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Abstract. Here, we study an initial value problem of a delay integro-differential equation. The existence of the
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1. INTRODUCTION

Differential equations and integral equations are fundamental tools in mathematical mod-

eling, used to describe systems and processes that change over time. Differential equations

involve functions and their derivatives, capturing how a system evolves based on its current rate

of change [2, 10]. Integral equations, on the other hand, focus on the accumulated effects over
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time, making them essential in scenarios where the current state depends on the history of the

system [15, 16].

A delay integro-differential equation is an equation where the present state of a system de-

pends on its previous states with a time delay. This framework is valuable for modeling situ-

ations where the impact of past events or conditions extends over time, such as in mechanical

systems with response delays or biological systems with developmental lags [6, 7, 17, 19].

In studying these equations, stability is a key concern [1, 3], and two important concepts are

Hyers-Ulam stability and continuous dependence. Hyers-Ulam stability examines how small

deviations in the problem affect the solution [4, 5, 8, 9, 13, 14]. Continuous dependence,

meanwhile, ensures that solutions change smoothly with respect to initial data and parame-

ters [18, 20]. These concepts together offer a comprehensive view of the stability of systems

described by delay differential and integral equations.

Now consider the initial value problem of a delay integro-differential equation

du(t)
dt

= g(t)+
∫

φ(t)

0
k(t,s) f

(
s,

du(s)
ds

)
ds, t ∈ (0,T ](1)

u(0) = u0,(2)

Let du(t)
dt = x ∈C[0,T ], then the problem (1)-(2) is equivalent to the integral equation

(3) u(t) = u0 +
∫ t

0
x(s)ds, t ∈ [0,T ],

where x(t) is given by the delay integro-functional equation

(4) x(t) = g(t)+
∫

φ(t)

0
k(t,s) f (s,x(s))ds.

Our aim in this paper is to study the existence of a unique solution of (1)-(2) in the space

C1[0,T ]. To understand the stability of the problem we apply the Hyers-Ulam stability to the

problem, then we study the continuous dependence of the unique solution on the initial data

u0 and the functions g, k, and f , and on the delay function φ(t). Subsequently, we extend our

investigation to the space AC[0,T ] with the relaxation of equation (1) to be exist almost every

where in t ∈ (0,T ] and letting x ∈ L1[0,T ], giving us a better understanding of how it behaves

and stays stable under less assumptions.
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2. STUDY OF A CONTINUOUSLY DIFFERENTIABLE SOLUTION

In this section, we prove the existence of a unique continuously differentiable solution u ∈

C1[0,T ] of the problem (1)-(2), for this aim, we assume that:

(i) g : [0,T ]→ R is continuous.

(ii) f : [0,T ]×R→ R is continuous and satisfies the Lipschitz condition [12] with b > 0

such that

| f (t,x)− f (t,u)| ≤ b|x−u|.

(iii) k : [0,T ]× [0,T ]→ R is continuous such that

|k(t,s)| ≤ k1,∀(t,s) ∈ [0,T ]× [0,T ].

(iv) φ : [0,T ]→ [0,T ] is continuous and increasing such that φ(t)≤ t.

(v) supt∈[0,T ] | f (t,0)|= M.

(vi) k1bT < 1 .

Theorem 1. Let the assumptions (i)− (vi) be satisfied, then the problem (1)-(2) has a unique

solution u ∈C1[0,T ].

Proof. From assumption (ii), we have

| f (t,x)|− | f (t,0)| ≤ | f (t,x)− f (t,0)| ≤ b|x|,

then

| f (t,x)| ≤ b|x|+ | f (t,0)|

≤ b|x|+ sup
t∈[0,T ]

| f (t,0)|

= b|x|+M.

Define the operator F1 associated with (4) by

F1x(t) = g(t)+
∫

φ(t)

0
k(t,s) f (s,x(s))ds

Firstly, we prove that F1 maps C[0,T ] into itself.

