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Abstract: This paper presents a novel class of generalized (o, 8)-(&,®)-weakly cyclic contraction mappings
within the framework of C*-algebra valued G-metric spaces (4*-27V-G-MS). We establish new common fixed-
point theorems that broaden and unify several existing results in the literature. To illustrate the applicability and
robustness of our approach, we provide concrete examples. Furthermore, the developed theory is employed to
prove the existence and uniqueness of solutions to a functional Equations and to explore implications in homotopy
theory.
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1. INTRODUCTION

Metric Fixed-Point Theory originated in 1922 with Banach’s Contraction Mapping Theorem
(CMT) [1] in a complete metric space (V,p), offering stronger conditions than Brouwer’s [2]
theorem to ensure a unique fixed point. Over time, various generalizations have emerged in
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metric-like spaces such as dislocated, quasi, rectangular, b-metric, and fuzzy metric spaces.
Mustafa and Sims [3] introduced G-metric spaces, while Zhenhua, Jiang, and Sun [4] devel-
oped C*-algebra-valued metric spaces. Shen et al.[5] later combined these frameworks to study
fixed points in complete C*-algebra-valued G-metric spaces, with applications in differential
equations.

In 1984, Khan, Swaleh, and Sessa [7] introduced the concept of an altering distance function,
refining the conditions previously considered by Massa [8] within the framework of a complete
metric space (V,p). This advancement led to further developments, including the work of Kirk
et al. [9], who established fixed-point results using cyclic mappings. Since then, various forms
of cyclic contractions have been studied in different topological settings [10, 11, 12, 13, 14, 15].
A notable contribution came during WCNA-2000, where Billy Rhoades [16] proposed the
idea of weak contractive conditions. This concept has inspired a wide range of fixed-point
results across diverse topological spaces, with extensive generalizations documented in the lit-
erature [17, 18, 19, 20, 21, 22, 23, 24, 25]. Later, Murthy et al. [26] extended the framework by
considering weakly contractive conditions for pairs of mappings, further enriching the theory
with new fixed-point theorems.

The primary aim of this paper is to develop unique common fixed point (UCFP) theorems
within the framework of ¢*-o7V-G-MS spaces, focusing on a class of generalized (c,f3)-
(&, @)-weakly cyclic contraction mappings. In addition, we explore the applicability of these
results to functional equations and homotopy theory, and provide insights into their mathemati-

cal significance and potential implications.

2. PRELIMINARIES

This section provides a brief introduction to some fundamental aspects of C*-algebra theory
[27, 28]. Let &7 be a unital C*-algebra with the unit element 1 ;.

Define @7, = {¢ € o/ : ¢ = ¢*}. An element ¢ € o/ is considered positive, denoted as ¢ > 0.,
if e = ¢* and its spectrum 1 (¢) C [0,0). Here, 0., in <7 represents the zero element in .7, and
7N (e) denotes the spectrum of ¢ . On .27,, a natural partial ordering is defined by s < v if and
only ifv—s = 0,. Wedenote &7, ={¢e € .o/ :¢ >0y} and &' ={e € &7 : 0 =0e V0 € &}
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Definition 2.1:([5, 6]) Let V be a non-empty set and denote the associated C*-algebra by 7.
A mapping p: VXV xV — o that satisfies the required conditions is referred to as a C*-
algebra-valued G-metric.
(i) pe+(s,,52,83) =04 if 5] = 57 = 89,
(ii) 0y < pe+(s1,81,52) for all 51,5, € V with 51 # s, ,
(iii) pe(81,51,52) = Pe(861,52,53) for all 51,862,83 € V with s1 # s3,
(iv) pe+(s1,52,53) = pe+(P|s1,52,53]) where P is a permutation of s1,57,53 (symmetry),
(v) pe+(51,52,53) = Ppc=(S1,54,54) + Pe+(54,52,53) for all s1,87,53,54 € V (rectangle in-
equality)
Then the structure (V, o7, p.+) is called a -2/ V-G-MS.
Example 2.2:([5, 6]) Let V = R and define
Pe: VXV XV = o7 as pe(51,82,53) = ||s1 — 82||Ly + |82 — 83||Lor + ||53 — 51]|Loy for all
51,862,683 € Vthen (V, o7, pe+) is a €*-o/ VGMS. p.+ is a C*-algebra valued G-metric.
Definition 2.3:([5, 6]) Assume that (V,.o7,p.+) is a €*-o/V-G-MS. According to <7 a se-

quence {s;} in V is defined as:

(1) C*-algebra valued G-convergent to a point s € V if, for each 0, < &, there existx,y € N

such that p.+(s,s,,5,) < €. We can also use different presentations for that as follows:
Sy — s or lim pg+(s,5,,5,) =0, or lims, =s.
X—>00 X—roo

(2) C*-algebra valued G-Cauchy sequence, if for 0., < &, there exists positive integer x* €
N such that pg«(sy,8y,5;) < € V x,y,2 > x* or p¢+(sx,6y,5;) — Oy as x,y,z — oo or
||pe+ (5x, 8y, 82)[| = 0.

