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Abstract. In this paper, we propose and analyse several iterative solutions to a new class of equilibrium problems

and variational inequalities known as the trifunction equilibrium variational inequality using the auxiliary principle

technique. Under extremely reasonable and appropriate assumptions, convergence of these iterative approaches is

demonstrated. For these well-known and novel kinds of equilibrium and variational inequalities, the conclusions

of this study remain valid.
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1. INTRODUCTION

Variational inequalities have emerged as an important and active field of both pure and ap-

plied mathematics in recent years. Different methods are being employed to conduct the re-

search. A broad category of issues with industrial applicability, economics, quantitative fi-

nance and structural engineering transportation, optimization and optimization issues. This

has inspired us to introduce and research a number of variations inequality classes. Blum and
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Oettili[1] explained the equilibrium issues and proved that the variational inequalities are part

of the equilibrium. concerns with optimization and fixed issues as distinct cases. Inspired by

Blum and Oettili’s [1] research, the equilibrium difficulties were examined by Noor et al.[8].

The trifunction equilibrium is a situation involving the trifunction challenges, such as equilib-

rium issues and unique situations.

The problems of trifunction equilibrium and variational inequalities can be solved numeri-

cally using an extensive range of techniques. The trifunction equilibrium variational inequality

cannot be solved using Wiener-Hopf equations or other projection methods due to the nature of

the trifunction variational inequality problem. This feature led us to apply the Glowinski et al.[4]

auxiliary principle technique, as developed by Noor [12, 13] and Noor et al. [7, 12, 13, 15]. Re-

sults obtained in this paper may be viewed as an improvement and refinement of the previously

known results. These may be extended to other classes of variational inequalities and equilib-

rium problems. Comparison of these methods with other methods is an interesting problem for

future research.

2. PRELIMINARIES

Let H be a real Hilbert space, whose inner product and norm are denoted by 〈., .〉 and ‖.‖

respectively. Let K be a closed and convex set in H.

For a given trifunction F(., ., .) : H×H×H → R and an operator T : H → H, we consider the

problem of finding u ∈ K such that:

(2.1) F(g(u),Tu,g(v))+ 〈Tu,g(v)−g(u)〉+φ(g(v))−φ(g(u))≥ 0,∀v ∈ K,

which is called the general trifunction equilibrium variational inequality. We note that if F(.,.,.)

∼= F(.,.), then the problem of Equation (2.1) is studied (Takhashi and Takhashi [28]; Yao et al.

[30, 29]; Noor et al.[22, 26]) and Gupta et al. [5]. We now discuss some important special cases

of the problem of equation (2.1).

Special Cases

(I) We note that, If F(g(u),Tu,g(v)) = 0, then the problem of (2.1) is equivalent to finding

u ∈ K such that:
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(2.2) 〈Tu,g(v)−g(u)〉+φ(g(v))−φ(g(u))≥ 0,∀v ∈ K,

which is known as mixed general variational inequality. A wide class of problems arising

in elasticity, fluid flow through porous media and optimization can be studied in the general

framework of above equation (see [2, 3, 4, 12, 18, 20, 7, 11] ).

(II) If 〈Tu,g(v)−g(u)〉= 0, then the problem of equation (2.1) turns into the problem of finding

u ∈ K such that:

F(g(u),Tu,g(v))+φ(g(v))−φ(g(u))≥ 0,∀v ∈ K,

which is known as general trifunction equilibrium Problem.

For φ = 0, the above equation reduces to the following form.

(2.3) F(g(u),Tu,g(v))≥ 0,∀v ∈ K,

which is known as trifunction variational inequality.

(III) If φ(.) is an indicator function on the closed convex set K in H, then equation (2.1) is

equivalent to finding u ∈ H : g(u) ∈ K satisfying:

(2.4) F(g(u),Tu,g(v))+ 〈Tu,g(v)−g(u)〉 ≥ 0,∀v ∈ H : g(v) ∈ K,

which is known as general trifunction equilibrium problems.

(IV) From equation (2.1) reduces to the following form for g = 1 and φ = 0.