For this, let x ∈C[0,T ] and t1, t2 ∈ [0,T ] such that t1 < t2 and |t2− t1| ≤ δ , then
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|F1x(t2)−F1x(t1)| =

∣∣∣∣g(t2)+∫ φ(t2)

0
k(t2,s) f (s,x(s))ds−g(t1)−

∫
φ(t1)

0
k(t1,s) f (s,x(s))ds

∣∣∣∣
≤ |g(t2)−g(t1)|+

∣∣∣∣∫ φ(t2)

0
k(t2,s) f (s,x(s))ds−

∫
φ(t1)

0
k(t1,s) f (s,x(s))ds

∣∣∣∣
= |g(t2)−g(t1)|+

∣∣∣∣∫ φ(t2)

0
k(t2,s) f (s,x(s))ds−

∫
φ(t2)

0
k(t1,s) f (s,x(s))ds

+
∫

φ(t2)

0
k(t1,s) f (s,x(s))ds−

∫
φ(t1)

0
k(t1,s) f (s,x(s))ds

∣∣∣∣
≤ |g(t2)−g(t1)|+

∫
φ(t2)

0
|k(t2,s)− k(t1,s)| f (s,x(s))ds

+
∫

φ(t2)

φ(t1)
|k(t1,s)|| f (s,x(s))|ds

≤ |g(t2)−g(t1)|+
∫

φ(t2)

0
|k(t2,s)− k(t1,s)|(b|x(s)|+M)ds

+
∫

φ(t2)

φ(t1)
k1(b|x(s)|+M)ds = ε.

This proves that F1 : C[0,T ]→C[0,T ].

Secondly, to prove that F1 is contraction, we have the following.

Let x,z ∈C[0,T ], then

|F1x(t)−F1z(t)| =

∣∣∣∣g(t)+∫ φ(t)

0
k(t,s) f (s,x(s))ds−g(t)−

∫
φ(t)

0
k(t,s) f (s,z(s))ds

∣∣∣∣
≤

∫
φ(t)

0
|k(t,s)|| f (s,x(s))− f (s,z(s))|ds

≤ k1b
∫

φ(t)

0
|x(s)− z(s)|ds

≤ k1b
∫

φ(t)

0
sup

s∈[0,T ]
|x(s)− z(s)|ds

= k1bφ(t)||x− z||C

≤ k1bt||x− z||C

≤ k1bT ||x− z||C.

Then

||F1x−F1z|| ≤ k1bT ||x− z||C,
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since k1bT < 1, then F1 is contraction. Then by using the Banach fixed point Theorem [11],

there exists a unique solution x ∈C[0,T ] of (4) and therefore (3) also has a unique solution u ∈

C[0,T ]. Consequently, by Equivalence, the problem (1)-(2) has a unique solution u ∈C1[0,T ].

�

2.1. Hyers-Ulam stability.

Definition 1. [4, 5, 8] Let the solution x ∈C[0,T ] of (4) be exists. The delay integro-functional

equation (4) is Hyers-Ulam stable, i f ∀ ε > 0, ∃ δ (ε)> 0 such that for any solution xs ∈C[0,T ]

of (4) satisfying ∣∣xs(t)−g(t)−
∫

φ(t)

0
k(t,θ) f (θ ,xs(θ))dθ

∣∣≤ δ ,

then

||x− xs||C ≤ ε1.

Theorem 2. Let the assumptions of Theorem (1) be satisfied, then (4) is Hyers-Ulam stable.

Proof. Let −δ ≤ xs(t)−g(t)−
∫ φ(t)

0 k(t,θ) f (θ ,xs(θ))dθ ≤ δ , consider

|x(t)− xs(t)| =

∣∣∣∣g(t)+∫ φ(t)

0
k(t,θ) f (θ ,x(θ))dθ − xs(t)

∣∣∣∣
=

∣∣∣∣g(t)+∫ φ(t)

0
k(t,θ) f (θ ,x(θ))ds−

∫
φ(t)

0
k(t,θ) f (θ ,xs(θ))dθ

+
∫

φ(t)

