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1. INTRODUCTION

Mathematics study on the topic of fixed points is one of the most interesting area. Several re-

searchers have applied various kinds of contraction mappings and spaces to advance fixed point

theory in the realm of mathematics. Furthermore, it is beneficial in demonstrating the existence

theorems for integral and nonlinear differential equations. The fixed point theorem for continu-

ous mapping on finite dimensional spaces was established in the early 1900s by mathematician

Brouwer [7], who is regarded as the father of fixed point theory. Banach [1] established the

well-known Banach contraction principle in 1922. Through the use of multiplicative calculus,
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Bashirov established the definition of multiplicative metric space and proved the basic principle

of multiplicative calculus. A few fixed point theorems for contraction mappings of multiplica-

tive metric spaces were established by Ozavsar and Cevikel [21].

In numerous real-world problems, the necessary condition outlined in fixed point theorems

are too strong, resulting an inability to guarantee the existence of a fixed point. In such cases,

one may settle for nearly fixed points, which we refer to as approximate fixed points. By ”near

to” u, we mean that Tu is an approximate fixed point of a function T. A point that is almost

exactly located at its corresponding fixed point is called an approximation fixed point. This

distance, d(Tu0,u0) < ε , indicates that it is smaller than ε . For a contractive mapping T in a

multiplicative metric space, the distance between points in the set of all approximate fixed points

decreases iteratively under T, leading to a reduction in the diameter of the set. The reduction

in the diameter of the set in multiplicative metric spaces ensures that successive iterations of

the mapping bring points closer together. This makes it possible to approximate the fixed point

with increasingly higher accuracy.

Berinde [3] formulated essential approximate fixed point theorems in metric space, inspired

by the findings of Theiva [24] as detailed in the article. The goal of this research is to use con-

traction mappings, such as Kannan contraction [15], Bianchini contraction [6], Chatterjea con-

traction, Zamfirescu contraction and n-convex contraction [11] to generate approximate fixed

point results in a multiplicative metric space(not necessarily complete). We examine the funda-

mental ideas and definitions that are required throughout the work in Section 2. We demonstrate

the main concept behind approximation fixed point results in Section 3 by applying various con-

traction mapping in multiplicative metric spaces.

2. PRELIMINARIES

This section comprises definitions and lemmas that will be utilized in subsequent sections.

Let (X̆ ,d) be a metric space.

Definition 2.1. [3] Let T : X̆→ X̆ , ε > 0. Then u∈ T is said to be an ε-fixed point (approximate

fixed point) of T if

d(u,Tu)< ε .
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Definition 2.2. [3] A mapping T : X̆ → X̆ . Then T has an approximate fixed point prop-

erty(a.f.p.p) if for every ε > 0,

Fε(T ) 6= /0.

Lemma 2.1. [3] Let T : X̆ → X̆ such that T is asymptotic regular, i.e., d(T n(u),T n+1(u))→ 0

as n→ ∞, for all u ∈ T . Then, Fε(T ) 6= /0, for every ε > 0.

Definition 2.3. [3] Let M be a closed subset and T : M→ X be a compact map. Then T has a

fixed point if and only if it has an approximate fixed point property.

Definition 2.4. [3] Let T : X̆→ X̆ a operator and ε > 0. We define the diameter of the set Fε(T ),

i.e.,

δ (Fε(T )) = sup{d(u,v) : u,v ∈ Fε(T )}

Lemma 2.2. [3] Let T:X̆ → X̆ an operator and ε > 0. We assume that: (i) Fε(T ) 6= /0; (ii) for

all γ > 0, there exist φ(γ) > 0 such that d(u,v)− d(Tu,T v) ≤ γ implies d(u,v)≤ φ(γ), for all

u,v ∈ Fε(T ).

Then:

δ (Fε (T))≤ φ(2ε).

Definition 2.5. [6] A selfmap T : X̆ → X̆ is said to be a Bianchini contraction if there exists

k ∈ (0,1) such that

d(Tu,T v)≤ kB(u,v),

where B(u,v) = max{d(u,Tu),d(v,T v)}, for all u,v ∈ X̆ .

