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1. INTRODUCTION

The theory of stability in the sense of Lyapunov is well-established and extensively applied

to real-world problems. While Lyapunov stability is important, in many practical applications,

asymptotic stability holds greater significance. Understanding the size of the region of asymp-

totic stability is crucial for determining whether a given system is stable enough to function

properly and for identifying ways to enhance its stability. However, there are situations where

a system may be inherently unstable, yet its performance remains acceptable due to oscillations

occurring near the desired state. In such cases, the classical notion of Lyapunov stability may

not be adequate. Instead, a more suitable concept of stability is required, one that accounts for

the system’s behavior within an acceptable range. This concept is known as practical stability,

and it plays a vital role in evaluating the performance of systems under less stringent stability

requirements. ([22]).

Practical stability is particularly valuable when dealing with real-world systems where exact

stability is either too restrictive or unnecessary. In many practical applications, it is sufficient

for the system state to remain within a certain bounded region over time, rather than converging

exactly to an equilibrium point. This approach allows for flexibility in the stability require-

ments, acknowledging that small deviations from equilibrium may be acceptable, especially in

the presence of uncertainties or disturbances. Practical stability thus provides a more realistic

and less restrictive framework compared to asymptotic or uniform stability, making it highly

applicable to engineering, control systems, and applied sciences.

Time scale calculus, introduced in [6], offers a unified framework for analyzing systems that

evolve in both discrete and continuous domains. By bridging the gap between these domains,

time scale calculus extends the tools of continuous analysis to discrete cases and vice versa,

providing a broader view of dynamic behaviors. When combined with fractional calculus, the

result is a versatile and powerful framework for the study of dynamic systems that can exhibit

both gradual and abrupt changes, as often seen in hybrid systems.

This paper presents a novel approach to analyzing the Lyapunov practical stability of Caputo

fractional dynamic equations on time scales, utilizing a new generalized derivative. The gen-

eralized derivative, known as the Caputo fractional delta derivative and the Caputo fractional
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delta Dini derivative of order α ∈ (0,1), extends the traditional Caputo fractional derivative to

arbitrary time scales. This allows for a unified analysis of practical stability that is applicable

across different time domains, accommodating both continuous and discrete systems.

Previous research, such as [2, 3, 4, 5, 8, 9, 10], has primarily focused on stability, uniform,

asymptotic stability, and variational stability for delay, and impulsive, all on continuous time

systems. On the other hand, studies like [17, 18] have considered stability in discrete domains.

This work aims to address some gaps by developing a practical stability framework that is

suitable for both continuous and discrete time scales, thereby providing a more comprehensive

and realistic assessment of the behavior of fractional dynamic systems.

An interesting recent study [11, 12] analyzed Lyapunov stability for Caputo fractional dy-

namical systems but did not consider practical stability.

This paper aims to expand these analyses by establishing practical stability criteria, thus

offering a new perspective that allows systems to operate within acceptable bounds despite

uncertainties or transient disturbances.

By establishing comparison results and practical stability criteria for Caputo fractional dy-

namic equations, this paper extends the stability analysis in [12] and introduces new methods

for addressing practical constraints in dynamic systems. The resulting framework bridges con-

tinuous and discrete time scales, providing a versatile tool for researchers and practitioners to

ensure that system behavior remains within acceptable limits under real-world conditions. This

work contributes significantly to the understanding of dynamic systems by providing a realistic

approach to stability analysis, crucial for reliable applications in various fields such as engineer-

ing and control theory.

