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Abstract. In this paper, we propose a new IS-LM model that describes the dynamics of business cycle by taking

into account the memory effect in both goods and money markets involving the generalized Hattaf fractional

(GHF) derivative. By mains of the fixed point theory, we prove the existence and uniqueness of solutions of

our proposed fractional model. Moreover, the existence of the economic equilibrium and its local stability are

rigorously established. Finally, numerical simulations are presented to illustrate the effect of memory on the

dynamical behavior of the proposed model.
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1. INTRODUCTION

Memory means the existence of a response or endogenous variable at the current moment that

is dependent on historical changes in the input or exogenous variable over a finite or infinite
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period of time. In other words, a system’s memory is the ability of its current state to be

influenced by past changes in its input conditions. This characteristic permits the system to

retain, retrieve and remember past information and use it to modify future responses. In this

sense, memory is a process that allows the system to incorporate effects from the past and use

them to shape its current response.

The concept of memory can be seen in many different domains. In biology, memory con-

cerns the ability of living organisms to store and recall information, often linked to learning

which allows behaviors to be adjusted according to experienced responses and to adaptation

which ensures the evolution of organisms in the long term. In materials science, materials

with shape memory exhibit this property by returning to their original shape when exposed to

certain conditions, such as heat, after being deformed. In psychology, memory helps explain

why certain information, such as items at the beginning or end of a list, is easier to remember,

known as precedence and repetition effects. Furthermore, memory in economics refers to the

set of knowledge, experiences and information that a society has accumulated over time. This

includes economic events, policies and social and cultural norms that influence economic be-

havior. This memory is essential for consumer and investor decisions because past events, such

as financial crises, affect their risk management and future choices. Therefore, memory plays a

key role in economic stability, growth and development.

On the other hand, to model the memory effect, the fractional order derivative proves to be

a particularly powerful and suitable tool. It captures and accurately represents the complex

dependency between the current state of a system and its history, offering an advanced math-

ematical method for modeling economic phenomena where the influence of the past plays a

significant role in future behavior. For instance, Xie et al. [1] studied a new delayed fractional-

order model for business cycle with a general liquidity preference function and an investment

function and they obtained some conditions of stability and Hopf bifurcation. In 2021, Wang

et al. [2] demonstrated the influence of the fractional order on the bifurcation threshold on a

Kaldorian business cycle model with investment and money supply time delay using Caputo

fractional derivative.
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The aim of this work is to extend and generalize the main results of [3] without time delay to

the fractional framework using the new generalized Hattaf fractional (GHF) derivative [4]. This

new fractional derivative generalizes the most fractional derivatives with non-singular kernels

like the Caputo-Fabrizio fractional derivative [5], the Atangana-Baleanu fractional derivative

[6] and the recent weighted Atangana–Baleanu fractional derivative presented [7]. Moreover,

many researchers have used the GHF derivative to model the dynamics of various scientific and

engineering fields [8, 9, 10].

The rest of our paper is organized as follows. The next section is devoted with some basic

definitions and results needed for this work. In section 3, we reconstruct the fractional IS-LM

model with the new GHF derivative. After, we prove the main results of this work through the

existence and uniqueness of the solution, the existence of economic equilibrium and its stability

analysis. Numerical simulations are presented in Section 4 to illustrate our theoretical results.

We end up our paper with a conclusion in Section 5.

2. PRELIMINARIES

We start this section by introducing some fundamental definitions and results from fractional

calculus that are essential for this study.

Definition 2.1. [4] Let p ∈ [0,1), q,γ > 0 and f ∈ H1(a,b). The GHF derivative of order p

in the Caputo sense of the function f (t) with respect to the weight function ω(t) is defined as

follows:

(1) Dp,q,γ
a,t,ω f (t) =

N(p)
1− p

1
ω(t)

∫ t

a
Eq[−µp(t− τ)γ ]

d
dτ

(ω f )(τ)dτ,

where ω ∈C1(a,b), ω > 0 on [a,b], N(p) is a normalization function such that N(0) = N(1) =

1, µp =
p

1−p and Eq(t) =
+∞

∑
k=0

tk

Γ(qk+1) is the Mittag-Leffler function of parameter q.

