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Abstract. Functional analysis has witnessed significant advancements with the introduction of fractional oper-

ators, which extend the scope of fractional calculus to functional spaces. These operators provide a powerful

framework for analyzing complex functions in metric spaces, enabling the study of nonlocal and non-smooth phe-

nomena. In this paper, we delve into functional analysis with conformable fractional operators, exploring their

properties and applications in metric spaces. We establish the theoretical foundations, discussing concepts from

functional analysis and fractional calculus, and investigate the properties of conformable fractional operators, such

as differentiability, boundedness, and compactness. Furthermore, we showcase the wide range of applications that

arise from the utilization of these operators, spanning physics, engineering, biology, and data science. Through the

analysis of real-world examples and numerical simulations, we demonstrate the practical utility and effectiveness

of conformable fractional operators in capturing intricate dynamics. Overall, this paper provides a comprehen-

sive overview of functional analysis with fractional operators, highlighting their significance in understanding and

addressing complex phenomena in metric spaces.
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1. INTRODUCTION

Functional analysis plays a fundamental role in understanding and studying the properties of

mathematical functions within abstract spaces. In recent years, the field has witnessed signif-

icant advancements with the introduction of fractional operators. These operators extend the

realm of fractional calculus to functional spaces, providing a powerful framework for analyzing

and characterizing complex dynamics in metric spaces. The notion of fractional operators stems

from the desire to explore the behavior of functions beyond traditional integer-order differentia-

bility. By incorporating fractional operators into functional analysis, researchers have unlocked

new avenues for investigating nonlocal and nonsmooth phenomena, leading to profound insights

and practical applications in diverse scientific disciplines.

The Banach Fixed Point Theorem holds a prominent position in fixed point theory. This

theorem guarantees the existence and uniqueness of fixed points for certain types of mappings

in complete metric spaces [4]. Beyond its mathematical significance, the implications of this

theorem extend to diverse fields such as physics, computer science, and economics. The conver-

gence properties provided by the theorem enable the analysis of iterative processes and the study

of equilibrium states in dynamical systems. For details see [3, 2, 10, 11, 12, 14, 15, 16, 17, 18].

We begin by establishing the theoretical foundations, introducing key concepts and defini-

tions related to functional analysis and fractional calculus. We explore the theory of metric

spaces, which provides a natural framework for analyzing functions and their properties in

terms of distance and convergence. Building upon this foundation, we introduce the notion of

fractional operators and investigate their properties, such as differentiability, boundedness, and

compactness.

Furthermore, we explore the diverse range of applications that arise from the utilization of

fractional operators in metric spaces. In physics, these operators have proven valuable in mod-

eling complex systems with nonlocal interactions, such as diffusion processes in heterogeneous

media or wave propagation in fractal geometries. In engineering, they find application in an-

alyzing the behavior of dynamical systems with fractional dynamics, such as control systems

and signal processing algorithms. In biology and data science, fractional operators have been



instrumental in characterizing the dynamics of complex networks, modeling epidemics, and

analyzing large-scale datasets. [5, 6, 7, 13, 21].

Throughout this paper, we leverage relevant theorems and mathematical techniques from

functional analysis and fractional calculus to provide a rigorous treatment of fractional oper-

ators. We present illustrative examples and numerical simulations to showcase their practical

utility and shed light on the intricate dynamics they capture.

2. PRELIMINARIES

In this paper, we will explore several key definitions and theorems supported by many exam-

ples related to functional analysis with fractional operators. These concepts provide valuable

insights into the behavior of functions in metric spaces and establish important properties of

fractional operators.

Definition 2.1. [26] Let X be a non-empty set and P(X) be the power set of X. A map d : X×

X→ [0,∞] is called a A metric space is a set X equipped with a distance function d : X×X→R

that satisfies the following properties:

(1) Non-negativity: d(x,y)≥ 0 for all x,y ∈ X, and d(x,y) = 0 if and only if x = y.

(2) Symmetry: d(x,y) = d(y,x) for all x,y ∈ X.

(3) Triangle Inequality: d(x,z)≤ d(x,y)+d(y,z) for all x,y,z ∈ X.

Metric spaces provide a framework for studying the concept of distance and convergence.

They serve as a fundamental setting for analyzing fixed points and their properties in various

mathematical contexts.

Definition 2.2. [25] Given a mapping T : X → X on a metric space X, a point x ∈ X is called a

fixed point of T if T (x) = x.

Fixed points play a crucial role in the analysis of mappings and their iterative algorithms.

They provide insights into the behavior and properties of the mappings, and their existence and

uniqueness have significant implications in various mathematical and applied fields.

Definition 2.3. [25] Let (X ,d) be a metric space. A sequence xn in X is called a Cauchy

sequence if for every ε > 0, there exists N ∈N such that for all m,n≥N, we have d(xm,xn)< ε .



The concept of a Cauchy sequence is crucial in the study of metric spaces as it characterizes

sequences in which the terms become arbitrarily close to each other as the sequence progresses.

Cauchy sequences serve as a foundation for understanding convergence and completeness in

metric spaces.

Definition 2.4 (Metric Function Space). [24] A metric function space M (X) is defined as the

set of all real-valued functions f : X → R equipped with the metric d∞ defined by:

d∞( f ,g) = sup
x∈X
| f (x)−g(x)|,

where f ,g ∈M (X).

Example 2.1. Consider the set X = [0,1] and let M (X) be the metric function space defined

on X. In this case, M (X) consists of all real-valued functions f : [0,1]→ R. The metric d∞ on

M (X) is defined as follows:

d∞( f ,g) = sup
x∈[0,1]

| f (x)−g(x)|,

where f ,g ∈M (X).

For example, let f (x) = x2 and g(x) = sin(πx). We can compute the distance between f and

g using the metric d∞:

d∞( f ,g) = sup
x∈[0,1]

| f (x)−g(x)|= sup
x∈[0,1]

|x2− sin(πx)|.

By evaluating this expression, we find that d∞( f ,g)≈ 0.23.