Consider the Caputo fractional dynamic system of order α with 0 < α < 1

(1)

C
∆

αx = f (t,x), t ∈ T,

x(t0) = x0, t0 ≥ 0,

where f ∈ Crd[T×Rn,Rn], f (t,0) ≡ 0 and C∆αx is the Caputo fractional delta derivative of

x ∈ Rn of order α with respect to t ∈ T. Let x(t) = x(t, t0,x0) ∈ Cα
rd[T,R

n] be a solution of

(1) and Suppose that the function f is smooth enough to guarantee existence, uniqueness and

continuous dependence of solutions. (results on existence and uniqueness of (1) are contained
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in [1, 21]), this work aims to investigate the practical stability of the system (1) using the com-

parison system of the form:

(2) C
∆

αu = g(t,u), u(t0) = u0 ≥ 0,

where u ∈ R+, g ∈Crd[R2
+,R] and g(t,0)≡ 0. For this work, we will assume that the function

g ∈ [T×R+,R+], is such that for any initial data (t0,u0) ∈ T×R+, the system (2) with u(t0) =

u0 has a unique solution u(t) = u(t; t0,u0) ∈Cα
rd[T,R+], see [1, 9, 19, 24].

The content of this research is organized as follows: Section 2 introduces essential termi-

nologies, remarks, and fundamental lemmas that form the foundation for the subsequent devel-

opments. It also presents key definitions and important remarks relevant to the study. Section 3

presents the main results of our research, including the theoretical advancements and findings.

In Section 4, a practical example is provided to demonstrate the relevance and application of our

proposed approach. Finally, Section 5 summarizes the key findings of this study and discusses

their implications in the conclusion.

2. PRELIMINARIES

Definition 2.1 ([16]). For t ∈ T, the forward jump operator σ : T→ T is defined as

σ(t) = inf{s ∈ T : s > t},

while the backward jump operator ρ : T→ T is defined as

ρ(t) = sup{s ∈ T : s < t}.

(i) if σ(t)> t, t is right scattered,

(ii) if ρ(t)< t, t is left scattered,

(iii) if t < maxT and σ(t) = t, then t is called right dense,

(iv) if t > minT and ρ(t) = t, then t is called left dense.

Definition 2.2 ([16]). The graininess function µ : T→ [0,∞) for t ∈ T is defined as

µ(t) = σ(t)− t.
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The derivative uses the set Tk, which is derived from the time scale T as follows.

If T has a left scattered maximum M, then Tk = T\{M}. Otherwise, Tk = T.

Definition 2.3 ([16]). Let h : T→ R and t ∈ Tk. We define the delta derivative h∆ also known

as the Hilger derivative as

h∆(t) = lim
s→t

h(σ(t))−h(s)
σ(t)− s

, s 6= σ(t).

provided the limit exists.

The function h∆ : T→ R is called the (Delta) derivative of h on Tk.

If t is right dense, the delta derivative of h : T→ R, becomes

h∆(t) = lim
s→t

h(t)−h(s)
t− s

,

and if t is right scattered, the Delta derivative becomes

h∆(t) =
hσ (t)−h(t)

µ(t)
.

For a function h : T→ R, hσ denotes h(σ(t)).

Definition 2.4 ([7]). A function h : T→ R is right dense continuous if it is continuous at all

right dense points of T and its left sided limits exist and is finite at left dense points of T. The

set of all right dense continuous functions are denoted by

Crd =Crd(T).

Definition 2.5 ([7]). Assume [a,b] is a closed and bounded interval in T. Then a function

H : [a,b]→ R is called a delta antiderivative of h : [a,b]→ R provided H is continuous on

[a,b], delta differentiable on [a,b), and H∆(t) = h(t) for all t ∈ [a,b). Then, we define the Delta

integral by ∫ b

a
h(t) = H(b)−H(a) ∀a,b ∈ T.

Remark 2.1 ([7]). All right dense continuous functions are delta integrable.

Definition 2.6 ([7]). A function φ : [0,r]→ [0,∞) is of class K if it is continuous, and strictly

increasing on [0,r] with φ(0) = 0.
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Definition 2.7 ([7]). A continuous function V : Rn→ R with V (0) = 0 is called positive def-

inite(negative definite) on the domain D if there exists a function φ ∈K such that φ(|x|) ≤

V (x) (φ(|x|)≤−V (x)) for x ∈ D.