The GHF derivative introduced in the above definition generalizes and extends many special

cases. In the fact, when ω(t) = 1 and q= γ = 1, we get the Caputo-Fabrizio fractional derivative

[5], which is given by

CDp,1,1
a,t,1 f (t) =

N(p)
1− p

∫ t

a
exp[−µp(t− τ)] f ′(τ)dτ.
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We obtain the Atangana-Baleanu fractional derivative [6] when ω(t) = 1 and q = γ = p, which

is given by

CDp,p,p
a,t,1 f (t) =

N(p)
1− p

∫ t

a
Ep[−µp(t− τ)p] f ′(τ)dτ.

For q = γ = p, we get the weighted Atangana-Baleanu fractional derivative [7], which is given

by

CDp,p,p
a,t,ω f (t) =

N(p)
1− p

1
ω(t)

∫ t

a
Ep[−µp(t− τ)p]

d
dτ

(ω f )(τ)dτ.

For simplicity, we denote CDp,q,q
a,t,ω by D p,q

a,ω . According to [4], the generalized Hattaf fractional

integral operator associated to D p,q
a,ω is defined by

(2) I p,q
a,ω f (t) =

1− p
N(p)

f (t)+
p

N(p)
RLI q

a,ω f (t),

where RLI q
a,ω is the standard weighted Riemann-Liouville fractional integral of order q defined

by

(3) RLI q
a,ω f (t) =

1
Γ(q)

1
ω(t)

∫ t

a
(t− τ)q−1

ω(τ) f (τ)dτ.

Lemma 2.2. [4] Let p ∈ [0,1], q > 0 and f ∈ H1(a,b). Then we have the following property:

(4) I p,q
a,ω (D

p,q
a,ω f )(t) = f (t)− ω(a) f (a)

ω(t)
.

Lemma 2.3. [4] The Laplace transform of ω(t)D p,q
0,ω is given by

L {ω(t)D p,q
0,ω f (t)}(s) = N(p)

1− p
sqL {ω(t) f (t)}(s)− sq−1ω(0) f (0)

sq +µp
.

Lemma 2.4. [11] Let q > 0, x(t), u(t) be nonnegative functions and v(t) = M ≥ 0 with N(p)−

(1− p)M > 0. If

x(t)≤ u(t)+MI p,q
0,ω x(t),

then

x(t)≤ N(p)
N(p)− (1− p)M

[
u(t)+

∫ t

0

+∞

∑
n=1

(pM)n(t− τ)nq−1u(τ)
Γ(nq) [N(p)− (1− p)M]n

dτ

]
.

Furthermore, if in addition u(t) is a nondecreasing function on [0,T ], we have

x(t)≤ N(p)u(t)
N(p)− (1− p)M

Eq

(
pMT q

N(p)− (1− p)M

)
.

For the existence and uniqueness of solution of our model, we need the following result.
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Lemma 2.5. (Krasnoselskii’s fixed point theorem [12, 13]) Let E be a nonempty closed convex

subset of a Banach space (C , ||.||). Suppose that G1 and G2 map E into C such that

(i): G1ψ1 +G2ψ2 ∈ E, for all ψ1,ψ2 ∈ E;

(ii): G1 is a contraction mapping;

(iii): G2 is continuous and G2(E) is contained in a compact subset of C .

Then G1 +G2 has a fixed point ψ ∈ E.

3. MAIN RESULTS

In this section, we first propose a fractional IS-LM model involving the GHF derivative.