0
k(t,θ) f (θ ,xs(θ))dθ − xs(t)

∣∣∣∣
≤

∣∣∣∣∫ φ(t)

0
k(t,θ)[ f (θ ,x(θ))− f (θ ,xs(θ))]dθ

∣∣∣∣
+

∣∣∣∣− xs(t)+g(t)+
∫

φ(t)

0
k(t,θ) f (θ ,xs(θ))dθ

∣∣∣∣
≤

∫
φ(t)

0
|k(t,θ)|| f (θ ,x(θ))− f (θ ,xs(θ))|dθ

+

∣∣∣∣xs(t)−g(t)−
∫

φ(t)

0
k(t,θ) f (θ ,xs(θ))dθ

∣∣∣∣
≤

∫
φ(t)

0
k1b|x(θ)− xs(θ)|dθ +δ

≤ k1bT ||x− xs||C +δ .
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Hence

||x− xs||C ≤
δ

1− k1bT
= ε1.

Since k1bT < 1, then (4) is Hyers-Ulam stable. �

Corollary 1. Let the assumptions of Theorem (2) be satisfied, then the problem (1)-(2) is Hyers-

Ulam stable.

Proof. Consider

|u(t)−us(t)| =

∣∣∣∣u0 +
∫ t

0
x(θ)dθ −u0−

∫ t

0
xs(θ)dθ

∣∣∣∣
≤

∫ T

0
|x(θ)− xs(θ)|dθ

≤ T ||x− xs||C

≤ T ε1 = ε.

�

2.2. Continuous Dependence. In this section, we study the continuous dependence of the

unique solution on the initial data u0 and the functions g, k, and f , and on the delay function

φ(t).

Definition 2. The solution u ∈C1[0,T ] of (1)-(2) depends continuously on the initial data u0

and the function x ∈C[0,T ], i f ∀ ε > 0, ∃ δ (ε)> 0 such that

max
{
|u0−u∗0|, ||x− x∗||C

}
≤ δ → ||u−u∗||C ≤ ε,

where u∗ is the unique solution of the integral equation

(5) u∗(t) = u∗0 +
∫ t

0
x∗(s)ds, t ∈ [0,T ].

Theorem 3. Let the assumptions of Theorem 1 be satisfied, then the solution u ∈ C1[0,T ] of

(1)-(2) depends continuously on the initial data u0 and the function x ∈C[0,T ].

Proof. Let u and u∗ be the two solutions of (3) and (5), then

|u(t)−u∗(t)| = |u0 +
∫ t

0
x(s)ds−u∗0−

∫ t

0
x∗(s)ds|
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≤ |u0−u∗0|+
∫ t

0
|x(s)− x∗(s)|ds

≤ δ + ||x− x∗||CT.

Hence

||u−u∗||C ≤ (1+T )δ = ε.

�

Definition 3. The solution x ∈C[0,T ] of (4) depends continuously on the function g, i f ∀ ε >

0, ∃ δ (ε)> 0 such that

|g(t)−g∗(t)| ≤ δ → ||x− x∗||C ≤ ε,

where x∗ is the unique solution of the delay integro-functional equation

(6) x∗(t) = g∗(t)+
∫

φ(t)

0
k(t,s) f (s,x∗(s))ds, t ∈ [0,T ].

Theorem 4. Let the assumptions of Theorem 1 be satisfied, then the solution x ∈C[0,T ] of (4)

depends continuously on the function g.

Proof. Let x and x∗ be the two solutions of (4) and (6), then

|x(t)− x∗(t)| = |g(t)+
∫

φ(t)

0
k(t,s) f (s,x(s))ds−g∗(t)−

∫
φ(t)

0
k(t,s) f (s,x∗(s))ds|

≤ |g(t)−g∗(t)|+
∫

φ(t)

0
|k(t,s)|| f (s,x(s))− f (s,x∗(s))|ds

≤ δ + k1b
∫

φ(t)

0
|x(s)− x∗(s)|ds

≤ δ + k1bT ||x− x∗||C.