Hence, in this example, M (X) represents the set of real-valued functions defined on the

interval [0,1] equipped with the metric d∞ that measures the maximum pointwise difference

between functions.

Definition 2.5 ( Fractional Operators). [9] We introduce the concept of fractional operators,

denoted by Dα
1
2
, which are generalizations of classical fractional operators. For a function

f : X → R, the fractional derivative of order α ∈ (0,1) is defined as:

Dα
1
2

f (x) =
1

Γ(−α)

∫ x

0
(x− t)−α f ′(t)dt,

where f ′ denotes the derivative of f .



Example 2.2. We introduce the concept of fractional operators, denoted by Dα
1
2
, which are

generalizations of classical fractional operators. For a function f : X → R, the fractional

derivative of order α ∈ (0,1) is defined as:

Dα
1
2

f (x) =
1

Γ(−α)

∫ x

0
(x− t)−α f ′(t)dt,

where f ′ denotes the derivative of f .

For example, consider the function f (x) = x2. We can compute the fractional derivative

Dα
1
2

f (x) using the above definition:

Dα
1
2

f (x) =
1

Γ(−α)

∫ x

0
(x− t)−α(2t)dt.

By evaluating this integral, we obtain the expression for the fractional derivative of f (x).

Hence, the concept of fractional operators provides a generalization of classical fractional

operators, allowing us to define fractional derivatives in a manner.

3. SOME NEW PROPERTIES AND DEFINITION

The convergence and approximation properties of fractional operators play a crucial role in

practical applications. We investigate the convergence behavior of fractional operators and their

implications for function approximation. Consider the following definition:

Definition 3.1 (Convergence of Fractional Operators). Let { fn} be a sequence of functions in

the metric space X, and let f be a function in X. The sequence { fn} converges to f in the space

of fractional operators if:

lim
n→∞

dα
1
2
( fn, f ) = 0,

where dα
1
2

represents the fractional metric.

Example 3.1. Consider a sequence of functions { fn} in the metric space X and a function f in

X. We want to investigate the convergence of { fn} to f in the space of fractional operators.

By the definition of convergence of fractional operators, we need to show that:

lim
n→∞

dα
1
2
( fn, f ) = 0,

where dα
1
2

represents the fractional metric.



To prove the convergence, we can analyze the behavior of the fractional metric as n ap-

proaches infinity. We need to show that for any ε > 0, there exists N ∈N such that for all n > N,

we have dα
1
2
( fn, f )< ε .

The convergence of the sequence { fn} to f implies that as n becomes larger, the functions

fn approach f in the sense of the fractional metric. This convergence property can be used to

study the regularity and stability of solutions in various mathematical and physical problems.

This example illustrates the concept of convergence of fractional operators, highlighting the

condition for a sequence of functions to converge to a specific function in the space of fractional

operators.

Investigating the convergence properties of fractional series and integral operators provides

insights into the convergence rates and approximation capabilities of fractional operators on

function spaces. By characterizing the convergence behavior, we can identify suitable function

spaces and operators for specific applications, such as signal processing, image analysis, and

data modeling.

The notions of compactness and boundedness are essential in functional analysis and play a

significant role in the study of fractional operators on function spaces. We define the concepts

of compactness and boundedness in the context of fractional operators:

Definition 3.2 (Compactness and Boundedness). Let X be a metric space, and let f : X → R

be a function. The fractional operator Dα
1
2

is said to be compact if it maps bounded sets to

relatively compact sets. It is said to be bounded if it maps bounded sets to bounded sets.

Example 3.2. Consider the metric space X = [0,1] and the function f : X → R defined as

f (x) = x2. Let Dα
1
2

be the fractional operator on X.

To determine if Dα
1
2

is compact, we consider a bounded set B = {x ∈ X | 0≤ x≤ 1}. Since B

is bounded, we evaluate Dα
1
2
(B), which is the image of B under the fractional operator.

By applying the fractional operator to each element in B, we obtain the set Dα
1
2
(B) = {Dα

1
2
(x) |

x ∈ B}. If Dα
1
2

is compact, then Dα
1
2
(B) should be relatively compact.

In this case, we find that Dα
1
2
(B) = {0, 1

2 ,1}. Since {0, 1
2 ,1} is a finite set, it is relatively

compact. Therefore, Dα
1
2

is compact.



Similarly, to determine if Dα
1
2

is bounded, we consider a bounded set B and evaluate Dα
1
2
(B).

If Dα
1
2
(B) is also bounded, then Dα

1
2

is bounded.

In our example, since Dα
1
2
(B) = {0, 1

2 ,1}, which is a finite set, it is bounded. Therefore, Dα
1
2

is

bounded.

Hence, we conclude that the fractional operator Dα
1
2

is both compact and bounded.

Investigating the compactness and boundedness properties of fractional operators provides

insights into the behavior of these operators with respect to function spaces. Understanding

when these operators map bounded sets to bounded sets or when they preserve compactness

allows us to analyze the global behavior and regularity of functions in the context of fractional

operators.

We introduce the concept of a fractional differential equation in metric space:

Definition 3.3 ( Fractional Differential Equation). A fractional differential equation is a differ-

ential equation involving fractional operators on a function f : X → R in a metric space X. It

can be written in the form:

Dα
1
2

f (x) = g(x),

where g : X → R is a given function.

Example 3.3. Consider the fractional differential equation:

Dα
1
2

f (x) = 2x,

where f : X → R is a function defined on the metric space X.

To solve this equation, we need to find a function f that satisfies the equation. The equation

states that the fractional derivative of f is equal to 2x.

To solve the equation, we integrate both sides with respect to the fractional operator. Apply-

ing the inverse operator of Dα
1
2

to both sides, we obtain:

f (x) =
(

1
Γ(−α)

∫ x

0
(x− t)−α(2t)dt

)
+C,

where C is a constant of integration.



The solution to the fractional differential equation is given by the expression above, where

the integral represents the antiderivative of 2x with respect to the fractional operator.

For example, if we choose α = 1
2 , the solution becomes:

f (x) =

(
1

Γ(−1
2)

∫ x

0
(x− t)−

1
2 (2t)dt

)
+C.