This model is governed by the following nonlinear system of fractional differential equations

(FDEs),

(5)


D p,q

0,ωY (t) = α[I(Y (t),K(t),R(t))− s1Y (t)− s2R(t)],

D p,q
0,ωK(t) = I(Y (t),K(t),R(t))−δK(t),

D p,q
0,ωR(t) = β [L(Y (t),R(t))−M,

where Y (t), K(t) and R(t) respectively represent the gross product, the capital stock and the

interest rate at time t. The parameter α is the adjustment coefficient in the goods market while

β is the coefficient of adjustment in the money market. The demand for money or liquidity

preference function is labeled by L(Y,R) while the investment is presented by I(Y,K,R). The

constant money supply is denoted by M. The positive constants s1 and s2 are the propensities

to save. Finally, δ is depreciation rate of the capital stock. In addition, we consider model (5)

with the initial conditions:

(6)


Y (0) = Y0,

K(0) = K0,

R(0) = R0.

Next, we investigate the existence and uniqueness of solutions of system (5) by means of

fixed point theory. As in [3], we assume that the liquidity preference function L(Y,R) is of the

form L(Y,R) = L (Y )− γR, where γ measures the variation of demand of liquidity related to

interest rate.
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Let C = C([0,b],R3) be the Banach space of continuous functions g from [0,b] into R3

equipped with the sup-norm

‖g‖= sup
t∈[0,b]

|g(t)|.

The system (5) can be written as follows:

(7)

 D p,q
0,ωZ(t) = F(t,Z(t)),

Z(0) = Z0,

where Z(t) = (Y (t),K(t),R(t))T , Z0 = (Y (0),K(0),R(0))T and the vector function F is given

by

F =


F1

F2

F3

=


α[I(Y,K,R)− s1Y − s2K]

I(Y,K,R)−δK

β [L (Y )− γR−M]

 .

Applying the Hattaf fractional integral to both sides of (5), we get

Z(t) =
ω(0)Z(0)

ω(t)
+I p,q

0,ω F(t,Z(t))(8)

=
ω(0)Z0

ω(t)
+

1− p
N(p)

F(t,Z(t))+
p

N(p)
1

Γ(q)
1

ω(t)

∫ t

0
(t− τ)q−1

ω(τ)F(τ,Z(τ))dτ.

We will now prove that F is Lipschitz in its second variable. This leads to the following lemma.

Lemma 3.1. The vector F is Lipschtiz in its second variable.

Proof. We have

|F(t,Z1)−F(t,Z2)| = |F1(t,Z1(t))−F1(t,Z2(t))|+ |F2(Z1(t))−F2(Z2(t))|

+|F3(Z1(t))−F3(Z2(t))|

= α|I(Y1(t),K1(t),R1(t))− s1Y1(t)− s2R1(t)− I(Y2(t),K2(t),R2(t))

+s1Y2(t)+ s2R2(t)|+ |I(Y1(t),K1(t),R1(t))

−δK1(t)− I(Y2(t),K2(t),R2(t))+δK2(t)|

+β |L (Y1(t))− γR1(t)−M−L (Y2(t))+ γR2(t)+M|

≤ (α +1)|I(Y1(t),K1(t),R1(t))− I(Y2(t),K2(t),R2(t))|
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+αs1|Y1(t)−Y2(t)|+αs2|R1(t)−R2(t)|

+δ |K1(t)−K2(t)|+β |L (Y1(t))−L (Y2(t))|

+βγ|R1(t)−R2(t)|

≤ (α +1)(m1|Y1(t)−Y2(t)|+m2|K1(t)−K2(t)|

+m2|R1(t)−R2(t)|)+αs1|Y1(t)−Y2(t)|

αs2|R1(t)−R2(t)|+δ |K1(t)−K2(t)|

+βγ|R1(t)−R2(t)|+βL ′(Y )|Y1(t)−Y2(t)|,

where m1 = sup
t∈[0,b]

|∂ I(Y (t),K2(t),R2(t))
∂Y |, m2 = sup

t∈[0,b]
|∂ I(Y1(t),K(t),R2(t))

∂K |, m3 = sup
t∈[0,b]

|∂ I(Y1(t),K1(t),R(t))
∂R |

and m4 = sup
t∈[0,b]

|L ′Y (t)|. Hence, the Lipschitz condition holds and F satisfies

(9) |F(t,Z1)−F(t,Z2)| ≤ D|Z1−Z2|,

where D = max{(α +1)m1 +αs1 +βm4,(α +1)m2 +δ ,(α +1)m3 +αs2 +βγ}. �

Next, we consider the following hypothesis:

(H0): There exist positive constants φ1 and φ2 such that

|F(t,Z(t))| ≤ φ1||Z||+φ2.