Definition 2.6. [11] Let T : X̆ → X̆ be a continuous map. Then T is said to be n-convex con-

traction if there exists k0,k1, ...,kn−1 ∈ (0,1) such that the following conditions hold:

(i) k0 + k1 + ...+ kn−1 < 1; and

(ii) d(T nu,T nv)≤ k0d(u,v)+ k1d(Tu,T v)+ ...+ kn−1d(T n−1u,T n−1v), for all u,v ∈ X̆ .

Let (χ,d∗) be a multiplicative metric space.

Definition 2.7. [2] Let χ be a nonempty set. A mapping T : χ×χ→ R+ is called multiplicative

metric if for all u,v,w ∈ χ
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(i) d∗(u,v)< 1 and d∗(u,v) = 1 if and only if u = v,

(ii) d∗(u,v) = d∗(v,u),

(iii) d∗(u,w)≤ d∗(u,v).d∗(v,w) (Multiplicative triangle inequality)

Definition 2.8. [21] (Multiplicative characterization of supremum) Let A be a nonempty subset

of R+. Then s = sup A if and only if

(i) a≤ s for all a ∈ A

(ii) there exists at least a point a ∈ A such that | sa |
∗ < ε for all ε > 1.

Definition 2.9. [21] A mapping T : χ→ χ is a Kannan contraction if there exists k ∈ [0, 1
2) such

that

d∗(Tu,T v)≤ [d∗(u,Tu).d∗(v,T v)]k, for all u,v ∈ χ .

Definition 2.10. [21] Let T : X̆ → X̆ is a Chatterjea operator if there exist k ∈ (0, 1
2) such that

d∗(Tu,T v)≤ [d∗(u,T v)+d∗(v,Tu)]k, for all u,v ∈ X̆ .

Definition 2.11. [23] A mapping T : X̆ → X̆ is a Zamfirescu operator if ∃λ ,µ,ν ∈ R,

λ ∈ [0,1),µ ∈ [0, 1
2),ν ∈ [0, 1

2) such that ∀ u,v ∈ X̆ , at least one of the following is

true. (i) d∗(Tu,T v) ≤ d(u,v)λ ; (ii)d∗(Tu,T v) ≤ [d(u,Tu).d(v,T v)]µ ; (iii)d∗(Tu,T v) ≤

[d∗(u,T v).d∗(v,Tu)]ν .

3. MAIN RESULTS

In the following, we introduce the concept of approximate fixed point and ensuring that an

operator on a multiplicative metric space has ε-fixed points.

Let (χ,d∗) be a multiplicative metric spaces(MMS ).

Definition 3.1. Let T : χ → χ , ε >1. Then u ∈ T is said to be an ε-fixed point (approximate

fixed point) of T if

d∗(u,Tu)< ε .

Definition 3.2. Consider a mapping T : χ → χ . Then T has an approximate fixed point

property if for every ε > 1,
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Fε(T ) 6= /0.

Definition 3.3. Let M be a closed subset and T : M→ χ be a compact map. Then T has a fixed

point if and only if it has an approximate fixed point property.

Definition 3.4. Let T : χ → χ a operator and ε > 1. We define the diameter of the set Fε(T ),

i.e.,

δ (Fε(T )) = sup{d∗(u,v) : u,v ∈ Fε(T )}.

Definition 3.5. A selfmap T : χ→ χ is said to be a Bianchini contraction if there exists k∈ (0,1)

such that

d∗(Tu,T v)≤ B(u,v)k,

where B(u,v) = max{d∗(u,Tu),d∗(v,T v)}, for all u,v ∈ χ .

Definition 3.6. Let T : χ → χ be a continuous map. Then T is said to be n-convex contraction

if there exists k0,k1, ...,kn−1 ∈ (0,1) such that the following conditions hold:

(i) k0 + k1 + ...+ kn−1 < 1; and

(ii) d∗(T nu,T nv)≤ d∗(u,v)k0.d∗(Tu,T v)k1 . ... .d∗(T n−1u,T n−1v)kn−1 , for all u,v ∈ χ .

The following results ensuring the existence of ε-fixed points for an operator in a multiplica-

tive metric spaces.

Lemma 3.1. Let (χ,d∗) be a MMS, T: χ → χ such that T is asymptotic regular i.e.,

d∗(T nu0,T n+1u0)→1 as n→ ∞, ∀u ∈ χ . Then T has the approximate fixed point property.