Thus

||x− x∗||C ≤ δ + k1bT ||x− x∗||.

Hence

||x− x∗||C ≤
δ

1− k1bT
= ε.

�
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Definition 4. The solution x ∈ C[0,T ] of (4) depends continuously on the delay function

φ(t), i f ∀ ε > 0, ∃ δ (ε)> 0 such that

|φ(t)−φ
∗(t)| ≤ δ → ||x− x∗||C ≤ ε,

where x∗ is the unique solution of the delay integro-functional equation

(7) x∗(t) = g(t)+
∫

φ∗(t)

0
k(t,s) f (s,x∗(s))ds, t ∈ [0,T ].

Theorem 5. Let the assumptions of Theorem 1 be satisfied, then the solution x ∈C[0,T ] of (4)

depends continuously on the delay function φ(t).

Proof. Let x and x∗ be the two solutions of (4) and (7), then

|x(t)− x∗(t)| =

∣∣∣∣g(t)+∫ φ(t)

0
k(t,s) f (s,x(s))ds−g(t)−

∫
φ∗(t)

0
k(t,s) f (s,x∗(s))ds

∣∣∣∣
=

∣∣∣∣∫ φ(t)

0
k(t,s) f (s,x(s))ds−

∫
φ∗(t)

0
k(t,s) f (s,x∗(s))ds

∣∣∣∣
=

∣∣∣∣∫ φ(t)

0
k(t,s) f (s,x(s))ds−

∫
φ(t)

0
k(t,s) f (s,x∗(s))ds

+
∫

φ(t)

0
k(t,s) f (s,x∗(s))ds−

∫
φ∗(t)

0
k(t,s) f (s,x∗(s))ds

∣∣∣∣
≤

∫
φ(t)

0
|k(t,s)|| f (s,x(s))− f (s,x∗(s))|ds+

∫
φ(t)

φ∗(t)
|k(t,s)|| f (s,x∗(s))|ds

≤ k1b
∫

φ(t)

0
|x(s)− x∗(s)|ds+ k1

∫
φ(t)

φ∗(t)
(b|x∗(s)|+M)ds

≤ k1bT ||x− x∗||C + k1(b||x∗||C +M)|φ(t)−φ
∗(t)|.

Thus

||x− x∗||C ≤ k1bT ||x− x∗||C + k1δ (b||x∗||C +M).

Hence

||x− x∗||C ≤
k1δ (b||x∗||C +M)

1− k1bT
= ε.

�

Definition 5. The solution x ∈ C[0,T ] of (4) depends continuously on the function

k(t,s), i f ∀ ε > 0, ∃ δ (ε)> 0 such that

|k(t,s)− k∗(t,s)| ≤ δ → ||x− x∗||C ≤ ε,
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where x∗ is the unique solution of the delay integro-functional equation

(8) x∗(t) = g(t)+
∫

φ(t)

0
k∗(t,s) f (s,x∗(s))ds, t ∈ [0,T ].

Theorem 6. Let the assumptions of Theorem 1 be satisfied, then the solution x ∈C[0,T ] of (4)

depends continuously on the function k(t,s).

Proof. Let x and x∗ be the two solutions of (4) and (8), then

|x(t)− x∗(t)|

=

∣∣∣∣g(t)+∫ φ(t)

0
k(t,s) f (s,x(s))ds−g(t)−

∫
φ(t)

0
k∗(t,s) f (s,x∗(s))ds

∣∣∣∣
≤

∫
φ(t)

0
|k(t,s) f (s,x(s))− k∗(t,s) f (s,x∗(s))|ds

=
∫

φ(t)

0
|k(t,s) f (s,x(s))− k∗(t,s) f (s,x(s))+ k∗(t,s) f (s,x(s))− k∗(t,s) f (s,x∗(s))|ds

≤
∫

φ(t)

0
|k(t,s)− k∗(t,s)|| f (s,x(s))|ds+

∫
φ(t)

0
|k∗(t,s)|| f (s,x(s))− f (s,x∗(s))|ds

≤ δT (b||x||C +M)+ k1bT ||x− x∗||C.