Definition 2.8 ([7]). A continuous function V : Rn→ R with V (0) = 0 is called positive semi-

definite (negative semi-definite) on D if V (x)≥ 0 (V (x)≤ 0) for all x∈D and it can also vanish

for some x 6= 0.

Definition 2.9 ([16]). Let a,b ∈ T and h ∈Crd , then we define the integration on a time scale T

as follows:

(i) If T= R, then ∫ b

a
h(t)∆t =

∫ b

a
h(t)dt.

where
∫ b

a h(t)dt is the usual Riemann integral from calculus.

(ii) If [a,b] consists of only isolated points, then

∫ b

a
h(t)∆t =


∑t∈[a,b) µ(t)h(t) if a < b

0 if a = b

−∑t∈[b,a) µ(t)h(t) if a > b

(iii) If there exists a point σ(t)> t, then

∫
σ(t)

t
h(s)∆s = µ(t) f (t).

Definition 2.10 ([15]). Assume V ∈C[T×Rn,R+], h ∈Crd[T×Rn,Rn] and µ(t) is the graini-

ness function then we define the dini derivative of V (t,x) as:

(3) D−V ∆(t,x) = liminf
µ(t)→0

V (t,x)−V (t−µ(t),x−µ(t)h(t,x))
µ(t)

(4) D+V ∆(t,x) = limsup
µ(t)→0

V (t +µ(t),x+µ(t)h(t,x))−V (t,x)
µ(t)

.

If V is differentiable, then D−V ∆(t,x) = D+V ∆(t,x) =V ∆(t,x).
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Definition 2.11 ([1]). (Fractional Integral on Time Scales). Let α ∈ (0,1), [a,b] be an interval

on T and h an integrable function on [a,b]. Then the fractional integral of order α of h is defined

by
T
a Iα

t h∆(t) =
∫ t

a

(t− s)α−1

Γ(α)
h(s)∆s.

Definition 2.12 ([1]). (Caputo Derivative on Time Scale) Let T be a time scale, t ∈ T, 0 <

α < 1, and h : T→ R. The Caputo fractional derivative of order α of h is defined by

a∆
α
t h(t) =

1
Γ(1−α)

∫ t

a
(t− s)−αh∆n

(s)∆s.

Definition 2.13. Let T be a time scale. A point t0 ∈ T is said to be a minimal element of T if,

for any t ∈ T, t > t0 whenever t 6= t0.

Remark 2.2. The concept of minimal element is essential in studying dynamic equations be-

cause it establishes a starting point, a reference time from which the dynamics of the system

evolve. In the study of difference equations (a discrete-time setting), t0 represents the initial

time step. Similarly, in differential equations (a continuous-time setting), t0 represents the ini-

tial time instant.

Lemma 2.1 ([23]). Let T be a time scale with the minimal element t0 ≥ 0. Suppose that for

each t ∈ T, there exists a statement S(t) such that the following conditions hold:

(i) S(t0) is true;

(ii) if t is right-scattered and S(t) is true, then S(σ(t)) is also true;

(iii) for every right-dense t, there exists a neighborhood U such that if S(t) is true, then

S(t∗) is also true for all t∗ ∈U with t∗ ≥ t;

(iv) for left-dense t, if S(t∗) is true for all t∗ in [t0, t), then S(t) is true.

Then the statement S(t) is true for all t ∈ T.

Remark 2.3. When T= N, then Lemma 2.1 reduces to the well-known principle of mathemat-

ical induction. That is,

(1) S(t0) is true is equivalent to the statement is true for n = 1;

(2) S(t) is true then S(σ(t)) is true is equivalent to if the statement is true for n = k, then

the statement is true for n = k+1.
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Definition 2.14. Let h ∈Cα
rd[T,R

n], the Grunwald-Letnikov fractional delta derivative is given

by

(5) GL
∆

α
0 h(t) = lim

µ→0+

1
µα

[
(t−t0)

µ
]

∑
r=0

(−1)rαCr[h(σ(t)− rµ)]. t ≥ t0,

and the Grunwald-Letnikov fractional delta dini derivative is given by

(6) GL
∆

α

0+h(t) = limsup
µ→0+

1
µα

[
(t−t0)

µ
]

∑
r=0

(−1)rαCr[h(σ(t)− rµ)]. t ≥ t0,

where 0 < α < 1, αCr =
q(q−1)...(q−r+1)

r! , and [ (t−t0)
µ

] denotes the integer part of the fraction
(t−t0)

µ
.