Proof:

Let u0 ∈ χ . Then

d∗(T nu0,T n+1u0)→1 as n→ ∞⇔ ∀ε > 1, ∃ n0(ε) ∈ N such that ∀n≥ n0(ε),

d∗(T nu0,T n+1u0)< ε ⇔ ∀ε > 1, ∃ n0(ε) ∈ N such that ∀n≥ n0(ε),

d∗(T nu0,T (T nu0))< ε

Denoting v0 = T nu,

it follows that: ∀ε > 1,∃v0 ∈ χ such that d∗(v0,T v0) < ε , so for each ε > 1 there exists an

ε-fixed point of T in χ , namely v0. This means exactly that T has the approximate fixed point

property.



6 A. MARY PRIYA DHARSINI, J. JARVISVIVIN

Lemma 3.2. Let (χ,d∗) be a MMS, T: χ → χ an operator and ε > 1. We assume that:

(i) Fε(T ) 6= /0;

(ii) for all γ > 1, there exist φ(γ)> 1 such that
d∗(u,v)

d∗(Tu,T v)
≤ γ implies d∗(u,v)≤ φ(γ), for all

u,v∈ Fε(T ). Then:

δ (Fε (T))≤ φ(ε2).

Proof:

Let ε > 1 and u,v ∈ Fε (T). Then:

d∗(u,Tu)< ε , d∗(v,T v)< ε .

we can write: d∗(u,v)≤ d∗(u,Tu) . d∗(Tu,T v) . d∗(v,T v)

≤ d∗(Tu,T v). ε. ε

≤ d∗(Tu,T v). ε2

d∗(u,v)
d∗(Tu,T v)

≤ ε2

Now by (ii) it follows that d∗(u,v)≤ φ(ε2)

so δ (Fε (T))≤ φ(ε2).

Theorem 3.1. Let (χ,d∗) be a multiplicative metric space and T:χ → χ be a contraction map-

ping. Then T has an approximate fixed point (ε-fixed point).

Proof. Fix u0 ∈ χ and a sequence {un} is defined by un+1 = Tun, for all n≥ 0. Which implies

that {un} is a Cauchy sequence. That is, for every ε > 1, there exists h0 ∈N such that for every

s, t ≥ h0 implies d∗(us,ut)< ε . In particular, if n≥ h0, d∗(un,un+1)< ε . That is, d∗(un,Tun)<

ε . Therefore, un ∈ Fε(T ) 6= /0, for all ε > 1. Hence T has an approximate fixed point(ε-fixed

point). �

Theorem 3.2. Let T:χ → χ be a Kannan Type contraction on a multiplicative metric space

(χ,d∗). Then T possesses an ε-fixed point and δ (Fε(T ))≤ ε2(k+1), for all ε > 1.

Proof. Let ε > 1 and u0 ∈ T .

d∗(T nu,T n+1u) = d∗(T (T n−1(u)),T (T n(u)))

≤
[
d∗(T n−1u,T (T n−1(u))).d∗(T nu,T (T nu))

]k

=
[
d∗(T n−1u,T nu)

]k
.
[
d∗(T nu,T n+1u)

]k

d∗(T nu,T n+1u)1−k ≤
[
d∗(T n−1u,T nu)

]k
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d∗(T nu,T n+1u)≤
[
d∗(T n−1u,T nu)

] k
1−k (Denote η = k

1−k )

≤ d∗(T n−1u,T nu)η

≤ d∗(T n−1u,T nu)η2

...

≤ d∗(u,Tu)ηn

But k ∈ [0, 1
2) =⇒

k
1−k ∈ (0,1) =⇒

d∗(T nu,T n+1u)→ 1 as n→ ∞ ∀u ∈ T

Now by Lemma 3.1, Fε(T ) 6= /0, ∀ε > 1. Here, T has an ε-fixed point.

Let γ > 1 and u,v ∈ Fε(T ) and assume that
d∗(u,v)

d∗(Tu,T v)
≤ γ .