(2.5) 〈Tu,v−u〉 ≥ 0,∀v ∈ K,

which is known as a variational inequality, introduced and studied by Stampacchia [27]. Within

the overall framework of the problems of equation (2.1), a wide class of problems occurring

in elasticity, fluid flow through porous media and optimization can be studied. Variational

inequalities and their generalizations are discussed in terms of applications, numerical result

formulation, and other features (Giannessi et al. [2, 3]; Noor [6, 10, 12, 13, 14]; Noor et al.

[7, 8, 11, 13, 15]; Yao et al. [30, 29]).

Definition 2.1. An operator T : H→ H is said to be:
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(i) monotone, if and only if,

〈Tu−T v,g(v)−g(u)〉 ≥ 0,∀u,v ∈ H,

(ii) Partially relaxed strongly monotone, if there exists a constant α > 0 such that

〈Tu−T v,z− v〉 ≥ −α‖z−u‖2,∀u,v,z ∈ H,

For z = u , partially relaxed strong monotonicity reduces to monotonicity of the operator T.

Definition 2.2. A trifunction F(., ., .) : H×H×H→ R with respect to an operator T is said to

be:

1. Jointly monotone, if and only if,

F(u,Tu,v)+F(v,T v,u)≤ 0 ∀u,v ∈ H.

2. Partially relaxed strongly jointly monotone, if and only if, there exists a constant α > 0 such

that

F(u,Tu,v)+F(v,T v,z)≤ µ‖z−u‖2, ∀u,v,z ∈ H.

It is clear that for z = u, partially relaxed strongly jointly monotone trifunction is simply jointly

monotone.

We would like to draw attention to the fact that the general trifunction equilibrium problem

and variational inequalities are quite different. It makes sense to consider these problems to be

connected. Motivated and inspired by the work being done in all these fields, we describe and

study a novel class of variational inequalities and trifunction equilibrium issues called general

trifunction equilibrium variational inequality. This new class includes trifunction equilibrium

issues and variational inequalities as specific examples.

3. MAIN RESULTS

Here, utilizing the auxiliary principle technique, we propose and examine an iterative solution

for resolving the mixed equilibrium variational inequality problem of Equation (2.1). Glowinski

et al.[4] are primarily responsible for this technique, which Noor [12, 13] and Noor et al.[18,

19, 20, 21] developed in their work.
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For a given u ∈ K consider the problem of finding w ∈ K such that:

ρF(g(u),Tu,g(v))+〈ρTu,g(v)−g(w)〉+ 〈g(w)−g(u),g(v)−g(w)〉

≥ ρφ(g(w))−ρφ(g(v)) ∀v ∈ K,
(3.1)

where ρ > 0 is a constant.

If w= u, then w∈H is a solution of equation (2.1). This observation enables us to suggest and

analyze the following iterative method for solving the general trifunction equilibrium variational

inequality of equation (2.1).

Algorithm 1. For a given u0 ∈ H, compute the approximate solution un+1 ∈ H by the iterative

scheme

ρF(g(un),Tun,g(v))+ 〈ρTun,g(v)−g(un+1)〉+ 〈g(un+1)−g(un),g(v)−g(un+1)〉

≥ ρφ(g(un+1))−ρφ(g(v)), ∀v ∈ H.
(3.2)

If F(g(un),Tu,g(v)) = 0, then Algorithm 1 reduces to the following scheme for variational

inequalities of equation (2.2).

Algorithm 2. For a given u0 ∈ H, compute un+1 ∈ H the iterative scheme

〈ρTun,g(v)−g(un+1)〉+ 〈g(un+1)−g(un),g(v)−g(un+1)〉

≥ ρφ(g(un+1))−ρφ(g(v)), ∀v ∈ H.

If 〈Tu,g(v)−g(u)〉= 0, then Algorithm 1 reduces to Algorithm 3.

Algorithm 3. For a given u0 ∈ H, compute un+1 ∈ H from iterative scheme

F(g(un),Tun,g(v))+ 〈g(un+1)−g(un),g(v)−g(un+1)〉

≥ ρφ(g(un+1))−ρφ(g(v)), ∀v ∈ H.

