.0000000049 5.0000000000
17 5.0000091814 5.0000014520 5.0000000014 5.0000000000
18 5.0000044472 5.0000006267 5.0000000004 5.0000000000
19 5.0000021541 5.0000002705 5.0000000001 5.0000000000
20 5.0000010434 5.0000000008 5.0000000000 5.0000000000
21 5.0000005054 5.0000000000 5.0000000000 5.0000000000
22 5.0000002448 5.0000000008 5.0000000000 5.0000000000
23 5.0000001186 5.0000000000 5.0000000000 5.0000000000
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FIGURE 1. Graph corresponding to Table 1.

4. CONVERGENCE ANALYSIS FOR ENRICHED NONEXPANSIVE MAPPING

In this section, we obtain the weak and strong convergence of AI-iteration method in uni-

formly convex Banach spaces.

Lemma 4.1. Let C be a nonempty bounded closed convex subset of a UCBS B and T : C→C

an enriched nonexpansive mapping such that F(T ) 6= /0. Suppose pk is a sequence generated by

(3), then lim
k→∞
‖pk− p∗‖ exists for all p∗ ∈ F(Tλ ).

Proof. Since T is an enriched nonexpansive mapping, take b = 1
λ
−1. It implies that λ ∈ (0,1).

From by (2), we have

‖( 1
λ
−1)(p−q)+T p−T q‖ ≤ ‖p−q‖,(12)

which can be written in equivalent form as

‖Tλ p−Tλ q‖ ≤ ‖p−q‖.(13)

It means that the averaged operator Tλ is nonexpansive. Following the Browder’s fixed point

theorem, it follows that Tλ has at least one fixed point. By Remark 1.5, F(Tλ ) = F(T ) = /0. We
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have shown that the averaged operator Tλ is nonexpansive. Now, let p∗ ∈ F(Tλ ). From (3), we

have

‖zk− p∗‖= ‖(1−σk)pk +σkTλ pk− p∗‖

≤ (1−σk)‖pk− p∗‖+σk‖Tλ pk− p∗‖

≤ (1−σk)‖pk− p∗‖+σk‖pk− p∗‖

= ‖pk− p∗‖.(14)

Again, from (3), we have

‖wk− p∗‖= ‖Tλ zk− p∗‖

≤ ‖zk− p∗‖.(15)

Also, from (3), we have

‖qk− p∗‖= ‖Tλ wk− p∗‖

≤ ‖wk− p∗‖.(16)

Finally, from (3), we get

‖pk+1− p∗‖= ‖Tλ qk− p∗‖

≤ ‖qk− p∗‖.(17)

Combining (14), (15),(16) and (17), we have

‖pk+1− p∗‖ ≤ ‖pk− p∗‖.(18)

There, {‖pk− p∗‖} is a bounded monotone decreasing sequence. It follows that, lim
k→∞
‖pk− p∗‖

exists for all p∗ ∈ F(T ) = F(Tλ ). �

Theorem 4.2. Let B, C, T and {pk} be same as in Lemma 4.1. Then, F(T ) 6= /0 if and only if

{pk} is bounded and lim
k→∞
‖pk−Tλ pk‖= 0, where b = 1

λ
−1.

Proof. By Lemma 4.1, it is shown that {pk} is bounded and lim
k→∞
‖pk− p∗‖ exists for all p∗ ∈

F(Tλ ). Suppose
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(19) lim
k→∞
‖pk− p∗‖= h.

From (19) and (14), we have

limsup
k→∞

‖zk− p∗‖ ≤ limsup
k→∞

‖pk− p∗‖= h.(20)

By (19), we obtain

limsup
k→∞

‖Tλ pk− p∗‖ ≤ limsup
k→∞

‖pk− p∗‖= h.(21)

Recalling (3), we have

‖pk+1− p∗‖ = ‖Tλ qk− p∗‖

≤ ‖qk− p∗‖

= ‖Tλ wk− p∗‖

≤ ‖wk− p∗‖

= ‖Tλ zk− p∗‖

≤ ‖zk− p∗‖.