Hence

||x− x∗||C ≤
δT (b||x||C +M)

1− k1bT
= ε.

�

Definition 6. The solution x ∈ C[0,T ] of (4) depends continuously on the function

f (t,x), i f ∀ ε > 0, ∃ δ (ε)> 0 such that

| f (t,x)− f ∗(t,x)| ≤ δ → ||x− x∗||C ≤ ε,

where x∗ is the unique solution of the delay integro-functional equation

(9) x∗(t) = g(t)+
∫

φ(t)

0
k(t,s) f ∗(s,x∗(s))ds, t ∈ [0,T ].

Theorem 7. Let the assumptions of Theorem 1 be satisfied, then the solution x ∈C[0,T ] of (4)

depends continuously on the function f (t,x).
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Proof. Let x and x∗ be the two solutions of (4) and (9), then

|x(t)− x∗(t)| =

∣∣∣∣g(t)+∫ φ(t)

0
k(t,s) f (s,x(s))ds−g(t)−

∫
φ(t)

0
k(t,s) f ∗(s,x∗(s))ds

∣∣∣∣
≤

∫
φ(t)

0
|k(t,s)|| f (s,x(s))− f ∗(s,x∗(s))|ds

=
∫

φ(t)

0
|k(t,s)|| f (s,x(s))− f ∗(s,x(s))+ f ∗(s,x(s))− f ∗(s,x∗(s))|ds

≤ k1

∫
φ(t)

0
| f (s,x(s))− f ∗(s,x(s))|ds+ k1

∫
φ(t)

0
| f ∗(s,x(s))− f ∗(s,x∗(s))|ds

≤ k1δT + k1b
∫

φ(t)

0
|x(s)− x∗(s)|ds

≤ k1δT + k1bT ||x− x∗||C.

Hence

||x− x∗||C ≤
k1δT

1− k1bT
= ε.

�

Corollary 2. Let the assumptions of Theorem 1 be satisfied, then the solution u ∈ C1[0,T ] of

(1)-(2) depends continuously on the the functions g, k, and f , and on the delay function φ(t).

3. STUDY OF AN ABSOLUTELY CONTINUOUS SOLUTION

In this section, we extend our investigation to the space AC[0,T ], where we relax the require-

ment for equation (1) to hold almost everywhere for t ∈ (0,T ],

(10)
du(t)

dt
= g(t)+

∫
φ(t)

0
k(t,s) f

(
s,

du(s)
ds

)
ds, a.e. t ∈ (0,T ].

Let du(t)
dt = x ∈ L1[0,T ], then the problem (10) with the initial condition (2) is equivalent to the

integral equation (3) with the delay integro-functional equation (4).

We will prove the existence of a unique absolutely continuous solution u ∈ AC[0,T ] of the

problem (10) with the initial condition (2), for this aim, we assume that:

(i)
′

g : [0,T ]→ R is integrable.

(ii)
′

f : [0,T ]×R→ R is measurable in t ∈ [0,T ] and satisfies the Lipschitz condition with

L > 0 such that

| f (t,x)− f (t,u)| ≤ L|x−u|.
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(iii)
′

f (t,0) ∈ L1[0,T ] such that
∫ T

0 | f (s,0)|ds≤ A.

(iv)
′

k1LT < 1.

Theorem 8. Let the assumptions (iii),(iv) and (i)
′ − (iv)

′
be satisfied, then the problem (10)

with (2) has a unique solution u ∈ AC[0,T ].

Proof. From assumption (ii)
′
, we have

| f (t,x)| ≤ L|x|+ | f (t,0)|.

Define the operator F2 associated with (4) by

F2x(t) = g(t)+
∫

φ(t)

0
k(t,s) f (s,x(s))ds.