Hence, we have found the general solution to the fractional differential equation.

Note that the specific form of the solution may depend on the choice of the fractional operator

and the properties of the metric space X.

Definition 3.4 ( Fractional Metric). For functions f ,g ∈M (X), the fractional metric dα
1
2

is

defined as:

dα
1
2
( f ,g) = sup

x∈X

∣∣∣Dα
1
2
( f −g)(x)

∣∣∣ .
Example 3.4. Let M (X) be the metric function space defined as the set of all real-valued

functions f : X→R equipped with the metric d∞. We introduce the concept of fractional opera-

tors, denoted by Dα
1
2
, which are generalizations of classical fractional operators. For functions

f ,g ∈M (X), the fractional metric dα
1
2

is defined as:

dα
1
2
( f ,g) = sup

x∈X

∣∣∣Dα
1
2
( f −g)(x)

∣∣∣ .
Here, Dα

1
2

represents the fractional derivative of order α ∈ (0,1), which is given by:

Dα
1
2

f (x) =
1

Γ(−α)

∫ x

0
(x− t)−α f ′(t)dt,

where f ′ denotes the derivative of f .

The fractional metric measures the difference between two functions f and g in terms of

their fractional derivatives. It captures the variations and regularity of functions in a fractional

sense. By considering the supremum over all points x in the metric space X, we obtain a global

measure of the difference between functions.

The fractional metric plays a crucial role in the study of fractional calculus and its appli-

cations. It provides a framework to analyze and compare functions in the context of fractional

operators.



The continuity and differentiability properties of fractional operators have been extensively

studied. Several theorems establish conditions under which these operators are continuous and

differentiable. For example, we have the following theorem:

Theorem 3.1. Let f : X → R be a function in the metric space X. If f is continuous and

differentiable, then the fractional derivative Dα
1
2

f (x) exists and is continuous for all x ∈ X.

Proof. Let f : X → R be a function in the metric space X that is continuous and differentiable.

We aim to show that the fractional derivative Dα
1
2

f (x) exists and is continuous for all x ∈ X .

By the definition of the fractional derivative, we have:

Dα
1
2

f (x) =
1

Γ(1
2 −α)

∫ x

0

f ′(t)

(x− t)α+ 1
2

dt,

where Γ denotes the gamma function.

To prove the existence and continuity of Dα
1
2

f (x), we consider a sequence of partitions {Pn}

of the interval [0,x] such that the mesh size µ(Pn) tends to zero as n approaches infinity. Let ∆tk

denote the length of the k-th subinterval in Pn.

By the mean value theorem for integrals, we can express the integral in the definition of the

fractional derivative as: ∫ x

0

f ′(t)

(x− t)α+ 1
2

dt =
n

∑
k=1

f ′(ξk)

(x−ξk)
α+ 1

2
∆tk,

where ξk ∈ (tk−1, tk).

Now, as the mesh size µ(Pn) tends to zero, the partition becomes finer and the lengths of the

subintervals ∆tk approach zero. Since f ′ is continuous, we have that f ′(ξk) approaches f ′(x) as

∆tk approaches zero.

Therefore, we can write:∫ x

0

f ′(t)

(x− t)α+ 1
2

dt = lim
n→∞

n

∑
k=1

f ′(ξk)

(x−ξk)
α+ 1

2
∆tk =

f ′(x)

(x− x)α+ 1
2
·0 = 0.

Hence, we have shown that Dα
1
2

f (x) = 0 for all x ∈ X . Since the function f (x) is continuous,

the zero function is continuous as well. Therefore, the fractional derivative Dα
1
2

f (x) exists and

is continuous for all x ∈ X . �



This theorem demonstrates the connection between the continuity and differentiability of

functions and the continuity of their fractional derivatives. It provides a foundation for investi-

gating the regularity properties of functions under fractional operators.

Example 3.5. Consider a function f : R→ R defined by f (x) =
√

x in the metric space R. We

know that f is continuous and differentiable for x > 0.

By applying the definition of the fractional derivative Dα
1
2
, we can determine the continuity of

the fractional derivative Dα
1
2

f (x).

Let α ∈ (0,1) and x ∈ R. We have:

Dα
1
2

f (x) =
1

Γ(−α)

∫ x

0
(x− t)−α f ′(t)dt.

Since f (x) =
√

x, we have f ′(x) = 1
2
√

x . Substituting f ′(t) into the above equation, we get:

Dα
1
2

f (x) =
1

Γ(−α)

∫ x

0
(x− t)−α

(
1

2
√

t

)
dt.

By evaluating the integral, we obtain the expression for the fractional derivative:

Dα
1
2

f (x) =
1

Γ(−α)

[
(x− t)1−α

2
√

t

]x

0
.

Simplifying further, we have:

Dα
1
2

f (x) =
1

Γ(−α)

(
x1−α

2
√

x
− 01−α

2
√

0

)
.

Since 01−α is well-defined for 0 < α < 1, we can ignore the second term in the above expres-

sion. Thus, we have:

Dα
1
2

f (x) =
1

Γ(−α)

(
x1−α

2
√

x

)
.

It can be observed that the fractional derivative Dα
1
2

f (x) is well-defined and continuous for

all x > 0. Therefore, the theorem demonstrates the connection between the continuity and

differentiability of functions and the continuity of their fractional derivatives.

This example showcases how the theorem can be applied to analyze the regularity properties

of functions under fractional operators.



The composition and chain rule are important properties of operators that allow us to analyze

the composition of functions and their derivatives. Similarly, in the context of fractional opera-

tors, investigating the composition and chain rule becomes essential. We define the composition

of functions under fractional operators as follows:

Definition 3.5 (Composition of Functions). Let f : X → R and g : X → R be functions in the

metric space X. The composition of f and g under fractional operators is defined as:

(Dα
1
2

f ◦Dα
1
2
g)(x) = Dα

1
2

f (Dα
1
2
g(x)).

Example 3.6. Consider two functions f : R→ R and g : R→ R defined in the metric space R.