Therefore, from (19), we have

(22) h≤ liminf
k→∞

‖zk− p∗‖.

From (22) and (20), we have

h = lim
k→∞
‖zk− p∗‖

= lim
k→∞
‖(1−σk)pk +σkTλ pk− p∗‖

= lim
k→∞
‖(1−σk)(pk− p∗)+σk(Tλ pk− p∗)‖

= lim
k→∞

((1−σk)‖pk− p∗‖+σk‖Tλ pk− p∗‖)

≤ lim
k→∞

((1−σk)‖pk− p∗‖+σk‖pk− p∗‖)

≤ h.(23)

Thus,
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(24) lim
k→∞
‖(1−σk)(pk− p∗)+σk(Tλ pk− p∗)‖= h.

Using (19), (21), (24) and Lemma 2.5, we obtain

(25) lim
k→∞
‖pk−Tλ pk‖= 0.

On the other hand, suppose {pk} is bounded and lim
k→∞
‖pk− T pk‖ = 0. Let p∗ ∈ A(C,{pk}).

From 13, we get

r(Tλ p∗,{pk}) = limsup
k→∞

‖pk−Tλ p∗‖

≤ limsup
k→∞

‖pk−Tλ pk‖+ limsup
k→∞

‖Tλ pk− p∗‖

= limsup
k→∞

‖pk− p∗‖

= r(p∗,{pk}).

It means that Tλ p∗ ∈ A(C,{pk}). Since B is a UCBS, it implies that A(C,{pk}) is a singleton

set and therefore, we have that Tλ p∗ = p∗. Thus, F(Tλ ) 6= /0. �

Theorem 4.3. Let B, C, T and {pk} be same as in Lemma 13 such that F(T ) 6= /0. Assume

that B fulfills the Opial’s property, then the AI iterative scheme {pk} (3) weakly converges to an

element in F(T ).

Proof. For F(Tλ ) 6= /0, it is shown in Theorems 4.1 and 4.2 that lim
k→∞
‖pk − p∗‖ exists and

lim
k→∞
‖pk−Tλ pk‖ = 0. In what follows, we will show the impossibility of {pk} to posses two

weak sub-sequential limits in F(Tλ ). Let c and d be two weak sub-sequential limits of {pki} and

{pk j}, respectively. Thanks to Theorem 4.2, we have that (I−Tλ ) is demiclosed at 0,it follows

that (I−Tλ )c = 0. Therefore, Tλ c = c. Using similar approach, we can prove that Tλ d = d.

Now, we prove uniqueness. Suppose c 6= d, then by Opial’s condition

lim
k→∞
‖pk− c‖ = lim

i→∞
‖pki− c‖< lim

i→∞
‖pki−d‖= lim

k→∞
‖pk−d‖

= lim
j→∞
‖pk j −d‖< lim

j→∞
‖pk j − c‖= lim

k→∞
‖pk− c‖,

which is a contradiction, therefor c = d. Thus, {pk} weakly converges to c ∈ F(Tλ ). �
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Now, we present some strong convergence Theorems.

Theorem 4.4. Let B, C, Tλ and {pk} be same as in Theorem 4.1 such that F(Tλ ) 6= /0. Then,

{pk} converges strongly to an element in F(Tλ ) if and only if liminf
k→∞

d(pk,F(Tλ )) = 0, where

d(pk,F(Tλ )) = inf{‖pk− p∗‖ : p∗ ∈ F(Tλ )}.

Proof. The necessity case is trivial. Thus, we consider only the sufficient case. Assume that

liminf
k→∞

d(pk,F(Tλ )) = 0 and p∗ ∈ F(Tλ ). Then, by Theorem 13, we have that lim
k→∞
‖pk− p∗‖

exists, for each p∗ ∈ F(Tλ ). It is now enough to prove that {pk} is a Cauchy sequence in C.