Let x ∈ L1[0,T ], then

|F2x(t)| =

∣∣∣∣g(t)+∫ φ(t)

0
k(t,s) f (s,x(s))ds

∣∣∣∣
≤ |g(t)|+

∫
φ(t)

0
|k(t,s)|| f (s,x(s))|ds

≤ |g(t)|+ k1

∫ t

0
(L|x|+ | f (s,0)|)ds

≤ |g(t)|+ k1L||x||L1 + k1

∫ T

0
| f (s,0)|ds

≤ |g(t)|+ k1L||x||L1 + k1A.

Then

||F2x||L1 ≤ ||g||L1 + k1LT ||x||L1 + k1AT.

This prove that F2 : L1[0,T ]→ L1[0,T ].

Now, Let x,z ∈ L1[0,T ], then

|F2x(t)−F2z(t)| =

∣∣∣∣g(t)+∫ φ(t)

0
k(t,s) f (s,x(s))ds−g(t)−

∫
φ(t)

0
k(t,s) f (s,z(s))ds

∣∣∣∣
≤

∫
φ(t)

0
|k(t,s)|| f (s,x(s))− f (s,z(s))|ds

≤ k1L
∫

φ(t)

0
|x(s)− z(s)|ds

≤ k1L
∫ t

0
|x(s)− z(s)|ds
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= k1L||x− z||L1.

Then

||F2x−F2z||L1 ≤ k1LT ||x− z||L1,

since k1LT < 1, then F2 is contraction. Then by using the Banach fixed point Theorem, there

exists a unique solution x ∈ L1[0,T ] of (4) and therefore (3) also has a unique solution u ∈

C[0,T ]. Consequently, du
dt = x(t) ∈ L1[0,T ], which implies u ∈ AC[0,T ]. �

3.1. Hyers-Ulam stability.

Definition 7. [4, 5, 8] Let the solution x∈ L1[0,T ] of (4) be exists. The delay integro-functional

equation (4) is Hyers-Ulam stable, i f ∀ ε > 0, ∃ δ (ε)> 0 such that for any solution xs ∈L1[0,T ]

of (4) satisfying ∣∣xs(t)−g(t)−
∫

φ(t)

0
k(t,θ) f (θ ,xs(θ))dθ

∣∣≤ δ ,

then

||x− xs||L1 ≤ ε.

Theorem 9. Let the assumptions of Theorem (8) be satisfied, then (4) is Hyers-Ulam stable.

Proof. Let −δ ≤ xs(t)−g(t)−
∫ φ(t)

0 k(t,θ) f (θ ,xs(θ))dθ ≤ δ , consider

|x(t)− xs(t)| =

∣∣∣∣g(t)+∫ φ(t)

0
k(t,θ) f (θ ,x(θ))dθ − xs(t)

∣∣∣∣
=

∣∣∣∣g(t)+∫ φ(t)

0
k(t,θ) f (θ ,x(θ))dθ −

∫
φ(t)

0
k(t,θ) f (θ ,xs(θ))dθ

+
∫

φ(t)

0
k(t,θ) f (θ ,xs(θ))dθ − xs(t)

∣∣∣∣
≤

∣∣∣∣∫ φ(t)

0
k(t,θ)[ f (θ ,x(θ))− f (θ ,xs(θ))]dθ

∣∣∣∣
+

∣∣∣∣− xs(t)+g(t)+
∫

φ(t)

0
k(t,θ) f (θ ,xs(θ))dθ

∣∣∣∣
≤

∫
φ(t)

0
|k(t,θ)|| f (θ ,x(θ))− f (θ ,xs(θ))|dθ +δ

≤
∫

φ(t)

0
k1L|x(θ)− xs(θ)|dθ +δ

≤ k1L||x− xs||L1 +δ .
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Then

||x− xs||L1 ≤ k1LT ||x− xs||L1 +δT.

Hence

||x− xs||L1 ≤
δT

1− k1LT
= ε.

Since k1LT < 1, then (4) is Hyers-Ulam stable. �

Corollary 3. Let the assumptions of Theorem (9) be satisfied, then the problem (10) with (2) is

Hyers-Ulam stable.