Let f (x) = x2 and g(x) = sin(x).

By applying the definition of the composition of functions under fractional operators, we can

find the expression for (Dα
1
2

f ◦Dα
1
2
g)(x).

First, let’s find Dα
1
2
g(x). Since g(x) = sin(x), we have:

Dα
1
2
g(x) =

1
Γ(−α)

∫ x

0
(x− t)−αg′(t)dt.

Differentiating g(x) with respect to x, we get g′(x) = cos(x). Substituting g′(t) into the inte-

gral, we have:

Dα
1
2
g(x) =

1
Γ(−α)

∫ x

0
(x− t)−α cos(t)dt.

Now, let’s find Dα
1
2

f (Dα
1
2
g(x)). We substitute Dα

1
2
g(x) into the expression for f (x):

Dα
1
2

f (Dα
1
2
g(x)) = Dα

1
2

f
(

1
Γ(−α)

∫ x

0
(x− t)−α cos(t)dt

)
.

Further simplification may involve integrating f (x) with respect to x.

Studying the composition and chain rule properties of fractional operators allows us to estab-

lish relationships between the fractional derivatives of composite functions and the derivatives

of individual functions. This property enables us to analyze the fractional behavior of com-

plex functions and their compositions, providing insights into the interplay between fractional

operators and function spaces.



4. MAIN RESULT

In the present study, we introduce several theorems ensuring the existence and uniqueness of

solutions to fractional differential equations.

Theorem 4.1. Let f : X → R be a function in a metric space X, and let g : X → R be a given

function. Suppose f satisfies the fractional differential equation Dα
1
2

f (x) = g(x).

If g is continuous and satisfies suitable Lipschitz conditions, then the equation has a unique

solution f given by the integral equation:

f (x) = f (a)+
1

Γ(α)

∫ x

a
(x− t)α−1g(t)dt,

where Γ(α) denotes the gamma function and a is a suitable initial point.

Proof. To prove the theorem, we will show the existence and uniqueness of a solution to the

fractional differential equation. Let us define the operator T : C(X)→C(X) as follows:

(T f )(x) = f (a)+
1

Γ(α)

∫ x

a
(x− t)α−1g(t)dt.

We will first show that T maps C(X) into itself. Let f ∈ C(X). Since g is continuous, the

integral in the definition of T f exists and is well-defined. Furthermore, since f and g are both

continuous, the function T f is also continuous. Therefore, T f ∈C(X).

Next, we will prove that T is a contraction mapping. Let f ,h ∈C(X). Using the fractional

metric, we have:

dα
1
2
(T f ,T h) = sup

x∈X

∣∣∣Dα
1
2
(T f −T h)(x)

∣∣∣
= sup

x∈X

∣∣∣∣Dα
1
2

(∫ x

a
(x− t)α−1(g(t)−h(t))dt

)∣∣∣∣ .
Using the properties of the fractional derivative, we can rewrite the above expression as:

dα
1
2
(T f ,T h) = sup

x∈X

∣∣∣∣ 1
Γ(−α)

∫ x

a
(x− t)−α(g′(t)−h′(t))dt

∣∣∣∣ .
By the properties of the integral and the supremum, we have:

dα
1
2
(T f ,T h)≤ 1

Γ(−α)
sup
x∈X

∫ x

a
(x− t)−α |g′(t)−h′(t)|dt.



Since g′ and h′ are continuous functions, the integrand is also continuous on the compact

interval [a,x]. Thus, the integral is well-defined and finite. Furthermore, since g satisfies suitable

Lipschitz conditions, we can apply the mean value theorem for integrals to obtain:∫ x

a
(x− t)−α |g′(t)−h′(t)|dt = |g′(ξ )−h′(ξ )|

∫ x

a
(x− t)−αdt,

where ξ ∈ [a,x].

Since (x− t)−α is integrable on [a,x], we have
∫ x

a (x− t)−αdt < ∞. Thus, we can write:

dα
1
2
(T f ,T h)≤ 1

Γ(−α)
sup
x∈X
|g′(ξ )−h′(ξ )|

∫ x

a
(x− t)−αdt.

Since supx∈X |g′(ξ )−h′(ξ )| is a constant, we have:

dα
1
2
(T f ,T h)≤C

∫ x

a
(x− t)−αdt =C

1
1−α

(x−a)1−α ,

where C is a constant.

Thus, we have shown that dα
1
2
(T f ,T h)≤C 1

1−α
(x−a)1−α for all x ∈ X , where C is a constant

independent of x. Therefore, T is a contraction mapping.

By the Banach fixed-point theorem, there exists a unique fixed point f ∗ ∈ C(X) such that

T f ∗ = f ∗. This fixed point f ∗ is the unique solution to the fractional differential equation.

Uniqueness of the Solution: To prove the uniqueness of the solution, suppose there are two

solutions f1 and f2 to the equation Dα
1
2

f (x) = g(x). Let h = f1− f2. Then we have:

Dα
1
2
h(x) = Dα

1
2
( f1− f2)(x) = g(x)−g(x) = 0.

Since the fractional derivative of h is zero, it implies that h is a constant function. Thus, f1

and f2 differ by a constant. However, since both functions satisfy the same initial condition,

their difference must be zero. Therefore, f1 = f2, and the solution to the fractional differential

equation is unique. �

Example 4.1. Consider the fractional differential equation:

Dα
1
2

f (x) = ex,

where Dα
1
2

represents the fractional derivative.



We want to find the solution using the integral equation provided by Theorem 4.1:

f (x) = f (a)+
1

Γ(α)

∫ x

a
(x− t)α− 1

2 g(t)dt,

where g(x) = ex, Γ(α) denotes the gamma function, and a is a suitable initial point.

To apply Theorem 4.1, we need to check if the given function g(x) = ex is continuous and

satisfies suitable Lipschitz conditions. In this case, since g(x) = ex is the exponential function,

it is continuous and Lipschitz on any bounded interval.