Further, we define the operators G1 and G2 such that:

G1Z(t) =
ω(0)Z0

ω(t)
+

1− p
N(p)

F(t,Z(t)),

G2Z(t) =
p

N(p)Γ(q)ω(t)

∫ t

0
(t− τ)q−1

ω(τ)F(τ,Z(τ))dτ.

Also, we put θ1 =

(
1−p
N(p) +

pbq

N(p)Γ(q+1)

)
φ1. Hence, we have the following result.

Theorem 3.2. Assume that (H0) holds. Then model (5) has at least one solution if θ1 < 1 and
D(1−p)

N(p) < 1.

Proof. Consider Em = {Z ∈ C : ||Z|| ≤ m} is closed convex set with m ≥ θ2
1−θ1

, where θ2 =

|Z0|+
(

1−p
N(p) +

pbq

N(p)Γ(q+1)

)
φ2.
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First, we prove that G1ψ1 +G2ψ2 ∈ Em, for all ψ1,ψ2 ∈ Em. By hypothesis (H0), we obtain

||G1ψ1 +G2ψ2|| = max
t∈[0,b]

∣∣∣∣ω(0)Z0

ω(t)
+

1− p
N(p)

F(t,ψ1(t))

+
p

N(p)Γ(q)ω(t)

∫ t

0
(t− τ)q−1

ω(τ)F(τ,ψ2(τ))dτ

∣∣∣∣
≤ max

t∈[0,b]

{∣∣∣∣ω(0)Z0

ω(t)

∣∣∣∣+ 1− p
N(p)

|F(t,ψ1(t))|

+
p

N(p)Γ(q)ω(t)

∫ t

0
(t− τ)q−1

ω(τ)|F(τ,ψ2(τ))|dτ

}
.

As ω(0)< ω(t) for all t ≥ 0, we have

||G1ψ1 +G2ψ2|| ≤ |Z0|+
1− p
N(p)

(φ1||ψ1||+φ2)+
pbq

N(p)Γ(q+1)
(φ1||ψ2||+φ2)

= |Z0|+
(

1− p
N(p)

+
pbq

N(p)Γ(q+1)

)
φ2 +

(
1− p
N(p)

+
pbq

N(p)Γ(q+1)

)
φ1m

= θ2 +θ1m≤ m.

This confirms that G1ψ1 +G2ψ2 ∈ Em. Hence, the condition (i) of Lemma 2.5 is verified.

Now, we demonstrate that G1 is a contraction mapping. Let Z, Z̃ ∈ Em, we have

||G1Z−G1Z̃||= max
t∈[0,b]

1− p
N(p)

∣∣F(t,Z(t))−F(t, Z̃(t))
∣∣

≤ (1− p)
N(p)

D||Z− Z̃||.

Since D(1−p)
N(p) < 1 , we deduce that G1 is a contraction mapping. Thus, the condition (ii) of

Lemma 2.5 is satisfied.

Finally, we show that the condition (iii) of Lemma 2.5 is satisfied. To do this, we prove

that G2 is continuous, uniform bounded and equicontinuous. Obviously, the operator G2 is

continuous because of the continuity of F .

Let Z ∈ Em , we have

||G2Z||= max
t∈[0,b]

∣∣∣∣ p
N(p)Γ(q)ω(t)

∫ t

0
(t− τ)q−1

ω(τ)F(τ,Z(τ))dτ

∣∣∣∣
≤ pbq

N(p)Γ(q+1)
[φ1||Z||+φ2]

≤ pbq

N(p)Γ(q+1)
(φ1m+φ2).



GENERALIZED HATTAF FRACTIONAL DERIVATIVE 9

Hence, G2 is uniformly bounded on Em.