Due to lim
k→∞

d(pk,F(Tλ )) = 0, then for ξ > 0, there exists m0 ∈ N such that for all k ≥ m0

d(pk,F(Tλ )) <
ξ

2

inf{‖pk− p∗‖ : p∗ ∈ F(Tλ )} <
ξ

2
.

In particular, inf{‖pm0− p∗‖ : p∗ ∈ F(Tλ )}<
ξ

2 . Therefore, there exists p∗ ∈ F(Tλ ) such that

‖pm0− p∗‖< ξ

2
.

If m,k ≥ m0, we have

‖pk+l− pk‖ ≤ ‖pk+l− p∗‖+‖pk− p∗‖

≤ ‖pm0− p∗‖+‖pm0− p∗‖

= 2‖pm0− p∗‖< ξ .

This means that the sequence {pk} is Cauchy in C. Since C is closed, it follows that a point

t ∈ C with lim
k→∞

pk = t. So that lim
k→∞

d(pk,F(Tλ )) = 0 implies that d(t,F(Tλ )) = 0, that is,

t ∈ F(Tλ ). �

Theorem 4.5. Let B, C, Tλ and {pk} be same as in 4.1 such that F(Tλ ) 6= /0. Assume C is a

nonempty convex compact subset of B, then {pk} strongly converges to an element in F(Tλ ) .

Proof. Thanks to Theorem 4.2, it is shown that lim
k→∞
‖pk−Tλ pk‖= 0. By the compactness of C,

it follows that {pk} has a strong convergent subsequence {pki} with a strong limit c. Hence,
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‖pki−Tλ c‖ ≤ ‖pki−Tλ pki‖+‖Tλ pki−Tλ c‖

≤ ‖pki−Tλ pki‖+‖pki− c‖.

Letting i→ ∞, we get pki → Tλ c. Thus, Tλ c = c, i.e. c ∈ F(Tλ ). From Theorem 4.1, we know

that lim
k→∞
‖pk− c‖ exists. In what follows, we have that c is a strong limit for {pk}. �

Theorem 4.6. Let B, C, Tλ and {pk} be same as in 4.1 such that F(Tλ ) 6= /0. If Tλ satisfies the

condition I, then {pk} converges strongly to an element in F(Tλ ).

Proof. It shown in Theorem 4.2 that

lim
k→∞
‖pk−Tλ pk‖= 0.(26)

By (26) and Definition 2.7, we have

0≤ lim
k→∞

f (d(pk,F(T )))≤ lim
k→∞
‖pk−T pk‖= 0 ⇒ f (d(pk,F(T ))) = 0.

Since the function h : [0,∞)→ [0,∞) nondecreasing such that h(0) = 0 and h(g) > 0, for all

g > 0, we have

lim
k→∞

d(pk,F(T )) = 0.

Using Theorem 4.4, the remainder of the proof is obtained. �

5. STABILITY RESULT

In this section, we present the stability result of the AI iterative method 3.

Theorem 5.1. Let C be a nonempty closed and convex subset of a Banach space B and T :C→C

a (b,γ)-enriched contraction mapping. Then, the AI iterative scheme defined by (3) is Tλ -stable

for λ = 1
λ
−1.

Proof. Let tk be an approximate sequence of {pk} in C. The sequence defined by iteration (3) is

give by pk+1 = f (Tλ , pk) and vk = ‖tk+1− f (Tλ , tk)‖, for all k ≥ 1. Next, we have to show that

lim
k→∞

vk = 0 if and only if lim
k→∞

ak = p∗. From (3), we have that
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‖tk+1− p∗‖ ≤ ‖tk+1− f (Tλ , tk)‖+‖ f (Tλ , tk)− p∗‖

= vk +‖pk+1− p∗‖.