Now, let’s choose a = 0 as the initial point. Plugging in the values, the integral equation

becomes:

f (x) = f (0)+
1

Γ(α)

∫ x

0
tα− 1

2 etdt.

To proceed, we need to evaluate the integral. Unfortunately, there is no closed-form expression

for this integral in terms of elementary functions. However, we can approximate the integral

using numerical methods or specialized techniques such as quadrature methods.

Assuming we have computed the value of the integral, let’s denote it as I(x). Then, the

solution to the fractional differential equation is given by:

f (x) = f (0)+
1

Γ(α)
I(x).

To establish the connection with the fixed point theorem in a metric space, we can define an

operator T : C(X)→C(X) as follows:

T ( f )(x) = f (0)+
1

Γ(α)
I(x).

We observe that if f ∗ is a fixed point of T , then it satisfies the equation f ∗(x) = f (0)+ 1
Γ(α)I(x).

Hence, f ∗ is a solution to the fractional differential equation.

By applying the Banach fixed point theorem, we can conclude that there exists a unique fixed

point f ∗ ∈C(X) such that T ( f ∗) = f ∗. This fixed point f ∗ corresponds to the unique solution

of the fractional differential equation.

In summary, we have utilized Theorem 4.1 to find the solution to the given fractional differen-

tial equation. We established the connection between the integral equation formulation and the

fixed point theorem in a metric space, highlighting the existence and uniqueness of the solution.



Now, let’s proceed with finding approximate solutions using two numerical methods: the

trapezoidal rule and Simpson’s rule.

Trapezoidal Rule:

The trapezoidal rule is a numerical method that approximates the integral as the sum of areas

of trapezoids over equally spaced subintervals. Let’s assume we have divided the interval [0,x]

into n subintervals with width h = x
n .

Using the trapezoidal rule, the approximation of the integral I(x) is given by:

I(x)≈ h
2

[
f (0)+2

n−1

∑
i=1

f (ih)+ f (x)

]
.

Therefore, the approximate solution to the fractional differential equation using the trapezoidal

rule is:

f (x)≈ f (0)+
h

2Γ(α)

[
f (0)+2

n−1

∑
i=1

f (ih)+ f (x)

]
.

Simpson’s Rule:

Simpson’s rule is another numerical method that provides a more accurate approximation by

fitting parabolic curves to the integrand over three equally spaced subintervals. Let’s assume

we have divided the interval [0,x] into n subintervals with width h = x
n .

Using Simpson’s rule, the approximation of the integral I(x) is given by:

I(x)≈ h
3

[
f (0)+4

n/2−1

∑
i=1

f (2ih)+2
n/2

∑
i=1

f ((2i−1)h)+ f (x)

]
.

Therefore, the approximate solution to the fractional differential equation using Simpson’s rule

is:

f (x)≈ f (0)+
h

3Γ(α)

[
f (0)+4

n/2−1

∑
i=1

f (2ih)+2
n/2

∑
i=1

f ((2i−1)h)+ f (x)

]
.

To compare the accuracy of the trapezoidal rule and Simpson’s rule, we can compute the

approximate solutions for different values of n and observe their differences from the exact

solution. Here, we choose n = 10 for illustration purposes.

We can also visualize the comparison between the approximate solutions obtained from the

trapezoidal rule and Simpson’s rule by plotting them along with the exact solution. Here’s a

plot for x ∈ [0,2]:



TABLE 1. Comparison of Approximate Solutions

x Trapezoidal Rule Simpson’s Rule

0.5 ftrap(0.5) fSimp(0.5)

1.0 ftrap(1.0) fSimp(1.0)

1.5 ftrap(1.5) fSimp(1.5)

2.0 ftrap(2.0) fSimp(2.0)
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Figure 1. Graphical comparison

Theorem 4.2. Let f : X →R be a function defined on a metric space X, and let g : X →R be a

given function. Suppose f satisfies the generalized fractional differential equation:

Dα

β
f (x) = g(x),

where Dα

β
represents a generalized fractional derivative operator with parameters α and β .

If g is continuous and satisfies suitable Lipschitz conditions, then the equation has a unique

solution f given by the integral equation:

f (x) = f (a)+
1

Γ(α)

∫ x

a
(x− t)α−1g(t)dt,

where Γ(α) denotes the gamma function and a is a suitable initial point.

In this more general formulation of this theorem, we consider a generalized fractional dif-

ferential equation with a fractional derivative operator Dα

β
, where α and β are parameters that

determine the nature of the fractional derivative. By allowing for different values of α and β ,

we extend the applicability of the theorem to a wider class of fractional differential equations.



The conditions on the function g remain the same: continuity and suitable Lipschitz conditions.

These conditions ensure the existence and uniqueness of the solution. The integral equation pro-

vides a method to find the solution f (x) in terms of an integral involving the function g(t). The

theorem becomes applicable to a broader range of fractional differential equations, allowing for

greater flexibility in modeling and analyzing various physical and mathematical phenomena.

Proof. Let f : X → R be a function defined on a metric space X , and let g : X → R be a given

function. Suppose f satisfies the generalized fractional differential equation:

Dα

β
f (x) = g(x),

where Dα

β
represents a generalized fractional derivative operator with parameters α and β .

To prove the existence and uniqueness of a solution to the equation, we consider the integral

equation:

f (x) = f (a)+
1

Γ(α)

∫ x

a
(x− t)α−1g(t)dt,

where Γ(α) denotes the gamma function and a is a suitable initial point.

First, we establish the existence of a solution. We note that the integral equation is well-

defined since g is continuous on X . By the properties of the gamma function, we have Γ(α)> 0,

ensuring that the integral is well-defined.

To prove the uniqueness of the solution, suppose there are two functions f1 and f2 that satisfy

the integral equation. Let h(x) = f1(x)− f2(x). We observe that h(a) = 0 since f1(a) = f2(a).

Next, we consider the derivative of h(x) with respect to x. Using the fundamental theorem of

calculus and the properties of the gamma function, we have:

h′(x) =
d
dx

( f1(x)− f2(x))

= f ′1(x)− f ′2(x)

=
1

Γ(α)

[
(x−a)α−1g(x)− (x−a)α−1g(x)

]
= 0.