Then

d∗(u,v)≤ [d∗(u,Tu).d∗(v,T v)]k .γ

As u,v ∈ Fε(T ), we know that d∗(u,Tu)< ε and d∗(v,T v)< ε

⇒ d∗(u,v)≤ ε2k.γ

So ∀γ > 1, there exists φ(γ) = ε2k. γ > 1 such that
d∗(u,v)

d∗(Tu,T v)
≤ γ implies d∗(u,v)≤ φ(γ).

Now by Lemma 3.2,

δ (Fε (T))≤ φ(ε2)

which means exactly that

δ (Fε (T))≤ ε2k. ε2

≤ ε2k+2

≤ ε2(k+1), for all ε > 1. �

Theorem 3.3. Let T:χ → χ be a Chatterjea operator on a multiplicative metric space (χ,d∗).

Then T possesses an ε-fixed point and δ (Fε(T ))≤
ε2(1+k)

1−2k
, for all ε > 1.

Proof. Let ε > 1 and u ∈ χ .

d∗(T nu,T n+1u) = d∗(T (T n−1(u)),T (T n(u)))

≤
[
d∗(T n−1u,T (T n(u))).d∗(T nu,T (T n−1u))

]k

=
[
d∗(T n−1u,T n+1u).d∗(T nu,T nu)

]k

≤ d∗(T n−1u,T n+1u)k
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On the other hand

d∗(T n−1u,T n+1u) = d∗(T n−1(u),T n(u)).d∗(T n(u),T n+1(u)

⇒ d∗
[
T nu,T n+1(u)

]1−k ≤ d∗
[
T n−1u,T n(u)

]k

⇒ d∗
[
T nu,T n+1(u)

]
≤ d∗

[
T n−1u,T n(u)

] k
1−k

⇒ d∗(T nu,T n+1u)→ 1asn→ ∞,∀u ∈ χ

Now, by lemma 3.1 it follows that Fε 6= φ ,∀ε > 1.

Let ε > 1. We will once again demonstrate that condition ii) in Lemma 3.2 is satisfied.

Let γ > 1 and u,v ∈ Fε(T ) and assume that
d∗(u,v)

d∗(Tu,T v)
≤ γ

Then d∗(u,v) ≤ [d∗(u,T v).d∗(v,Tu)]k.γ

≤ d∗(u,T v)k.d∗(v,Tu)k.γ

≤ [d∗(u,v).d∗(v,T v)]k.[d∗(v,u).d∗(u,Tu)]k.γ

As u,v ∈ Fε(T ), it follows that

d∗(u,v)≤ d∗(u,v)2k.ε2k.γ

d∗(u,v)(1−2k)≤ ε2k.γ

1−2k

So ∀γ > 1,∃φ(γ) = ε2k.γ

1−2k
> 1 such that

d∗(u,v)
d∗(Tu,T v)

≤ γ ⇒ d∗(u,v)≤ φ(γ)

Now by lemma 3.2 it follows that

δ (Fε(T ))≤ φ(ε2) ∀ε > 1

which means exactly that

δ (Fε(T ))≤
ε2(1+k)

1−2k
, ∀ε > 1. �

Theorem 3.4. Let T:χ → χ be a Zamfirescu contraction on a multiplicative metric space

(X ,d∗). Then T Possesses an ε-fixed point and δ (Fε(T ))≤
ε2(1+k)

1−2k
, for all ε > 1.

Proof. Let u,v∈ χ , Supposing (ii) holds, we have that:

d∗(Tu,T v)≤ [d∗(u,Tu).d∗(v,T v)]µ

≤ [d∗(u,Tu)µ .[d∗(v,u).d∗(u,Tu).d(Tu,T v)]µ

= d∗(u,Tu)2µ .d∗(u,v)µ .d∗(Tu,T v)µ

d∗(Tu,T v)≤ d∗(u,Tu)
2µ

1−µ .d∗(u,v)
µ

1−µ −→ (1)
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Suppose (iii) holds, we have that

d∗(Tu,T v)≤ [d∗(u,Tu).d∗(v,Tu)]ν

≤ [d∗(u,v).d∗(v,T v)ν .[d∗(v,T v).d∗(T v,Tu)]ν

= d∗(Tu,T v)ν .d∗(v,T v)2ν .d∗(u,v)ν

d∗(Tu,T v)≤ d(v,T v)
2ν

1−ν .d∗(u,v)
ν

1−ν −→ (2a)