Proof. Consider

|u(t)−us(t)| =

∣∣∣∣u0 +
∫ t

0
x(θ)dθ −u0−

∫ t

0
xs(θ)dθ

∣∣∣∣
≤

∫ T

0
|x(θ)− xs(θ)|dθ

= ||x− xs||L1 ≤ ε.

�

3.2. Continuous Dependence. In this section, we study the continuous dependence of the

unique solution on the initial data u0 and the functions g, k, and f , and on the delay function

φ(t).

Definition 8. The solution u ∈ AC[0,T ] of (10) with (2) depends continuously on the initial

data u0 and the function x ∈ L1[0,T ], i f ∀ ε > 0, ∃ δ (ε)> 0 such that

max
{
|u0−u∗0|, ||x− x∗||L1

}
≤ δ → ||u−u∗||C ≤ ε,

where u∗ is the unique solution of the integral equation (5).

Theorem 10. Let the assumptions of Theorem 8 be satisfied, then the solution u ∈ AC[0,T ] of

(10) with (2) depends continuously on the initial data u0 and the function x ∈ L1[0,T ].

Proof. Let u and u∗ be the two solutions of (3) and (5), then

|u(t)−u∗(t)| ≤ |u0−u∗0|+
∫ t

0
|x(s)− x∗(s)|ds

≤ δ + ||x− x∗||L1 = 2δ .
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Hence

||u−u∗||L1 ≤ 2δT = ε.

�

Definition 9. The solution x ∈ L1[0,T ] of (4) depends continuously on the function g, i f ∀ ε >

0, ∃ δ (ε)> 0 such that

|g(t)−g∗(t)| ≤ δ → ||x− x∗||L1 ≤ ε,

where x∗ is the unique solution of the delay integro-functional equation (6).

Theorem 11. Let the assumptions of Theorem 8 be satisfied, then the solution x ∈ L1[0,T ] of

(4) depends continuously on the function g.

Proof. Let x and x∗ be the two solutions of (4) and (6), then

|x(t)− x∗(t)| ≤ |g(t)−g∗(t)|+
∫

φ(t)

0
|k(t,s)|| f (s,x(s))− f (s,x∗(s))|ds

≤ δ + k1L
∫

φ(t)

0
|x(s)− x∗(s)|ds

≤ δ + k1L
∫ t

0
|x(s)− x∗(s)|ds

≤ δ + k1L||x− x∗||L1.

Thus

||x− x∗||L1 ≤ δT + k1LT ||x− x∗||L1.

Hence

||x− x∗||L1 ≤
δT

1− k1LT
= ε.

�

Definition 10. The solution x ∈ L1[0,T ] of (4) depends continuously on the delay function

φ(t), i f ∀ ε > 0, ∃ δ (ε)> 0 such that

|φ(t)−φ
∗(t)| ≤ δ → ||x− x∗||L1 ≤ ε,

where x∗ is the unique solution of the delay integro-functional equation (7).
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Theorem 12. Let the assumptions of Theorem 8 be satisfied, then the solution x ∈ L1[0,T ] of

(4) depends continuously on the delay function φ(t).

Proof. Let x and x∗ be the two solutions of (4) and (7), then by using the calculations of Theorem

(5), we have

|x(t)− x∗(t)| ≤
∫

φ(t)

0
|k(t,s)|| f (s,x(s))− f (s,x∗(s))|ds+

∫
φ(t)

φ∗(t)
|k(t,s)|| f (s,x∗(s))|ds

≤ k1L
∫

φ(t)

0
|x(s)− x∗(s)|ds+ k1

∫
φ(t)

φ∗(t)
(L|x∗(s)|+ | f (s,0)|)ds

≤ k1L
∫ t

0
|x(s)− x∗(s)|ds+ k1L

∫
φ(t)

φ∗(t)
|x∗(s)|ds+ k1

∫
φ(t)

φ∗(t)
| f (s,0)|)ds.

But from the integrability of x∗ and f (t,0), we have

|φ(t)−φ
∗(t)| ≤ δ →

∫
φ(t)

φ∗(t)
|x∗(s)|ds≤ ε1,

∫
φ(t)

φ∗(t)
| f (s,0)|ds≤ ε2.