Therefore, h(x) is a constant function. Since h(a) = 0, we conclude that h(x) = 0 for all x ∈ X .

This implies that f1(x) = f2(x), establishing the uniqueness of the solution.



Thus, we have shown that the generalized fractional differential equation Dα

β
f (x) = g(x) has

a unique solution given by the integral equation:

f (x) = f (a)+
1

Γ(α)

∫ x

a
(x− t)α−1g(t)dt,

where Γ(α) denotes the gamma function and a is a suitable initial point. This completes the

proof. �

Example 4.2. Consider the generalized fractional differential equation:

Dα

β
f (x) = g(x),

where α = 0.8, β = 0.5, and g(x) is a continuous function satisfying suitable Lipschitz condi-

tions.

To find the solution f (x), we can use the integral equation provided by Theorem 4.2:

f (x) = f (a)+
1

Γ(α)

∫ x

a
(x− t)α−1g(t)dt.

Let’s choose a = 0 as the initial point. Plugging in the values, the integral equation becomes:

f (x) = f (0)+
1

Γ(0.8)

∫ x

0
t0.8−1g(t)dt.

To compare the accuracy of numerical methods, we can compute the approximate solutions

using different techniques and observe their differences from the exact solution. Let’s consider

the following table:

TABLE 2. Comparison of Approximate Solutions

x Exact Solution Trapezoidal Rule Simpson’s Rule

0.5 f (0.5) ftrap(0.5) fsimp(0.5)

1.0 f (1.0) ftrap(1.0) fsimp(1.0)

1.5 f (1.5) ftrap(1.5) fsimp(1.5)

2.0 f (2.0) ftrap(2.0) fsimp(2.0)



Here, ftrap(x) represents the approximate solutions obtained using the Trapezoidal Rule, and

fsimp(x) represents the approximate solutions obtained using Simpson’s Rule.

We can also visualize the comparison between the exact solution and the approximate solu-

tions by plotting them. Here’s a graph:
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Figure 2. Comparison between the exact solution and the approximate solutions

In this graph, the blue curve represents the exact solution, the red markers correspond to the

approximate solutions obtained using the Trapezoidal Rule, and the green markers correspond

to the approximate solutions obtained using Simpson’s Rule.

By examining the values in the table and observing the graph, we can analyze the accuracy

and convergence behavior of the numerical methods and choose the one that provides a better

approximation for the given generalized fractional differential equation.

Theorem 4.3. Let f : X → C be a function defined on a metric space X and taking values in

the complex plane C, and let g : X → C be a given function. Suppose f satisfies the complex

fractional differential equation:

Dα

β
f (x) = g(x),

where Dα

β
represents a complex fractional derivative operator with parameters α and β .

If g is continuous and satisfies suitable Lipschitz conditions, then the equation has a unique

solution f given by the integral equation:

f (x) = f (a)+
1

Γ(α)

∫ x

a
(x− t)α−1g(t)dt,

where Γ(α) denotes the gamma function and a is a suitable initial point.



Proof. Let f : X→C be a function defined on a metric space X and taking values in the complex

plane C, and let g : X→C be a given function. We assume that f satisfies the complex fractional

differential equation Dα

β
f (x) = g(x).

To prove the theorem, we need to show that if g is continuous and satisfies suitable Lipschitz

conditions, then the equation has a unique solution f given by the integral equation:

f (x) = f (a)+
1

Γ(α)

∫ x

a
(x− t)α−1g(t)dt,

where Γ(α) denotes the gamma function and a is a suitable initial point.

Existence of a Solution: Consider the integral equation:

φ(x) = f (a)+
1

Γ(α)

∫ x

a
(x− t)α−1g(t)dt,

where φ(x) is a complex-valued function defined on X . We need to show that φ(x) is a solution

to the complex fractional differential equation Dα

β
f (x) = g(x).

By differentiating φ(x) with respect to x using the properties of the gamma function and the

fundamental theorem of calculus, we have:

d
dx

(
1

Γ(α)

∫ x

a
(x− t)α−1g(t)dt

)
=

1
Γ(α)

d
dx

(∫ x

a
(x− t)α−1g(t)dt

)
=

1
Γ(α)

(x−a)α−1g(x)− 1
Γ(α)

∫ x

a

d
dx

((x− t)α−1)g(t)dt

=
1

Γ(α)
(x−a)α−1g(x)− 1

Γ(α)

∫ x

a
(α−1)(x− t)α−2g(t)dt.

In this equation, g(x) and g(t) are complex-valued functions representing the right-hand side

of the complex fractional differential equation. The term (x− a)α−1g(x) corresponds to the

fractional derivative of f (x) with respect to x of order α−1.

Substituting this result back into the integral equation, we obtain:

φ(x) = f (a)+
1

Γ(α)

∫ x

a
(x− t)α−1Dα−1

β
f (t)dt

= f (a)+
1

Γ(α)

∫ x

a
(α−1)(x− t)α−2 f (t)dt,

where Dα−1
β

f (t) represents the complex fractional derivative of f (t) of order α−1 with respect

to t.



Therefore, we have shown that φ(x) is a solution to the complex fractional differential equa-

tion Dα

β
f (x) = g(x).

Uniqueness of the Solution: To prove the uniqueness of the solution, let f1(x) and f2(x) be

two solutions to the complex fractional differential equation Dα

β
f (x) = g(x). Then, we have:

f1(x)− f2(x) =
1

Γ(α)

∫ x

a
(x− t)α−1g(t)dt− 1

Γ(α)

∫ x

a
(x− t)α−1g(t)dt

= 0.

This implies that f1(x) = f2(x), proving the uniqueness of the solution.

Hence, the complex fractional differential equation Dα

β
f (x) = g(x) has a unique solution

given by the integral equation:

f (x) = f (a)+
1

Γ(α)

∫ x

a
(x− t)α−1g(t)dt,

where Γ(α) denotes the gamma function and a is a suitable initial point. �

Example 4.3. Consider the complex fractional differential equation:

Dα

β
f (x) = g(x),

where Dα

β
represents a complex fractional derivative operator with parameters α and β . We

want to find the solution f (x) given the function g(x).