Similarly d∗(Tu,T v)≤ [d∗(u,T v).d∗(v,Tu)]ν

≤ [d∗(u,Tu).d∗(Tu,T v)]ν . [d∗(v,u).d∗(u,Tu)]ν

= d∗(Tu,T v)ν .d∗(u,Tu)2ν .d∗(u,v)ν

d∗(Tu,T v)≤ d(u,Tu)
2ν

1−ν .d∗(u,v)
ν

1−ν −→ (2b)

By (i),(1),(2a),(2b) we can denote:

δ = max
{

λ ,
µ

1−µ
,

ν

1−ν

}
,

and it is easy to see that δ ∈ [0,1)

For T satisfying at least one of the condition (i), (ii), (iii)

We have that

d∗(Tu,T v)≤ d(u,Tu)2δ .d∗(u,v)δ −→ (3a)

and d∗(Tu,T v)≤ d(v,T v)2δ .d∗(u,v)δ −→ (3b)

Using these conditions implied by (i)-(iii) and taking u ∈ χ , we have:

d∗(T nu,T n+1u) = d∗(T (T n−1u,T (T nu)))

≤ d∗(T n−1u,T (T n−1u))2δ .d∗(T n−1u,T nu)δ

= d∗(T n−1u,T nu)3δ

= d∗(T nu,T n+1u)≤ ...≤ d∗(u,Tu)3δ
n

= d∗(T nu,T n+1u)−→ 1 as n→ ∞∀u ∈ χ.

Now by lemma 3.1 it follows that Fε(T ) 6= φ ,∀ε > 1.

In the Proof of 3.4 we have already shown that if f satisfies at least one of the conditions (i), (ii),

(iii) from definition 2.11, then

d∗(Tu,T v)≤ d∗(u,Tu)2ρ .d∗(u,v)ρ and

d∗(Tu,T v)≤ d∗(v,T v)2ρ .d∗(u,v)ρ hold.

Let ε > 1, Again we will only show that condition (ii) in lemma 3.2 is satisfied, as (i) holds, see

the proof of theorem 3.4.
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Let η > 1 and u,v ∈ Fε(T ), and assume that
d∗(u,v)

d∗(Tu,T v)
≤ γ

Then d∗(u,v)≤ d∗(Tu,T v).γ

d∗(u,v)≤ d∗(u,Tu)2ρ .d∗(u,v)ρ .γ

d∗(u,v)1−ρ ≤ ε2ρ .γ

d∗(u,v)≤ ε2ρ .γ

1−ρ

So ∀> 1,∃φ(γ) = γ.ε2ρ

1−ρ
> 1 such that

d∗(u,v)
d∗(Tu,T v)

≤ γ

=⇒ d∗(u,v)≤ γ

Now by lemma 3.2 it follows that

δ (Fε(T ))≤ φ(ε2),∀ε > 1

which means exactly that

δ (Fε(T ))≤
ε2.ε2ρ

1−ρ

δ (Fε(T ))≤
ε2(1−ρ)

1−ρ
,∀ε > 1

�

Theorem 3.5. Let T:χ→ χ be a Bianchini contraction on a multiplicative metric space (χ,d∗).

Then T has an ε-fixed point and δ (Fε(T ))≤ εk+2, for all ε > 1.

Proof. Given T is Bianchini contraction. Let ε > 1 and u0 ∈ T . Define a sequence {un} such

that un+1 = Tun, for all n≥ 0.

Case 1. If B(u,v) = d∗(u,Tu). Then, Definition 3.5 becomes:

d∗(Tu,T v)≤ d∗(u,Tu)k

Substitute v = Tu, d∗(Tu,T 2u)≤ d∗(u,Tu)k

Again substitute u = Tu, d∗(T 2u,T 3u)≤ d∗(Tu,T 2u)k

≤ d∗(u,Tu)k2

...

d∗(T nu,T n+1u)≤ d∗(u,Tu)kn

Case 2. If B(u,v) = d∗(v,T v). Then, Definition 3.5 becomes:

d∗(Tu,T v)≤ d∗(v,T v)k
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Substitute v=Tu, d∗(Tu,T 2u)≤ d∗(Tu,T 2u)k

which is impossible because k ∈ (0,1). Therefore, Case 2 does not exists. Now by Case 1,

d∗(T nu,T n+1u)→ 1 as n→+∞, for all u,v∈ χ . Thus, {un} is a Cauchy sequence, by Theorem