Observe that if the domain is R, then (6) becomes

GL
∆

α

0+h(t) = limsup
d→0+

1
dα

[
(t−t0)

d ]

∑
r=0

(−1)rαCr[h(t− rd)], t ≥ t0.

Remark 2.4. It is necessary to note that the relationship between the Caputo fractional delta

derivative and the Grunwald-Letnikov fractional delta derivative is given by

(7) C
∆

α
0 h(t) =GL

∆
α
0 [h(t)−h(t0)],

substituting (5) into (7) we have that the Caputo fractional delta derivative becomes

C
∆

α
0 h(t) = lim

µ→0+

1
µα

[
(t−t0)

µ
]

∑
r=0

(−1)rαCr[h(σ(t)− rµ)−h(t0)], t ≥ t0,

C
∆

α
0 h(t) = lim

µ→0+

1
µα

{
h(σ(t))−h(t0)+

[
(t−t0)

µ
]

∑
r=1

(−1)rαCr[h(σ(t)− rµ)−h(t0)]
}
,(8)

and the Caputo fractional delta Dini derivative becomes

(9) C
∆

α

0+h(t) = limsup
µ→0+

1
µα

[
(t−t0)

µ
]

∑
r=0

(−1)rαCr[h(σ(t)− rµ)−h(t0)], t ≥ t0.

Which is equivalent to

(10)

C
∆

α

0+h(t) = limsup
µ→0+

1
µα

{
h(σ(t))−h(t0)+

[
(t−t0)

µ
]

∑
r=1

(−1)rαCr[h(σ(t)− rµ)−h(t0)]
}
, t ≥ t0.
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For notation simplicity, we shall represent the Caputo fractional delta derivative of order α

as C∆α and the Caputo fractional delta dini derivative of order α as C∆α
+.

Given that lim
N→∞

∑
N
r=0(−1)rαCr = 0 where α ∈ (0,1), and lim

µ→0+
[ (t−t0)

µ
] = ∞ then it is easy to

see that

(11) lim
µ→0+

[
(t−t0)

µ
]

∑
r=1

(−1)rαCr =−1.

Also from (9) and since the Caputo and Riemann-Liouville formulations coincide when h(t0) =

0, then we have that

(12) limsup
µ→0+

1
µα

[
(t−t0)

µ
]

∑
r=0

(−1)rαCr =
RL

∆
α(1) =

(t− t0)−α

Γ(1−α)
, t ≥ t0.

Now we define the notation of practical stability below:

Definition 2.15. System (1) is said to be:

(P1) practically stable if, given (λ ,A) with 0 < λ < A, we have |x0| < λ implies |x(t)| < A,

t ≥ t0 for some t0 ∈ T;

(P2) uniformly practically stable if (P1) holds for every t0 ∈ T;

(P3) practically quasi stable if given (λ ,B,T )> 0 and some t0 ∈T, we have |x0|< λ implies

|x(t)|< B, t ≥ t0 +T ;

(P4) uniformly practically quasi stable if (P3) holds for all t0 ∈ T;

(P5) strongly practically stable if (P1) and (P3) hold simultaneously;

(P6) strongly uniformly practically stable if (P2) and (P4) hold together;

(P7) practically asymptotically stable if (P1) and (S1) hold with a = A;

(P8) uniformly practically asymptotically stable if (P2) and (S2) hold at the same time with

a = λ ;

(P9) practically unstable if (P1) does not hold.