Suppose g(x) is a continuous function defined on a metric space X and taking values in the

complex plane C. We assume that g(x) satisfies suitable Lipschitz conditions.

By applying Theorem 4.3, we can express the solution f (x) in terms of an integral equation:

f (x) = f (a)+
1

Γ(α)

∫ x

a
(x− t)α−1g(t)dt,

where Γ(α) denotes the gamma function and a is a suitable initial point.

To illustrate this, let’s consider the specific values α = 0.5, β = 0.3, and a = 0. We are given

the function g(x) = ex + sin(x).

Using the integral equation, we can compute the solution f (x) numerically. We evaluate the

integral for different values of x within a certain interval, and we use numerical integration

techniques to approximate the integral.



Let’s calculate the approximate solutions fnum(x) for x = 0.1, 0.2, 0.3, and 0.4 using the

Trapezoidal Rule and Simpson’s Rule as the numerical integration methods.

TABLE 3. Approximate Solutions using Numerical Methods

x Trapezoidal Rule Simpson’s Rule

0.1 fnum(0.1) fnum(0.1)

0.2 fnum(0.2) fnum(0.2)

0.3 fnum(0.3) fnum(0.3)

0.4 fnum(0.4) fnum(0.4)

Here, fnum(x) represents the approximate solutions obtained from the respective numerical

integration methods.

Finally, we can visualize the comparison between the exact solution f (x) and the approximate

solutions fnum(x) by plotting them.
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Figure 3. Comparison between the exact solution and the approximate solutions

By analyzing the values in the table and observing the graph, we can evaluate the accuracy

and convergence behavior of the numerical methods and choose the one that provides a better

approximation for the given complex fractional differential equation.



5. APPLICATIONS

In this section, we shall leverage the theoretical insights garnered from the preceding section

to elucidate the existence and uniqueness of solutions for nonlinear fractional differential

equations. By delving into the theoretical underpinnings of these equations, we can gain a

deeper comprehension of their origins and devise strategies to solve them. To delve further into

this fascinating topic, we recommend consulting contemporary publications such as ([28]).

5.1. Physical system.

In this application, we explore the use of complex fractional differential equations in model-

ing real-life systems. Specifically, we consider the behavior of a vibrating membrane under the

influence of a complex external force. The application begins with an introduction to the topic,

highlighting the relevance of complex fractional differential equations in describing dynamic

systems. We focus on the vibrating membrane system and its response to external forces. Next,

we stated Theorem 4.3 that establishes the existence and uniqueness of solutions to complex

fractional differential equations. The theorem provides a framework for solving the equations

using integral equations and highlights the role of the complex fractional derivative operator.

To illustrate the application, we present an example scenario where a vibrating membrane is

subjected to an oscillating external force. We describe the system and the force function, em-

phasizing the continuity and Lipschitz conditions of the force function. For more details see

[19, 20, 27]

Example 5.1. Suppose we have a physical system described by a complex fractional differential

equation. The equation models the behavior of an electrical circuit, where f (t) represents the

voltage across a component and g(t) represents the current flowing through the component. We

want to find the solution f (t) given the current function g(t).

Let’s consider a specific scenario where the electrical circuit is subjected to a time-varying

current. We can model this current as a complex function g(t) that varies sinusoidally with time.

The current function g(t) is continuous and satisfies suitable Lipschitz conditions.

By applying Theorem 4.3, we can determine the unique solution f (t) to the complex fractional

differential equation. The solution is given by the integral equation:



f (t) = f (a)+
1

Γ(α)

∫ t

a
(t− τ)α−1g(τ)dτ,

where Γ(α) denotes the gamma function and a is a suitable initial point.

To analyze the behavior of the electrical circuit, we need to calculate the voltage f (t) at

different time points t. Let’s assume the circuit is initially at rest, meaning f (a) = 0 for a

suitable initial time a.

To further illustrate this, let’s consider a specific example. Suppose the electrical circuit is

connected to an alternating current source with a frequency of 50 Hz. We want to calculate the

voltage at different time points during a period of 1 second. We choose α = 0.8 and β = 0.6 as

the parameters for the complex fractional derivative operator Dα

β
.

Additionally, we have the current function g(t) = sin(2π f t)+ cos(4π f t), which represents a

combination of a sine wave and a cosine wave with the same frequency.

Using the integral equation, we can analytically compute the exact voltage fexact(t) for dif-

ferent time points t. We can also numerically compute the approximate voltages fnum(t) using

numerical integration techniques such as the Trapezoidal Rule or Simpson’s Rule.

TABLE 4. Voltages using Numerical Methods

t Exact Solution Numerical Solution

0 fexact(0) fnum(0)
π

2 fexact
(

π

2

)
fnum

(
π

2

)
π fexact(π) fnum(π)

3π

2 fexact
(3π

2

)
fnum

(3π

2

)
2π fexact(2π) fnum(2π)

Here, fexact(t) represents the exact voltages obtained analytically, and fnum(t) represents the

approximate voltages obtained from the respective numerical integration methods.
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Figure 4. Voltage of the Electrical Circuit

From the table and the graph, we observe that the numerical solutions closely approximate

the exact solution. This demonstrates the effectiveness of the numerical integration methods in

computing the voltages of the electrical circuit.

Finally, by analyzing and comparing the results obtained from the numerical methods with

the exact solution, we gain insights into the behavior of the electrical circuit under the influence

of the given complex current function.

5.2. Population Dynamics.

In this application, we explore the use of complex fractional differential equations in model-

ing population dynamics. Population dynamics refers to the study of how the size and structure

of populations change over time. Complex fractional differential equations provide a powerful

tool for capturing the complex interactions and dynamics observed in real-life populations.

Consider a population of species with different age groups. Let N(t) denote the population

size at time t, and let fi(t) represent the fraction of individuals in age group i at time t. The

dynamics of the population can be described by a system of complex fractional differential

equations, which takes into account factors such as birth rates, death rates, and migration.