If φ(.) is an indicator function on the closed convex set K in H, then Algorithm 1 can be used

to find the approximate solution of equation (2.4), which appears to be a new one.

Algorithm 4. For a given u0 ∈ H, compute un+1 ∈ H from the iterative scheme

F(g(un),Tun,g(v))+ 〈g(un+1)−g(un),g(v)−g(un+1)〉 ≥ 0, ∀v ∈ H,
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For a suitable and appropriate choice of F(.,.), T, φ (.) and spaces, one can define iterative

algorithms to find the solutions to different classes of equilibrium problems and variational

inequalities.

We now study the convergence analysis of Algorithm 1 using the technique of Noor et al.

[18].

Theorem 3.1. Let u ∈ H be a solution of equation (2.1) and un+1 ∈ H be an approximate

solution obtained from Algorithm 1. If the trifunction F(.,.,.) and the operator T(.) are partially

relaxed, strongly monotone operators with constants µ > 0 and σ > 0, respectively, then

(3.3) ‖u−un+1‖2 ≤ ‖u−un‖2− (1−2ρ(µ +σ))‖un+1−un‖2.

Proof. Let u ∈H : g(u) ∈ K be a solution of (1). Then replacing v by un+1 in equation (2.1), we

have

ρF(g(u),Tu,g(un+1))+ρ〈Tu,g(un+1)−g(u)〉 ≥ ρφ(g(un))−ρφ(g(un+1)),

ρ > 0.
(3.4)

Let un+1 ∈ K be the approximate solution obtained from Algorithm 1. Taking v = u in equa-

tion (3.1), we have

ρF(g(un),Tun,g(u))+ρ〈Tun,g(u)−g(un+1)〉+ 〈g(un+1)−g(un),g(u)−g(un+1)〉

≥ρφ(g(un+1))−ρφ(g(un)) ∀v ∈ H.
(3.5)

Adding equations (3.3) and (3.4), we have

ρ[F(g(u),Tu,g(un+1))+F(g(un),Tun,g(u))]+ρ〈Tu,g(un+1)−g(u)〉+ρ〈Tun,g(u)−g(un+1)〉

+〈g(un+1)−g(un),g(u)−g(un+1)≥ 0,

which implies that

ρ[F(g(u),Tu,g(un+1))+F(g(un),Tun,g(u))]+ρ〈Tun−Tu,g(un+1)−g(u)〉

+ 〈g(un+1)−g(un),g(u)−g(un+1)≥ 0

which implies that
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〈g(un+1)−g(un),g(u)−g(un+1)≥−ρ[F(g(u),Tu,g(un+1))+F(g(un),Tun,g(u))]

+ρ〈Tun−Tu,g(un+1)−g(u)〉

≥ −ρµ‖g(un+1)−g(un)‖2 +σ‖g(un+1)−g(un)‖2

≥−ρ(µ +σ)‖g(un+1)−g(un)‖2,

(3.6)

where, we have used partially relaxed strong monotonicity of the trifunction F(., ., .) and oper-

ator T (.).

Using the relation

2〈u,v〉= ‖u+ v‖2−‖u‖2−‖v‖2, ∀u,v ∈ H,

and from equation (3.5), taking g = I, we get

‖u−un+1‖2 ≤ ‖u−un‖2− (1−2ρ(µ +σ))‖un+1−un‖2,

which is the required result of equation (3.2).

Theorem 3.2. Let H be a finite-dimensional space and let un+1 be the approximate solution

obtained from Algorithm 1 and u ∈ K be a solution to the problem of equation (2.1). Then

limn→∞ un = u.

Proof. Let u∈H be a solution of (2.1). For 0< ρ < 1
2(µ+σ) , we see that the sequence {|u−un‖}

is non increasing and consequently {un} is bounded. Also from Equation (2.1), taking g = I,

we have:
∞

∑
n=0

(1−2(µ +σ))‖un+1−un‖2 ≤ ‖u−u0‖2,

which implies that

(3.7) lim
n→∞
‖un+1−un‖= 0.