Definition 2.16. Corresponding to definition 2.15, the scalar fractional dynamic system (2), is

said to be practically stable if given 0 < λ < A, we have

(13) u0 < λ =⇒ u(t)< A, t ≥ t0,

for some t0 ∈ R+.
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Lemma 2.2. Assume h and m ∈ Crd(T,R). Suppose there exists t1 > t0, where t1 ∈ T, such

that h(t1) = m(t1) and h(t) < m(t) for t0 ≤ t < t1. Then, if the Caputo fractional delta Dini

derivatives of h and m exist at t1, the inequality C∆α
+h(t1)>C ∆α

+m(t1) holds.

Proof. Applying (9), we have

C
∆

α
+(h(t)−m(t)) = limsup

µ→0+

1
µα

{ [
t−t0

µ
]

∑
r=0

(−1)rαCr[h(σ(t)− rµ)−m(σ(t)− rµ)]

−[h(t0)−m(t0)]
}

C
∆

α
+h(t)−C

∆
α
+m(t) = limsup

µ→0+

1
µα

{ [
t−t0

µ
]

∑
r=0

(−1)rαCr[h(σ(t)− rµ)−m(σ(t)− rµ)]

−[h(t0)−m(t0)]
}
,

at t1, we have

(14) C
∆

α
+h(t1) =− limsup

µ→0+

1
µα

{ [
t1−t0

µ
]

∑
r=0

(−1)rαCr[h(t0)−m(t0)]
}
+C

∆
α
+m(t1).

Applying (12) to (14), we have

C
∆

α
+h(t1) = −(t1− t0)−α

Γ(1−α)
[h(t0)−m(t0)]+C

∆
α
+m(t1),

however, based on the Lemma’s statement, we know that

h(t)< m(t), for t0 ≤ t < t1,

=⇒ h(t)−m(t)< 0, for t0 ≤ t < t1,

then, we obtain

−(t1− t0)−α

Γ(1−α)
[h(t0)−m(t0)]> 0,

implying

C
∆

α
+h(t1)>C

∆
α
+m(t1).

�

Theorem 2.1. Assume that
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(i) g ∈Crd[T×R+,R+] and g(t,u)µ is non-decreasing in u.

(ii) h ∈Crd[T,R+] is such that

(15) C
∆

α
+h(t)≤ g(t,m(t)),

(iii) z(t) = z(t; t0,u0) is the maximal solution of (2) existing on T.

Then

(16) h(t)≤ z(t), t ≥ t0

provided that

(17) h(t0)≤ u0

where t ∈ T, t ≥ t0

Proof. Utilizing the principle of induction as outlined in Lemma 2.1 for the assertion

S(t) : h(t)≤ z(t), t ∈ T, t ≥ t0,

(i) S(t0) is true since h(t0)≤ υ0

(ii) Let t be right-scattered and S(t) be true. We need to show that S(σ(t)) is true; that is

(18) h(σ(t))≤ z(σ(t)),

but from (9), we have

C
∆

α
+h(t) = limsup

µ→0+

1
µα

[
(t−t0)

µ
]

∑
r=0

(−1)rαCr[h(σ(t)− rµ)−h(t0)], t ≥ t0.

Also,

C
∆

α
+z(t) = limsup

µ→0+

1
µα

[
(t−t0)

µ
]

∑
r=0

(−1)rαCr[z(σ(t)− rµ)− z(t0)], t ≥ t0,

so that

C
∆

α
+z(t)−C

∆
α
+h(t) = limsup

µ→0+

1
µα

[
(t−t0)

µ
]

∑
r=0

(−1)rαCr[z(σ(t)− rµ)− z(t0)]

− limsup
µ→0+

1
µα

[
(t−t0)

µ
]

∑
r=0

(−1)rαCr[h(σ(t)− rµ)−h(t0)]
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C
∆