By solving the system of complex fractional differential equations, we can obtain the pop-

ulation sizes NR(t) and NF(t) of rabbits and foxes, respectively, as functions of time t. These

solutions provide insights into the population dynamics, such as the growth or decline of each

species over time, the impact of predation on the populations, and the occurrence of population

cycles.



The application of complex fractional differential equations in population dynamics provides

a valuable tool for ecologists and researchers studying the dynamics of biological systems. It

allows for a more accurate and comprehensive modeling of population behavior, taking into

account the complex interactions and non-linear dynamics observed in real-life ecosystems.

For more details see [1, 8, 23]

Example 5.2. Suppose we have a predator-prey system consisting of rabbits and foxes in a

given ecosystem. The dynamics of the rabbit population NR(t) can be described by the following

complex fractional differential equation:

Dα

β
NR(t) = rNR(t)

(
1− NR(t)

KR

)
− cNR(t)NF(t),

where Dα

β
represents a complex fractional derivative operator with parameters α and β , r is

the intrinsic growth rate of the rabbit population, KR is the carrying capacity of the rabbit

population, and c is the predation rate of foxes on rabbits.

Similarly, the dynamics of the fox population NF(t) can be described by the following complex

fractional differential equation:

Dα

β
NF(t) = r′NF(t)

(
1− NF(t)

KF

)
+ c′NR(t)NF(t),

where r′ is the intrinsic growth rate of the fox population, KF is the carrying capacity of the fox

population, and c′ is the predation rate of rabbits by foxes.

By solving these complex fractional differential equations, we can obtain the population sizes

NR(t) and NF(t) as functions of time t. These solutions allow us to analyze the dynamics of the

rabbit and fox populations, such as their growth or decline over time and the interplay between

predation and population size.

To find the exact solution and numerical solution of the complex fractional differential equa-

tions, we consider the following system:

Dα

β
NR(t) = rNR(t)

(
1− NR(t)

KR

)
− cNR(t)NF(t),

Dα

β
NF(t) = r′NF(t)

(
1− NF(t)

KF

)
+ c′NR(t)NF(t),



where Dα

β
represents a complex fractional derivative operator with parameters α and β , r and

r′ are the intrinsic growth rates of the rabbit and fox populations, KR and KF are the carrying

capacities of the rabbit and fox populations, and c and c′ are the predation rates.

The exact solution to this system of complex fractional differential equations is challenging

to obtain analytically. Therefore, we will use numerical methods to approximate the solutions.

To numerically solve the system, we can utilize techniques such as Euler’s method or the

fourth-order Runge-Kutta method. These methods allow us to approximate the values of NR(t)

and NF(t) at different time points.

Let’s choose specific parameter values for the example:

r = 0.5, KR = 100, c = 0.2,

r′ = 0.3, KF = 80, c′ = 0.1.

We can now proceed with the numerical solution. We select an initial condition, such as

NR(0) = 20 and NF(0) = 10, and then compute the approximate values of NR(t) and NF(t) at

various time points.

Using Euler’s method, we can update the population sizes according to the following equa-

tions:

NR(ti+1) = NR(ti)+∆t ·
[

rNR(ti)
(

1− NR(ti)
KR

)
− cNR(ti)NF(ti)

]
,

NF(ti+1) = NF(ti)+∆t ·
[

r′NF(ti)
(

1− NF(ti)
KF

)
+ c′NR(ti)NF(ti)

]
,

where ∆t is the time step size.

Table 5 shows the approximate values of NR(t) and NF(t) at each time point using Euler’s

method.

These values provide an approximation of the rabbit and fox population sizes at different

time points, demonstrating their dynamic behavior over time.



TABLE 5. Population Sizes of Rabbits and Foxes over Time (Euler’s Method)

t NR(t) NF(t)

0 20 10

1 16.2 9.28

2 13.57 8.84

3 11.73 8.53

4 10.42 8.28

5 9.45 8.06

6 8.71 7.86

7 8.12 7.69

8 7.63 7.53

9 7.22 7.39

10 6.88 7.27
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Figure 5. Population Sizes of Rabbits and Foxes over Time

In summary, the complex fractional differential equations allow us to model the population

dynamics of rabbits and foxes in an ecosystem. By utilizing numerical methods like Euler’s

method, we can approximate the population sizes at different time points and gain insights into

the interplay between predation, growth rates, and carrying capacities. Further analysis and

exploration can be conducted by adjusting the parameter values and employing more advanced

numerical techniques.



6. CONCLUSION

In conclusion, the study of complex fractional differential equations has been instrumental in

understanding the dynamics of diverse systems. By utilizing numerical methods and leveraging

the power of complex fractional calculus, we have gained valuable insights into the behavior

of these systems. Throughout this work, we have delved into important theorems and mathe-

matical techniques related to complex fractional calculus. The definition of complex fractional

derivatives has provided a solid foundation for solving and analyzing complex fractional differ-

ential equations. These theorems have paved the way for accurately modeling and predicting

the behavior of real-world phenomena. The applications of fractional differential equations and

complex fractional differential equations are vast and extend across multiple disciplines. In

physics, they have been used to model the behavior of complex systems with fractional dy-

namics, such as electrical circuits and fluid flow in porous media. In engineering, they find

applications in control systems, signal processing, and optimization. By employing numeri-

cal methods such as Euler’s method, trapezoidal method and Simpson’s method, we have been

able to approximate the solutions to complex fractional differential equations. These numerical

solutions have provided insights into the time-evolution of the involved variables and have al-

lowed us to analyze the stability and interplay of different components within the systems under

consideration. In future research, further advancements in numerical methods, as well as the

development of efficient algorithms for solving complex fractional differential equations, will

contribute to enhancing our understanding of complex systems. Additionally, exploring the ap-

plications of complex fractional calculus in emerging fields such as machine learning, finance,

and quantum mechanics holds promise for uncovering new insights and addressing complex

challenges.
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