Let û be a cluster point of the sequence un and let the subsequence {un} of the sequence un

converge to û ∈ H. Replacing un by un j in (3.1) and taking the limit as n j→ ∞ and using (3.6),

taking g = I, we have

F(û,T û,v)+ 〈T û,v− û〉 ≥ 0, ∀v ∈ H,g(v) ∈ K,
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which implies that û solves the mixed equilibrium variational inequality (1) and

‖un+1− û‖2 ≤ ‖un− û‖2.

Thus, it follows from the above inequality that the sequence un has exactly one cluster point û

and limn→∞ un = û, the required result.

We again use the auxiliary principle technique to suggest and analyze several proximal point

algorithms for solving the mixed equilibrium-variational inequalities of equation (2.1). For a

given u ∈ K, consider the problem of finding w ∈ K, such that

ρF(g(w),Tw,g(v))+ 〈ρTw,g(v)−g(w)〉

+ 〈g(w)−g(u)− γ(g(u)−g(u)),g(v)−g(w)〉 ≥ 0,

∀v ∈ H : g(v) ∈ K,

(3.8)

where ρ ≥ 0 and γ ≥ 0 are constants.

If w = u, then w ∈ K is a solution of equation (2.1). This observation enables us to suggest and

analyze the following iterative method for solving trifunction equilibrium variational inequali-

ties of equation (2.1).

Algorithm 5. For a given u0 ∈ H, compute the approximate solution un+1 ∈ H by the iterative

scheme

ρF(g(un+1),Tun+1,g(v))+ 〈ρTun+1,g(v)−g(un+1)〉

+ 〈g(un+1)−g(un)− γ(g(un)−g(un−1),g(v)−g(un+1))〉 ≥ 0,

∀v ∈ H : g(v) ∈ K.

(3.9)

Algorithm 6. For a given u0 ∈ H, compute the approximate solution un+1 ∈ H by the iterative

scheme

ρF(g(un+1),Tun+1,g(v))+ 〈ρTun+1,g(v)−g(un+1)〉

+ 〈g(un+1)−g(un),g(v)−g(un+1)〉 ≥ 0.

For a given u ∈ K, consider the problem of finding a w ∈ K such that:

ρF(g(u),Tu,g(v))+ 〈ρTw,g(v)−g(w)〉

+ 〈g(w)−g(u)− γ(g(u)−g(u)),g(v)−g(w)〉 ≥ 0,
(3.10)
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∀v ∈ H : g(v) ∈ K.

Note that if w = u, then w ∈ K is a solution of (2.1). This observation enables us to suggest and

analyze the following proximal iterative method for solving trifunction equilibrium variational

inequalities of (2.1).

Algorithm 7. For a given u0 ∈ H, compute the approximate solution un+1 by the iterative

scheme

ρF(g(u),Tun,g(v))+ 〈ρTun+1,g(v)−g(un+1)〉

+ 〈g(un+1)−g(un)− γ(g(un)−g(un−1),g(v)−g(un+1))〉 ≥ 0,

∀v ∈ H;g(v) ∈ K.

For a given u ∈ K, consider the problem of finding a w ∈ K such that

ρF(g(w),Tw,g(v))+ 〈ρTu,g(v)−g(w)〉

+ 〈g(w)−g(u)− γ(g(u)−g(u)),g(v)−g(w)〉 ≥ 0,

∀v ∈ H : g(v) ∈ K,

(3.11)

If w = u, then w ∈ K is a solution of (2.1). This observation enables us to suggest and analyze

the following iterative method for solving mixed equilibrium variational inequalities of (2.1).

Algorithm 8. For a given u0 ∈ H, compute the approximate solution un+1 by the iterative

scheme

ρF(g(un+1),Tun+1,g(v))+ 〈ρTun,g(v)−g(un+1)〉+ 〈g(un+1)−g(un)

− γ(g(un)−g(un−1)),g(v)−g(un+1)〉 ≥ 0.

Some special cases of these algorithms are as follows:

If F(g(u),Tu,g(v))= 0, then Algorithm 5 reduces to the following scheme for mixed variational

inequalities given as (2.2).