Then

|x(t)− x∗(t)| ≤ k1L||x− x∗||L1 + k1Lε1 + k1ε2.

Thus

||x− x∗||L1 ≤ k1LT ||x− x∗||L1 + k1LT ε1 + k1T ε2.

Hence

||x− x∗||L1 ≤
k1T (Lε1 + ε2)

1− k1LT
= ε.

�

Definition 11. The solution x ∈ L1[0,T ] of (4) depends continuously on the function

k(t,s), i f ∀ ε > 0, ∃ δ (ε)> 0 such that

|k(t,s)− k∗(t,s)| ≤ δ → ||x− x∗||L1 ≤ ε,

where x∗ is the unique solution of the delay integro-functional equation (8).

Theorem 13. Let the assumptions of Theorem 8 be satisfied, then the solution x ∈ L1[0,T ] of

(4) depends continuously on the function k(t,s).
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Proof. Let x and x∗ be the two solutions of (4) and (8), then by using the calculations of Theorem

(6), we have

|x(t)− x∗(t)| ≤
∫

φ(t)

0
|k(t,s)− k∗(t,s)|| f (s,x(s))|ds+

∫
φ(t)

0
|k∗(t,s)|| f (s,x(s))− f (s,x∗(s))|ds

≤
∫ t

0
δ (L|x(s)|+ | f (s,0)|)ds+ k1L

∫ t

0
|x(s)− x∗(s)|ds

≤ δL||x||L1 +δ

∫ T

0
| f (s,0)|ds+ k1L||x− x∗||L1

≤ δL||x||L1 +δA+ k1L||x− x∗||L1 .

Then

||x− x∗||L1 ≤ δLT ||x||L1 +δAT + k1LT ||x− x∗||L1.

Hence

||x− x∗||L1 ≤
δT (L||x||L1 +A)

1− k1LT
= ε.

�

Definition 12. The solution x ∈ L1[0,T ] of (4) depends continuously on the function

f (t,x), i f ∀ ε > 0, ∃ δ (ε)> 0 such that

| f (t,x)− f ∗(t,x)| ≤ δ → ||x− x∗||L1 ≤ ε,

where x∗ is the unique solution of the delay integro-functional equation (9).

Theorem 14. Let the assumptions of Theorem 8 be satisfied, then the solution x ∈ L1[0,T ] of

(4) depends continuously on the function f (t,x).

Proof. Let x and x∗ be the two solutions of (4) and (9), then by using the calculations of Theorem

(7), we have

|x(t)− x∗(t)| ≤ k1

∫
φ(t)

0
| f (s,x(s))− f ∗(s,x(s))|ds+ k1

∫
φ(t)

0
| f ∗(s,x(s))− f ∗(s,x∗(s))|ds

≤ k1δ

∫
φ(t)

0
ds+ k1L

∫
φ(t)

0
|x(s)− x∗(s)|ds

≤ k1δT + k1L||x− x∗||L1.

Then

||x− x∗||L1 ≤ k1δT 2 + k1LT ||x− x∗||L1.
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Hence

||x− x∗||L1 ≤
k1δT 2

1− k1LT
.

�

Corollary 4. Let the assumptions of Theorem 8 be satisfied, then the solution u ∈ AC[0,T ] of

(10) with (2) depends continuously on the the functions g, k, and f , and on the delay function

φ(t).

4. CONCLUSION

In this study, we have explored the existence of a unique solution to the initial value prob-

lem (1)-(2), and (10) with (2) in two spaces C1[0,T ] and L1[0,T ]. Additionally, we apply

the Hyers-Ulam stability of the problem, demonstrating that small change in the problem lead

to correspondingly small deviations in the solution. Furthermore, we proved the continuous

dependence of the unique solution on all functions and initial data involved in the problem,

ensuring that slight changes in inputs produce correspondingly minor effects on the solution of

the problem.
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