By (4.1), we have

‖tk+1− p∗‖ ≤ vk +θ
3(1− (1−θ)σk)‖tk− p∗‖.

Take ak = ‖tk− p∗‖ and ωk = θ 3(1− (1− θ)σk). Then we have ak+1 = θ 3(1−ωk)ak + vk.

Since lim
k→∞

vk
ωk

= 0, it follows from Lemma 2.6 that we have lim
k→∞

tk = 0 and hence, lim
k→∞

tk = p∗

Conversely, if lim
k→∞

tk = p∗, then we have

vk = ‖tk+1− f (Tλ , tk)‖

≤ ‖tk+1− p∗‖+‖ f (Tλ , tk)− p∗‖

≤ ‖tk+1− p∗‖+θ
3(1− (1−θ)σk)‖tk− p∗‖.

This implies that lim
k→∞

vk = 0. Hence, the AI iterative scheme (3) is Tλ -stable. �

6. APPLICATION

Fractional calculus is thought-about as a generalization of classical calculus. There are nu-

merous definitions for derivatives and integrals of arbitrary order. Even though in the beginning,

fractional calculus was just a strictly mathematical idea, in modern times its use has unfolded

into many distinct fields of technological know-how such as mechanics, physics, biology, chem-

istry, engineering, electrochemistry and bioengineering [25].

The fractional differential equations have emerged as a new branch of applied mathematics,

due to the evolution of fractional calculus. Further, the existence and uniqueness of solutions to

fractional boundary value problems have acquired a lot of interest due to its qualitative proper-

ties of fractional differential equations [26, 27].

In this paper, we consider the following fractional boundary value problem with ψ-Caputo

fractional derivative:
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 cDα,ψ
a+ p(t) = g(t, p(t)), t ∈ [a,b],

p[m]
a = pm

a , m = 0,1, ...,k−2; p[k−1]
ψ (b) = pb,

(27)

where cDα,ψ
a+ is the ψ-Caputo fractional derivative of order k− 1 < α < k (k = [α] + 1), and

g : [a,b]×R→ R is the given continuous function and pb, pm
a ∈ R (m = 0,1, ...,k− 2), p ∈

Ck−1[a,b] such that cDα,ψ
a+ p exists and is continuous in [a,b].

The following definitions and lemmas will be useful in obtaining our main results in this part

of the paper:

Definition 6.1. Let α > 0, h an integral functional function defined on [a,b] and ψ ∈Ck[a,b]

an increasing differentiable function such that ψ ′(t) 6= 0 for all t ∈ [a,b]. The left-sided ψ-

Riemann-Liouville fractional of order α of a function h is given by

Iα,ψ
a+ h(t) =

1
Γ(α)

∫ t

a
ψ
′(s)(ψ(t)−ψ(s))α−1h(s)ds,

where Γ(·) is gamma function.

Definition 6.2. Let k− 1 < α < k, h : [a,b]→ R be an integrable function and ψ is defined

as in Definition 6.1. The left-sided ψ-Riemann-Liouville fractional derivative of order α of a

function h is given by

Dα,ψ
a+ h(t) =

[
1

ψ ′(t)
d
dt

]k
cIk−α,ψ

a+ h(t),(28)

where k = [α]+1 and [α] denotes the integer part of the real number α .

Definition 6.3. Let k− 1 < α < k, h ∈ Ck−1[a,b] and ψ be defined as in Definition 6.1. The

left-sided ψ-Riemann-Liouville fractional derivative of function h of order α is evaluated as

cDα,ψ
a+ h(t) = Iα,ψ

a+ h(t)

[
h(t)−

m−1

∑
m=0

h[m]
ψ (a)
m!