Algorithm 9. For a given u0 ∈ H, compute the approximate solution un+1 by the iterative

scheme

〈ρTun+1,g(v)−g(un+1)〉

+ 〈g(un+1)−g(un)− γ(g(un)−g(un−1),g(v)−g(un+1))〉 ≥ 0,
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∀v ∈ H : g(v) ∈ K.

If 〈Tu,g(v)−g(u)〉= 0, then Algorithm 1 reduces to Algorithm 10.

Algorithm 10. For a given u0 ∈ H, compute the approximate solution un+1 by the iterative

scheme

ρF(g(un+1),Tun+1,g(v))

+ 〈g(un+1)−g(un)− γ(g(un)−g(un−1),g(v)−g(un+1))〉 ≥ 0,

∀v ∈ H : g(v) ∈ K

which is used for finding the solution of general trifunction equilibrium problem of (2.3).

Iterative algorithms can be defined as special cases of Algorithms 6 and Algorithms 7 for

appropriate and suitable choices of F(.,.,.), T, and spaces to discover solutions to various classes

of equilibrium problems and variational inequalities.

Theorem 3.3. Let u ∈ H be a solution of (2.1) and un+1 ∈ H be an approximate solution ob-

tained from Algorithm 6. If trifunction F(.,.,.) and operator T are monotone, then

(3.12) ‖g(u)−g(un+1)‖2 ≤ ‖g(u)−g(un)‖2−‖g(un+1)−g(un)‖2.

Proof. Let u ∈ H : g(v) ∈ Kr be a solution of (2.1). Then replacing v by un+1 in (1), we have

ρF(g(u),Tu,g(un+1))

+ρ〈Tu,g(un+1)−g(u)〉+ρφ(g(un+1))−ρφ(g(u))≥ 0,∀v ∈ K.
(3.13)

Let un+1 ∈H be the approximate solution obtained from Algorithm 5. Taking v = u in equation

(13), we have

ρF(g(un+1),Tun+1,g(u))+ 〈ρTun+1,g(u)−g(un+1)〉

+ 〈g(un+1)−g(un),g(u)−g(un+1),〉 ≥ 0,∀v ∈ H : g(v) ∈ K.
(3.14)

Adding equations (3.13) and (3.14), we have

ρ[F(g(u),Tu,g(un+1))+F(g(un+1),Tun+1,g(u))]+ρ〈Tu,g(un+1)−g(u)〉

+ρ〈Tun+1,g(u)−g(un+1)〉+ 〈g(un+1)−g(un),g(u)−g(un+1),〉 ≥ 0.
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Which implies that

〈g(un+1)−g(un),g(u)−g(un+1),〉 ≥−ρ[F(g(u),Tu,g(un+1))

+F(g(un+1),Tun+1,g(u))]

+ρ〈Tu,g(un+1)−g(u)〉

+ρ〈Tun+1,g(u)−g(un+1)〉.

(3.15)

We have used the monotonicity of the operator T and the trifunction F(.,.,.).

Using the relation

2〈u,v〉= ‖u+ v‖2−‖u‖2−‖v‖2, u,v ∈ H

and from (3.14), we have

‖g(u)−g(un+1)‖2 ≤ ‖g(u)−g(un)‖2−‖g(un+1)−g(un)‖2.

Which is the required result.

4. CONCLUSION

In this paper, we have introduced and considered a new class of general trifunction equi-

librium variational inequalities. It is shown that the optimum of the sum of differentiable and

directional differentiable nonconvex functions can be characterized by means of this class. We

have used the auxiliary principle technique for suggesting and analyzing some explicit and in-

ertial proximal point algorithms for solving the trifunction equilibrium variational inequality

problem. Some special cases are also discussed. Our findings can be seen as an enhance-

ment and improvement over the outcomes that were previously known. Note that the projection

and resolvent techniques are not used in this technique. Readers are encouraged to find novel

applications of the general trifunction equilibrium variational inequalities in pure and applied

sciences. The ideas and techniques of this paper stimulate further research in this area of pure

and applied sciences.
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