α
+z(t)−C

∆
α
+h(t) = limsup

µ→0+

1
µα

[
(t−t0)

µ
]

∑
r=0

(−1)r αCr

[
[z(σ(t)− rµ)− z(t0)]

−[h(σ(t)− rµ)−h(t0)]
]

(
C

∆
α
+z(t)−C

∆
α
+h(t)

)
µ

α = limsup
µ→0+

[
(t−t0)

µ
]

∑
r=0

(−1)r αCr

[
[z(σ(t)− rµ)− z(t0)]

−[h(σ(t)− rµ)−h(t0)]
]

(
C

∆
α
+z(t)−C

∆
α
+h(t)

)
µ

α ≤ [z(σ(t))−h(σ(t))]− [z(t0)−h(t0)]

[h(σ(t))− z(σ(t))]≤
(

C
∆

α
+h(t)−C

∆
α
+z(t)

)
µ

α

+[h(t0)− z(t0)]

≤
(

g(t,h(t))−g(t,z(t))
)

µ
α +[h(t0)− z(t0)].

Given that g(t,υ)µα is non-decreasing in υ and S(t) holds, it follows that h(σ(t))−

z(σ(t))≤ 0, ensuring that (18) is satisfied.

(iii) Let t be right-dense and N denote the right neighborhood of t ∈ T. We need to demon-

strate that S(t∗) holds for t∗ ∈N . This can be established by applying the compari-

son theorem for Caputo fractional differential equations, where the Lyapunov function

V (t,x) = h(t); since at every right-dense point t∗ ∈N , σ(t∗) = t∗. see [12].

Therefore by induction principle, the statement S(t) is true. Completing the proof.

�

3. MAIN RESULT

Theorem 3.1 (Practical Stability). Assume that

(1) g ∈Crd[R2
+,R] and g(t,u) is non-decreasing in u with g(t,u)≡ 0.

(2) (t,x) ∈ R+×Rn and

(19) [x, f (t,x)]+ ≤ g(t, |x|).

(3) The FrDE (2) is practically stable.
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Then the system (1) is practically stable.

Proof. By the assumption of the practical stability of (2), we have that for some t0 ∈ R+ and

0 < λ < A, (13) holds. The it is easy to show that for these λ and A, the system (1) is also

practically stable.

If this where false, there would exists a solution x(t) = x(t; t0,x0) of (1) with |x0|< λ and a time

t1 > t0 such that

(20) |x(t1)|= A and |x(t)| ≤ A for t ∈ [t0, t1).

Setting

(21) h(t) = |x(t)|,

then from (19), we obtain

(22) C
∆

α
+h(t)≤ g(t,h(t)), t ∈ [t0, t1).

Also from (16) of the comparison theorem 2.1, we have

(23) h(t)≤ z(t), t ∈ [t0, t1),

where z(t) is the maximal solution of (2). Combining this estimates; (20), (21), (23) and as-

sumption (3) of the Theorem, that is (13), we obtain,

(24) A = |x(t1)| ≤ z(t1, t0, |x0|)< A.

(24) is a contradiction, so the assumption of the practical stability of system (1) is true.

The prove of other concepts of practical stability in definition 2.15 follows a similar pattern

and hence the proof is complete. �

4. APPLICATION

Consider the system of dynamic equations

C
∆

α
χ1(t) = −χ1 sin(χ2)−2χ2−2χ1

C
∆

α
χ2(t) = 2χ1 +χ2−χ2 sin(χ1)

(25)
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for t ≥ t0, with initial conditions

χ1(t0) = χ10 and χ2(t0) = χ20,

where χ = (χ1,χ2) and f = ( f1, f2).