For equicontinuity, let Z ∈ Em and t1, t2 ∈ [0,b] such that t1 < t2. Then

|G2Z(t2)−G2Z(t1)|

=
p

N(p)Γ(q)

∣∣∣∣∫ t2

0
(t2− τ)q−1 ω(τ)

ω(t2)
F(τ,Z(τ))dτ−

∫ t1

0
(t1− τ)q−1 ω(τ)

ω(t1)
F(τ,Z(τ))dτ

∣∣∣∣
=

p
N(p)Γ(q)

∣∣∣∣∫ t1

0

[
(t2− τ)q−1

ω(t2)
− (t1− τ)q−1

ω(t1)

]
ω(τ)F(τ,Z(τ))dτ +

∫ t2

t1
(t2− τ)q−1 ω(τ)

ω(t2)
F(τ,Z(τ))dτ

∣∣∣∣
≤ p

N(p)Γ(q)

∣∣∣∣∫ t1

0

[
(t2− τ)q−1

ω(t2)
− (t1− τ)q−1

ω(t1)

]
ω(τ)F(τ,Z(τ))dτ

∣∣∣∣
+

p
N(p)Γ(q)

∣∣∣∣∫ t2

t1
(t2− τ)q−1 ω(τ)

ω(t2)
F(τ,Z(τ))dτ

∣∣∣∣
≤ p

N(p)Γ(q+1)
(φ1||Z||+φ2)

[
(t2− t1)q

ω(t2)
−

tq
2

ω(t2)
+

tq
1

ω(t1)

]
ω(t1)

+
p

N(p)Γ(q+1)
(φ1||Z||+φ2)

[
(t2− t1)q ω(t1)

ω(t2)

]
≤ 2p

N(p)Γ(q+1)
(φ1m+φ2)

[
(t2− t1)q ω(t1)

ω(t2)

]
.

As t1 → t2, the right-hand side of the above inequality tends to zero. Consequently, G2 is

equicontinuous. By Arzela-Ascoli theorem, we deduce that G2 is relatively compact and so

completely continuous. As a result, the condition (iii) of Lemma 2.5 is proved. Therefore, we

conclude that model (5) has at least one solution. �

Theorem 3.3. Assume that D < N(p)
1−p . If Z and X are two solutions of (7), then Z = X. This

implies the uniqueness of solution.

Proof. Let X and Z are two solutions of (7), we get

Z(t)−X(t) = I p,q
0,ω (F(t,Z(t)−F(t,X(t))) .

Using Lemma 3.1, we deduce that

|Z(t)−X(t)| ≤ DI p,q
0,ω |Z(t)−X(t)|.

According to Lemma 2.4, we get

|Z(t)−X(t)| ≤ N(p)×0
N(p)− (1− p)D

Eq

(
pDtq

N(p)− (1− p)D

)
.

This implies that Z(t) = X(t) for all t ∈ [0,b]. �
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Theorem 3.4. If D
(

1−p
N(p) +

pbq

N(p)Γ(q+1)

)
< 1, then system (7) has a unique solution for any initial

condition.

Proof. We consider the operator ϒ : C → C as follows

(ϒZ)(t) =
ω(0)Z(0)

ω(t)
+I p,q

0,ω F(t,Z(t)), t ∈ [0,b].

It suffices to prove that the operator ϒ has a unique fixed point. We first prove that ϒ is well

defined. We have

|(ϒZ)(t)|= |ω(0)Z0

w(t)
+I p,q

0,ω F(t,Z(t))|

≤ |Z0|
ω(0)
ω(t)

+I p,q
0,ω |F(t,Z(t))|.

As ω(0)< ω(t) for all t ≥ 0, F is Lipschitz continuous and t ≤ b, we deduce that F is bounded

by constant ξ and

|(ϒZ)(t)| ≤ |Z0|+ξI p,q
0,w (1)

≤ |Z0|+ξ

(
1− p
N(p)

+
pbq

N(p)Γ(q+1)

)
,

which implies that the operator is well defined. Therefore, for all Z1,Z2 ∈ C and t ∈ [0,b], we

have

|ϒZ1(t)−ϒZ2(t)|= |I p,q
0,w F(t,Z1(t))−F(t,Z2(t))|

≤ |1− p
N(p)

(F(t,Z1(t))−F(t,Z2(t)))+
p

N(p)

RLI q
0,w(F(t,Z1(t))−F(t,Z2(t)))|

≤ 1− p
N(p)

D|Z1−Z2|+
p

N(p)
D||Z1−Z2||

tq

Γ(q+1)
.