(ψ(t)−ψ(a)m)

]
,(29)

where h[m]
ψ (t) =

[
1

ψ ′(t)
d
dt

]m
h(t) and k = [α] + 1 for α /∈ N, k = α for α ∈ N. Further, if h ∈

Ck[a,b] and α /∈ N, then

cDα,ψ
a+ h(t) = Ik−α,ψ

a+

[
1

ψ ′(t)
d
dt

]k

h(t) =
1

Γ(k−α)

∫ t

a
ψ
′(s)(ψ(t)−ψ(s))k−α−1h[k]

φ
(s)ds,
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Therefore, if α = k ∈ N, one get

cDα,ψ
a+ h(t) = h[k]

φ
(t).

Lemma 6.4. A function p is a solution of the fractional boundary value problem (27) if and

only if p(t) is a solution of the fractional integral equation

p(t) =
1

Γ(α)

∫ t

a
ψ
′(s)(ψ(t)−ψ(s))α−1g(s, p(s))ds+

[
pb

(k−1)!

+
g(a, p(a))(ψ(b)−ψ(a))α−k+1

(k−2)!Γ(α− k+2)

]
− (ψ(t)−ψ(a))k−1

(k−1)!Γ(α− k+1)

+
∫ t

a
ψ
′(s)(ψ(b)−ψ(s))α−kg(s, p(s))ds+

k−2

∑
m!

pm
a

m!
[ψ(t)−ψ(a)]m.

The existence and uniqueness results of the problem (27) was proved in [25] under the fol-

lowing assumptions:

H1 g : [a,b]×R→ R is continuous and there exists a 0 < µ < 1 such that

|g(t,z)−g(t,w)| ≤ µ|z−w|, ∀z,w ∈ R

H2

[
1

(α+1) +
((ψ(b)−ψ(a))+k−1)
(k−1)!Γ(α−k+2)

]
µ(ψ(b)−ψ(a))α < 1.

Our aim in this part of the paper is approximate the solution of the fractional boundary value

problem (27) using the AI iterative method (3) for λ = 1.

Theorem 6.5. Suppose assumption H1 –H2 holds. Then the AI-iterative method defined by (3)

converges to the solution of the BVP (27).

Proof. Set B = {p ∈Ck−1[a,b] :c Dα,ψ
a+ p ∈C[a,b]}. Then B is a Banach space. Next, we define

the operator T : B→ B by

(T p)(t) =
1

Γ(α)

∫ t

a
ψ
′(s)(ψ(t)−ψ(s))α−1g(s, p(s))ds+

[
pb

(k−1)!

+
g(a, p(a))(ψ(b)−ψ(a))α−k+1

(k−2)!Γ(α− k+2)

]
− (ψ(t)−ψ(a))k−1

(k−1)!Γ(α− k+1)

+
∫ t

a
ψ
′(s)(ψ(b)−ψ(s))α−kg(s, p(s))ds+

k−2

∑
m!

pm
a

m!
[ψ(t)−ψ(a)]m.(30)
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Let {pk} be an iterative method generated by the AI-iterative method (3) for the operator defined

by (30). We have to show that pk→ p∗ as k→ ∞. By (3) and (30), we have

‖pk+1− p∗‖

= |(T qk)(t)− (T p∗)(t)|

=
1

Γ(α)

∫ t

a
ψ
′(s)(ψ(t)−ψ(s))α−1g(s,qk(s))ds+

[
pb

(k−1)!
+

g(a,qk(a))(ψ(b)−ψ(a))α−k+1

(k−2)!Γ(α− k+2)

]
− (ψ(t)−ψ(a))k−1

(k−1)!Γ(α− k+1)
+
∫ t

a
ψ
′(s)(ψ(b)−ψ(s))α−kg(s,qk(s))ds+

k−2

∑
m!

pm
a

m!
[ψ(t)−ψ(a)]m

−
[

1
Γ(α)

∫ t

a
ψ
′(s)(ψ(t)−ψ(s))α−1g(s, p∗(s))ds+

[
pb

(k−1)!
+

g(a, p∗(a))(ψ(b)−ψ(a))α−k+1

(k−2)!Γ(α− k+2)