Consider V (t,χ1,χ2) = χ2
1 + χ2

2 , for t ∈ T, (χ1,χ2) ∈ R2 and choose α = 1, so that

(25) becomes an integer (first) order system. Then we compute the delta Dini derivative of

V (t,χ1,χ2) = χ2
1 +χ2

2 along the solution path of (25) as follows:

From (4) we have that

D+V ∆(t,χ) = limsup
µ(t)→0

V (t +µ(t),χ +µ(t) f (t,χ))−V (t,χ)
µ(t)

= limsup
µ(t)→0

(χ1 +µ(t) f1(t,χ1,χ2))
2 +(χ2 +µ(t) f2(t,χ1,χ2))

2− [χ2
1 +χ2

2 ]

µ(t)

= limsup
µ(t)→0

χ2
1 +2χ1µ(t) f1 +µ2(t) f 2

1 +χ2
2 +2χ2µ(t) f2 +µ2(t) f 2

2 − [χ2
1 +χ2

2 ]

µ(t)

= limsup
µ(t)→0

2χ1µ(t) f1 +µ2(t) f 2
1 +2χ2µ(t) f2 +µ2(t) f 2

2
µ(t)

≤ 2χ1 f1 +2χ2 f2

= 2[χ1 (−χ1 sin(χ2)−2χ2−2χ1)+χ2 (2χ1 +χ2−χ2 sin(χ1))]

≤ 2
[
2χ

2
1 +χ

2
2
]
.

Now, consider the consider the comparison equation

(26) D+u∆ = 4u > 0, u(0) = u0.

Even though conditions (i)-(iii) of [15] are satisfied that is V ∈Crd[T×Rn,R+], D+V ∆(t,χ)≤

g(t,V (t,χ)) and
√

χ2
1 +χ2

2 ≤ χ2
1 + χ2

2 ≤ 2(χ2
1 + χ2

2 ), for b(‖χ‖) = r and a(‖χ‖) = 2r2, it is

obvious to see that the solution of the comparison system (26) is not practically stable, so we can

not deduce the practical stability properties of the system (25) by applying the basic definition

of the integer order Dini-derivative time scale.

Let us consider (25) with α ∈ (0,1) and apply the new definition (10).

Let h(χ1,χ2) = χ2
1 +χ2

2 , for (χ1,χ2) ∈ R2.

C
∆

α

0+h(t)
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= limsup
µ→0+

1
µα

{
h(σ(t))−h(t0)+

[
(t−t0)

µ
]

∑
r=1

(−1)rαCr[h(σ(t)− rµ)−h(t0)]
}

t ≥ t0

= limsup
µ→0+

1
µα

{[
(χ1(σ(t)))2 +(χ2

2 (σ(t)))2]− [(χ10)
2 +(χ20)

2]

+

[
t−t0

µ
]

∑
r=1

(−1)r(αCr)[(χ1(σ(t))−µ
α f1(t,χ1,χ2))

2

+(χ2(σ(t))−µ
α f2(t,χ1,χ2))

2((χ10)
2 +(χ20)

2)]

}
= limsup

µ→0+

1
µα

{[
(χ1(σ(t)))2 +(χ2

2 (σ(t)))2]− [(χ10)
2 +(χ20)

2]

+

[
t−t0

µ
]

∑
r=1

(−1)r(αCr)[(χ1(σ(t)))2−2χ1(σ(t))µα f1(t,χ1,χ2)

+µ
2α( f1(t,χ1,χ2))

2 +(χ2(σ(t)))2

−2χ2(σ(t))µα f2(t,χ1,χ2)+µ
2α( f2(t,χ1,χ2))

2− ((χ10)
2 +(χ20)

2)]

}

= limsup
µ→0+

1
µα

{
−

[
t−t0

µ
]

∑
r=0

(−1)r(αCr)
[
(χ10)

2 +(χ20)
2]

+

[
t−t0

µ
]

∑
r=0

(−1)r(αCr)
[
(χ1(σ(t)))2 +(χ2(σ(t)))2]

−
[

t−t0
µ

]

∑
r=1

(−1)r(αCr) [2χ1(σ(t))µα f1(t,χ1,χ2)+2χ2(σ(t))µα f2(t,χ1,χ2)]

+

[
t−t0

µ
]