3.1, Fε(T ) 6= /0 for all ε > 1. That is, T has an ε-fixed point. Consider,

d∗(u,v)≤ d∗(Tu,T v).γ

≤ B(u,v)k. γ

= d∗(u,Tu)k. γ

= εk. γ

So, for every γ > 1, there exists φ(γ) = εk. γ > 1 such that
d∗(u,v)

d∗(Tu,T v)
≤ γ implies d∗(u,v) ≤ φ(γ)

By Lemma 3.2, δ (Fε (T))≤ φ(ε2), for all ε > 1. Hence,

δ (Fε(T ))≤ εk+2, for all ε > 1. �

Corollary 3.1. Let (χ,d∗) be a multiplicative metric space and T:χ → χ . Then there exists

k ∈ (0,1) such that d∗(Tu,T v)≤ d∗(v,T v)k, for all u,v ∈ χ . Then T possesses an ε-fixed point

and δ (Fε(T ))≤ εk+2, for all ε > 1.

Proof:

Substituting B(u,v) = d∗(v,T v) in Theorem 3.5 completes this corollary.

Theorem 3.6. Let (χ,d∗)be a multiplicative metric space. Suppose a self-map T : χ → χ is a

n-convex contraction. Prove that for every ε > 1, Fε(T ) 6= /0.

Proof. Let u0 ∈ χ and define un+1 = Tun, for all n ∈ N. Consider,

k = max {d∗(u0,u1),d∗(u1,u2), ...,d∗(un−1,un)}

Now,

d∗(un,un+1) = d∗(T nu0,T nu1)

≤ d∗(u0,u1)
k0.d∗(u1,u2)

k1. ... .d∗(un−1,un)
kn−1

≤ kk0. kk1 . ... . kkn−1

≤ kk0+k1+k2+...+kn−1

d∗(un+1,un+2) = d∗(T nu1,T nu2)

≤ d∗(u1,u2)
k0.d∗(u2,u3)

k1. ... .d∗(un−1,un)
kn−2.d∗(un,un+1)

kn−1
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≤ kk0. kk1. ... . kkn−2 . k(k0 + k1 + ...+ kn−1)
kn−1

≤ kk0+k1+k2+...+kn−1

Similarly,

d∗(un+2,un+3)≤ kk0+k1+k2+...+kn−1

...

d∗(u2n−1,u2n)≤ kk0+k1+k2+...+kn−1

d∗(u2n,u2n+1)≤ d∗(un,un+1)
k0.d∗(un+1,un+2)

k1. : ... .d∗(u2n−1,u2n)
kn−1

≤ k(k0+k1+...+kn−1)k0. ... . k(k0+k1+...+kn−1)kn−1

≤ kk0(k0+k1+...+kn−1)+...+kn−1(k0+k1+...+kn−1)

≤ k(k0+k1+...+kn−1)
2

Again

d∗(u3n,u3n+1)≤ k(k0+k1+...+kn−1)
3

In general,

d∗(un2,un2+1)≤ k(k0+k1+...+kn−1)
n

Πd∗(un2,un2+1)≤ kΣ(k0+k1+...+kn−1)
n

That is d∗(un2,un2+1)→ 1 as n→ +∞. Therefore, un2 ∈ Fε(T ), for all ε > 1 provides that

Fε(T ) 6= /0, for all ε > 1. Hence, χ has an approximate fixed point (ε-fixed point). �

Corollary 3.2. Let (χ,d∗) be a multiplicative metric spaces. Suppose a selfmap T : χ→ χ is a

2-convex contraction. Prove that for every ε > 1, Fε(T ) 6= /0.

Proof:

Substituting n=2 in Theorem 3.6 completes this corollary.
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[20] Z.D. Mitrović, H. Aydi, N. Mlaiki, et al. Some New Observations and Results for Convex Contractions of

Istratescu’s Type, Symmetry 11 (2019), 1457. https://doi.org/10.3390/sym11121457.
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