]

− (ψ(t)−ψ(a))k−1

(k−1)!Γ(α− k+1)
+
∫ t

a
ψ
′(s)(ψ(b)−ψ(s))α−kg(s, p∗(s))ds+

k−2

∑
m!

pm
a

m!
[ψ(t)−ψ(a)]m

]

≤ Iα,ψ
a+ |g(t,qk(t))−g(t, p∗(t))|+ (ψ(b)−ψ(a))α−k+1(ψ(t)−ψ(a))k−1

(k−2)!Γ(α− k+2)
|g(a,qk(a))−g(a, p∗(a))|

+
(ψ(t)−ψ(a))k−1

(k−2)!Γ(α− k+2)
Iα−k+1,ψ
a+ |g(b,qk(b))−g(b, p∗(b))|

≤ Iα,ψ
a+ µ|pk(t)− p∗(t)|+ (ψ(b)−ψ(a))α−k+1(ψ(t)−ψ(a))k−1

(k−2)!Γ(α− k+2)
µ|pk(a)− p∗(a)|

+
(ψ(t)−ψ(a))k−1

(k−2)!Γ(α− k+2)
Iα−k+1,ψ
a+ µ|pk(b)− p∗(b)|

≤
[
(ψ(b)−ψ(a))α

Γ(α +1)
+

(ψ(b)−ψ(a))α

(k−2)!Γ(α− k+2)
+

(ψ(b)−ψ(a))α+1

(k−1)!Γ(α− k+2)

]
µ‖qk− p∗‖.

Thus, we have

‖pk+1− p∗‖ ≤
[

1
Γ(α +1)

+
(ψ(b)−ψ(a))+ k−1
(k−1)!Γ(α− k+2)

]
µ(ψ(b)−ψ(a))α‖qk− p∗‖.(31)

Following similar approach, from (3) we obtain

‖qk− p∗‖ ≤
[

1
Γ(α +1)

+
(ψ(b)−ψ(a))+ k−1
(k−1)!Γ(α− k+2)

]
µ(ψ(b)−ψ(a))α‖wk− p∗‖.(32)

‖wk− p∗‖ ≤
[

1
Γ(α +1)

+
(ψ(b)−ψ(a))+ k−1
(k−1)!Γ(α− k+2)

]
µ(ψ(b)−ψ(a))α‖zk− p∗‖.(33)

Using (3), we have

‖zk(t)− p(t)‖

= |(1−σk)pk(t)+σk(T qk)(t)− p∗(t)|
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≤ (1−σk)|pk(t)− p∗(t)|+σk|(T qk)(t)− (T p∗)(t)|

= (1−σk)|pk(t)− p∗(t)|+σk×{
1

Γ(α)

∫ t

a
ψ
′(s)(ψ(t)−ψ(s))α−1g(s, pk(s))ds+

[
pb

(k−1)!
+

g(a, pk(a))(ψ(b)−ψ(a))α−k+1

(k−2)!Γ(α− k+2)

]
− (ψ(t)−ψ(a))k−1

(k−1)!Γ(α− k+1)
+
∫ t

a
ψ
′(s)(ψ(b)−ψ(s))α−kg(s, pk(s))ds+

k−2

∑
m!

pm
a

m!
[ψ(t)−ψ(a)]m

−
(

1
Γ(α)

∫ t

a
ψ
′(s)(ψ(t)−ψ(s))α−1g(s, p∗(s))ds+

[
pb

(k−1)!
+

g(a, p∗(a))(ψ(b)−ψ(a))α−k+1

(k−2)!Γ(α− k+2)

]

− (ψ(t)−ψ(a))k−1

(k−1)!Γ(α− k+1)
+
∫ t

a
ψ
′(s)(ψ(b)−ψ(s))α−kg(s, p∗(s))ds+

k−2

∑
m!