∑
r=1

(−1)r(αCr)
[
µ

2α( f1(t,χ1,χ2))
2 +µ

2α( f2(t,χ1,χ2))
2]}

=− limsup
µ→0+

1
µα


[

t−t0
µ

]

∑
r=0

(−1)r(αCr)
[
(χ10)

2 +(χ20)
2]

+ limsup
µ→0+

1
µα


[

t−t0
µ

]

∑
r=0

(−1)r(αCr)
[
(χ1(σ(t)))2 +(χ2(σ(t)))2]

− limsup
µ→0+

1
µα

{ [
t−t0

µ
]

∑
r=1

(−1)r(αCr)[2χ1(σ(t))µα f1(t,χ1,χ2 +2χ2(σ(t))µα f2(t,χ1,χ2)

}
.
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Applying (11) and (12), we obtain

−(t− t0)−α

Γ(1−α)

(
(χ10)

2 +(χ20)
2)+ (t− t0)−α

Γ(1−α)
((χ1(σ(t)))2 +(χ2(σ(t)))2)

− [2x1(σ(t)) f1(t,χ1,χ2)+2χ2(σ(t)) f2(t,χ1,χ2)]

≤ (t− t0)−α

Γ(1−α)
((χ1(σ(t)))2 +(χ2(σ(t)))2)

− [2χ1(σ(t)) f1(t,χ1,χ2)+2χ2(σ(t)) f2(t,χ1,χ2)] .

As t→ ∞, (t−t0)−α

Γ(1−α) ((χ1(σ(t)))2 +(χ2(σ(t)))2)→ 0, then

C
∆

α

0+h(t) ≤ − [2χ1(σ(t)) f1(t,χ1,χ2)+2χ2(σ(t)) f2(t,χ1,χ2)]

= −2 [χ1(σ(t)) f1(t,χ1,χ2)+χ2(σ(t)) f2(t,χ1,χ2)] ,

applying χ(σ(t))≤ µC∆αx(t)+ x(t),

−2
[

µ(t) f 2
1 (t,χ1,χ2)+χ1(t) f1(t,χ1,χ2)+µ(t) f 2

2 (t,χ1,χ2)+χ2(t) f2(t,χ1,χ2)

]
= −2

[
µ(t)(−χ1 sin(χ2)−2χ2−2χ1)

2 +χ1(−χ1 sin(χ2)−2χ2−2χ1)

+µ(t)(2χ1 +χ2−χ2 sin(χ1))
2 +χ2(2χ1 +χ2−χ2 sin(χ1))

]
.

Therefore,

C
∆

α
+h(χ1,χ2)≤−4h(χ1,χ2).

Consider the comparison system

(27) C
∆

αu∆ = g(t,u)≤−4u.

It is obvious to see that all the conditions of Theorem 3.1 are satisfied, so we conclude that

the system (25) is practically stable.

5. CONCLUSION

In conclusion, practical stability offers a more flexible and realistic approach for analyzing

the performance of dynamic systems, particularly in real-world scenarios where classical Lya-

punov stability may not be sufficient. While traditional stability concepts require equilibrium
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states, practical stability accounts for systems that may not be perfectly stable but can still func-

tion effectively within acceptable bounds. This concept is particularly relevant in applications

such as control systems, where disturbances or environmental changes can cause deviations

from stability without critically affecting the system’s overall performance. By providing novel

a framework that allows for system behavior near a desired state without requiring absolute sta-

bility, practical stability broadens the scope of stability analysis. This approach proves valuable

for systems that need to operate reliably under varying conditions, such as aircraft, missiles,

space vehicles, and industrial processes. The development of practical stability theory therefore

fills a crucial gap in stability analysis, offering insights into systems that oscillate or deviate

from equilibrium but still perform their intended functions within acceptable limits. We have

also shown the theoretical applicability of this definition in Theorem 3.1 and the practical ap-

plicability as well as effectiveness in system (25).
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