As a result,

||ϒZ1−ϒZ2|| ≤ D
(

1− p
N(p)

+
pbq

N(p)Γ(q+1)

)
||Z1−Z2||.

By applying the Banach contraction mapping principle, we deduce that ϒ is a contraction map-

ping if D
(

1−p
N(p) +

pbq

N(p)Γ(q+1)

)
< 1. Then the system (7) has a unique solution. �



GENERALIZED HATTAF FRACTIONAL DERIVATIVE 11

In the order to investigate the existence of equilibria of (5), we consider the following hy-

potheses:

(H1): There exists two constants A > 0 and q̄ ≥ 0 such that |I(Y,K,R)+ q̄K| ≤ A for all

Y,K,R ∈ R.

(H2): γI
(

0, s2(L (0)−M)
γδ

, L (0)−M
γ

)
− s2

(
L (0)−M

)
> 0,

(H3): γ
∂ I
∂Y +

[
γs1
δ
+ s2

δ
L ′(Y )

]
∂ I
∂K +L ′(Y ) ∂ I

∂R − γs1− s2L
′(Y )< 0.

Theorem 3.5. If (H1)− (H3) hold, then system (5) has a unique economic equilibrium defined

by E∗ =
(

Y ∗, γs1Y ∗+s2(L (Y ∗)−M)
γδ

, L (Y ∗)−M
γ

)
, such that Y ∗ is the unique solution of the following

equation

γI
(

Y,
γs1Y + s2(L (Y )−M)

γδ
,
L (Y )−M

γ

)
− γs1Y − s2(L (Y )−M) = 0.

Proof. Any equilibrium of (5) is a solution of the following equations

I(Y,K,R)− s1Y − s2R = 0,(10)

I(Y,K,R)−δK = 0,(11)

L (Y )− γR−M = 0.(12)

From (10)-(12), we have

(13) R =
L (Y )−M

γ
and K =

γs1Y + s2(L (Y )−M)

γδ
.

By replacing (13) in (10), we get

γI
(

Y,
γs1Y + s2(L (Y )− M̄)

γδ
,
L (Y )−M

γ

)
− γs1Y − s2

(
L (Y )−M

)
= 0.

Therefore, we consider a function ψ defined on interval [0,+∞) as follows

ψ(Y ) = γI
(

Y,
γs1Y + s2(L (Y )− M̄)

γδ
,
L (Y )−M

γ

)
− γs1Y − s2

(
L (Y )−M

)
.

From (H1)− (H4), we obtain ψ(0)> 0, lim
Y→+∞

ψ(Y ) =−∞ and

ψ
′(Y ) = γ

∂ I
∂Y

+
[

γs1

δ
+

s2

δ
L ′(Y )

]
∂ I
∂K

+L ′(Y )
∂ I
∂R
− γs1− s2L

′(Y )< 0.

Consequently, there exists a unique Y ∗ ∈ (0,+∞) such that Y ∗ is the solution of the equation

ψ(Y ) = 0. This completes the proof. �
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Next, we establish stability analysis of the economic equilibrium. Let y =Y −Y ∗, k = K−K∗

and r = R−R∗. By substituting y, k and r into system (5) and linearizing, we get the following

system 
Dp,q

0,ωy(t) = α[(a− s1)y(t)+bk(t)+(c− s2)r(t)],

Dp,q
0,ωk(t) = ay(t)+(b−δ )k(t)+ cr(t),

Dp,q
0,ωr(t) = β [l1y(t)− γr(t)],

(14)

where a = ∂ I
∂Y (Y

∗,K∗,R∗), b = ∂ I
∂K (Y

∗,K∗,R∗), l1 = L ′(Y ∗)> 0 and c = ∂ I
∂R(Y

∗,K∗,R∗).