pm
a

m!
[ψ(t)−ψ(a)]m

)}
≤ (1−σk)|pk(t)− p∗(t)|+σk×{

Iα,ψ
a+ |g(t, pk(t))−g(t, p∗(t))|+ (ψ(b)−ψ(a))α−k+1(ψ(t)−ψ(a))k−1

(k−2)!Γ(α− k+2)
|g(a, pk(a))−g(a, p∗(a))|

+
(ψ(t)−ψ(a))k−1

(k−2)!Γ(α− k+2)
Iα−k+1,ψ
a+ |g(b, pk(b))−g(b, p∗(b))|

}
≤ (1−σk)|pk(t)− p∗(t)|+σk×{

Iα,ψ
a+ µ|pk(t)− p∗(t)|+ (ψ(b)−ψ(a))α−k+1(ψ(t)−ψ(a))k−1

(k−2)!Γ(α− k+2)
µ|pk(a)− p∗(a)|

+
(ψ(t)−ψ(a))k−1

(k−2)!Γ(α− k+2)
Iα−k+1,ψ
a+ µ|pk(b)− p∗(b)|

}
≤ (1−σk)‖pk− p∗‖

+σk

[
(ψ(b)−ψ(a))α

Γ(α +1)
+

(ψ(b)−ψ(a))α

(k−2)!Γ(α− k+2)
+

(ψ(b)−ψ(a))α+1

(k−1)!Γ(α− k+2)

]
µ‖pk− p∗‖.

Thus, we have

‖zk− p∗‖ ≤ (1−σk)‖pk− p∗‖

+σk

[
1

Γ(α +1)
+

(ψ(b)−ψ(a))+ k−1
(k−1)!Γ(α− k+2)

]
µ(ψ(b)−ψ(a))α‖pk− p∗‖

=

(
1−σk

[
1

Γ(α +1)
+

(ψ(b)−ψ(a))+ k−1
(k−1)!Γ(α− k+2)

]
µ(ψ(b)−ψ(a))α

)
‖pk− p∗‖.(34)

Combing (31), (32), (33) and (34), we have

‖pk+1− p∗‖ ≤
([

1
Γ(α +1)

+
(ψ(b)−ψ(a))+ k−1
(k−1)!Γ(α− k+2)

]
µ(ψ(b)−ψ(a))α

)3

×(
1−σk

[
1

Γ(α +1)
+

(ψ(b)−ψ(a))+ k−1
(k−1)!Γ(α− k+2)

]
µ(ψ(b)−ψ(a))α

)
‖pk− p∗‖.(35)
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Since
[

1
Γ(α+1) +

(ψ(b)−ψ(a))+k−1
(k−1)!Γ(α−k+2)

]
µ(ψ(b)−ψ(a))α < 1 and 0 < σk < 1, it follows that(

1−σk

[
1

Γ(α+1) +
(ψ(b)−ψ(a))+k−1
(k−1)!Γ(α−k+2)

]
µ(ψ(b)−ψ(a))α

)
< 1. Thus, (35) becomes

‖pk+1− p∗‖ ≤ ‖pk− p∗‖.(36)

If we set, ‖pk+1− p∗‖= vk, then we have

vk+1 ≤ vk,∀k ≥ 1.(37)

Thus, {vk} is a monotone decreasing sequence of positive real numbers. Further, it is bounded

sequence, we obtain

lim
k→∞

vk = inf{vk}= 0.

So,

lim
k→∞
‖pk− p∗‖= 0.

�

7. CONCLUSION

In this article, we considered the AI-iterative method for approximating the fixed pints of en-

riched (b,γ)-contraction mappings and enriched nonexpansive mappings. We obtained the weak

and strong convergence results of these mappings under some mild conditions. we present a nu-

merical example to justify the advantage of AI-iterative method over many existing methods.

Furthermore, we showed that the AI-iterative method is T -stable. Lastly, we approximate the

solution of fractional BVPs with via AI-iterative method.
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