By applying the Laplace transform to system (14), we obtain

∆(s).


Ỹ (s)

K̃(s)

R̃(s)

=


b1(s)

b2(s)

b3(s)

 ,

where Ỹ (s) = L {ω(t)y(t)}, K̃(s) = L {ω(t)k(t)}, R̃(s) = L {ω(t)k(t)},
b1(s) = sq−1N(p)ω(0)y(0),

b2(s) = sq−1N(p)ω(0)k(0),

b3(s) = sq−1N(p)ω(0)r(0),

and

∆(s) =


x1 x2 x3

x4 x5 x6

x7 x8 x9

,

with

x1 = sq [N(p)−α(a− s1)(1− p)]−αµp(a− s1)(1− p),

x2 = − [αbsq(1− p)+µpαb(1− p)] ,

x3 = − [sq
α(1− p)(c− s2)+aµp(1− p)(c− s2)] ,

x4 = − [asq(1− p)+aµp(1− p)] ,

x5 = sq [N(p)− (b−δ )(1− p)]−µp(b−δ )(1− p),

x6 = − [csq(1− p)+ cµp(1− p)] ,
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x7 = − [β l1sq(1− p)+β l1µp(1− p)] ,

x8 = 0,

x9 = sq [N(p)+βγ(1− p)]+µpβγ(1− p).

Thus, the characteristic equation about E∗ is given by

(15) a0s3q +a1s2q +a2sq +a3 = 0,

where

a0 = −β l1αbc(1− p)3−β l1α(1− p)2(c− s2)[N(p)− (b−δ )(1− p)]+ [N(p)−α(a− s1)(1− p)]

[N(p)− (b−δ )(1− p)][N(p)+βγ(1− p)],

a1 = β l1αµp(1− p)3[−3bc+(c− s2)(b−δ )]−βαl1(1− p)2(c− s2)(1+µp)[N(p)− (b−δ )(1− p)]

−(b−δ )(1− p)µp[N(p)+βγ(1− p)][N(p)−α(a− s1)(1− p)]+βγµp[N(p)− (b−δ )(1− p)]

[N(p)−α(a− s1)(1− p)]−α(a− s1)(1− p)µp[N(p)+βγ(1− p)][N(p)− (b−δ )(1− p)],

a2 = −β l1αµ
2
p(1− p)2(c− s2)[3bc(1− p)−2(1− p)(b−δ )+ [N(p)− (b−δ )(1− p)]]+α(a− s1)

µp(b−δ )(1− p)2[N(p)+βγ(1− p)]−βγµ
2
p(b−δ )(1− p)2[N(p)−α(a− s1)(1− p)]

−βγαµ
2
p(a− s1)(1− p)2[N(p)− (b−δ )(1− p)],

a3 = β l1αbc(1− p)3 +β l1α(1− p)3(b−δ )(c− s2)+βγαµ
3
p(1− p)3(a− s1)(b−δ ).

Let sq = λ and substitute it into (15), we have

(16) a0λ
3 +a1λ

2 +a2λ +a3 = 0.

Clearly, if a < s1 and if the following conditions:

(A1): −β l1α(1− p)2(c− s2)[N(p)− (b−δ )(1− p)]+ [N(p)−α(a− s1)(1− p)][N(p)−

(b−δ )(1− p)][N(p)+βγ(1− p)]>−β l1αbc(1− p)3,

(A2): β l1αµp(1− p)3(c− s2)(b−δ )−βαl1(1− p)2(c− s2)(1+µp)[N(p)− (b−δ )(1−

p)]−(b−δ )(1− p)µp[N(p)+βγ(1− p)][N(p)−α(a−s1)(1− p)]+βγµp[N(p)−(b−

δ )(1− p)][N(p)−α(a− s1)(1− p)]−α(a− s1)(1− p)µp[N(p)+βγ(1− p)][N(p)−

(b−δ )(1− p)]>−3bcβ l1αµp(1− p)3,

(A3): β l1α(1− p)3(b−δ )(c− s2)+βγαµ3
p(1− p)3(a− s1)(b−δ )> β l1αbc(1− p)3,
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hold, then it not hard to see that the coefficients of the equation (16) satisfy:

a0 > 0, a1 > 0, a3 > 0 and a1a2 > a0a3.

Based on Routh-Hurwitz criterion, all the roots of equation (15) have negative real parts In

conclusion, we have the following results.

Theorem 3.6. If a < s1 and (A1)− (A3) hold, Then the economic equilibrium E∗ is locally

asymptotically stable.

4. NUMERICAL SIMULATIONS

In this section, we present some numerical simulations to illustrate our theoretical results.

Let tn = n∆t, with n ∈ N and ∆t be the time step. Based on the numerical method proposed in

[14], we get the following discrete model

Y (tn+1) = Y0ω(0)
ω(tn)

+ 1−p
N(p)F1(tn,Z(tn))+

p(∆t)q

N(p)Γ(q+2)ω(tn)

n
∑

k=0
[ω(tk)F1(tk,Z(tk))An,k,q

+ω(tk−1)F1(tk−1,Z(tk−1))Bn,k,q],

K(tn+1) = K0ω(0)
ω(tn)

+ 1−p
N(p)F2(tn,Z(tn))+

p(∆t)q

N(p)Γ(q+2)ω(tn)

n
∑

k=0
[ω(tk)F2(tk,Z(tk))An,k,q

+ω(tk−1)F2(tk−1,Z(tk−1))Bn,k,q],

R(tn+1) = W0ω(0)
ω(tn)

+ 1−p
N(p)F3(tn,Z(tn))+

p(∆t)q

N(p)Γ(q+2)ω(tn)

n
∑

k=0
[ω(tk)F3(tk,Z(tk))An,k,q

+ω(tk−1)F3(tk−1,Z(tk−1))Bn,k,q],

(17)

where

An,k,q = (n− k+1)q(n− k+2+q)− (n− k)q(n− k+2+2q),

Bn,k,q = (n− k)q(n− k+1+q)− (n− k+1)q+1.

For the simulation, we choose N(p) = 1− p + p
Γ(p) and we consider I(Y,K,R) = I(Y ) +

q1K√
1+εK2 +q2R, where q1,q2 < 0, ε ≥ 0 and I(Y ) is the Kaldor-type investment function defined

by eY

1+eY . The liquidity preference function is chosen as L(Y,R) = s3Y − s4R, where s3,s4 > 0.

We use the following parameter values: α = 3, q1 = −0.3, q2 = −0.2, ε = 0.01, δ = 0.2,

s1 = 0.2 s2 = 0.1, s3 = 0.3, s4 = 0.2, M̄ = 0.05, β = 0.2 and q = 0.9. Then, by a simple

calculation, our model has an economic equilibrium E∗(0.4988,0.7479,0.4982). In this case,

we fund that the economic equilibrium E∗ is locally asymptotically stable if a < s1 and the
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conditions in Theorem 3.6 are satisfied. Figures 1, 2 and 3 illustrate the impact of memory

effect on the dynamical behaviors of our model for different values of the parameter p.

FIGURE 1. The curve of Y (t) under different values of p.

FIGURE 2. The curve of K(t) under different values of p.
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FIGURE 3. The curve of R(t) under different values of p.

5. CONCLUSION

In this work, we have proposed and studied the dynamics of a fractional IS-LM business cycle

model, considering the memory effect described by the generalized Hattaf fractional derivative.

The well-posedness of the proposed model was proved through the existence and uniqueness

of solutions. By analyzing the corresponding characteristic equation, the local stability of the

economic equilibrium of our model was discussed. Numerical simulations showed the impact

of memory effect on the dynamical behaviors of our model for different values of fractional

order.

Though theoretical analysis and simulations, it is found that the order of the generalized

Hattaf fractional derivative does not affect the stability of the economic equilibrium. On the

other hand, it may have an impact on the time required to reach this equilibrium. In particular,

increasing the order of the GHF derivative p leads to afaster convergence of the solution to the

equilibrium point.
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