(3) Tt is referred to as being complete when a ¢*-o7 VGMS (V, &7, p.+) is present. If each

Cauchy sequence in V converges to a point in V.

Lemma 2.4: ([5, 6]) Let &/ be a C*-algebra with the identity element /,, and v be a positive

element of .27 Then
(i) There is a unique element u € &7, such that u> = v,
(ii) The set o7, = {v*v/v € o/ } with a conjugate-linear involution * : .o/ — 7,

(iii) v,u € o7, and 0,y < v < uthen ||v|| < |[u]l,
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(iv) If v € @4 with ||v|| <  then (I —v) is invertible and |[o( —v) ~!|| < 1.

3. MAIN RESULTS

Definition 3.1: A function & : o7, — o7, is called an altering distance function if the follow-

ing properties are satisfied:

(a) & is continuous and monotonically increasing in .7, ;

(b) &(s) =0, if and only if s = 0.

Definition 3.2: Let (V,.o7,p.+) be a €*-o/V-G-MS. A function @ : V — &7, is called lower
semi-continuous (abbreviated LSC) at a point s € V if for every sequence {s,} C V converg-
ing to s, we have either liminfs 5, @(sy) =c0 or @(s9) < liminfs, s, D(sp), Where <
denotes the order on <7, . If @ is LSC at every point in V, then it is said to be LSC on V.

example 3.3: Let V =R and let & = M,(C), the algebra of 2 x 2 complex matrices. Define

o7, to be the set of positive semi-definite matrices in /. Consider the function @ : R — &7,

max(0,s) 0 . o
defined by @(s) = . Then clearly, @ is lower semi-continuous on R.
0 1

Definition 3.4: Let (V,.o7, p+) be a €*-27/V-G-MS. A pair of self-mappings f and g on V are
said to be weakly compatible if they commute at their coincidence points. In other words, if
fs = gs for some s € V, then fgs = gfs.
Definition 3.5: Let (V,.o7,p.) be a €*-o/V-G-MS. Let v € N, {h;}}_; CVand E = U}_,b;
and ¢ : £ — E. Then, ¥ is the cyclic operator if:
(i) b;, i=1,2,--- v are non-empty and closed,
(ii) G (1) Sha - Z(he—1) S be, 4 (be) C b1
Definition 3.6: Let (V,.«7,p.) be a €*-o/V-G-MS. Lett € N, {h;}}_; CVand E = U}_, b,
and o, B : EXE — . If #,9 §,9: E — E then the mappings pair (-7,¥) is (f,g)-cyclic-
(e, B)-admissible if:
(i) a(fs,ge) = 1, implies B (Fs,9¢) = 1, for some (s,¢) € h; x hi 1 i=1,2,---v ( with
biv1 =b1);
(ii) B (gs,fe) = 1, implies & (¥s,.F¢) = 1, for some (s,¢) € h; x by i=1,2,-- ¢t ( with
b1 =b1)



(at, B)-(€,®)-WEAKLY CYCLIC CONTRACTIONS 5

Example 3.7: Let V = {x,x;,x3} and let & = M, (C), the algebra of 2 x 2 complex matrices.
Let <7, be the set of positive semi-definite matrices in <7. Define subsets h; = {x1}, h» = {x2},
b3 = {x3}, so that £ = [ J3_, b; = {x,x2,x3}. Define the mappings:
) =x2, fl)=x3, flx3)=ux,
glx1) =x3, glx)=x, glx)=x,
F(xi)=xi, 9(x;)) =x; (identity mappings).

Define control functions «, 3 : £ X E — &7, by:

( (
20 10
ifi—J, ifiej,
0 2 0 1
OC(.X,’,XJ') = < B(xhxj) =
1 0 30
ifict ] it
\ 01 \ 0 3

Now consider (x1,x2) € by X ba:

f(x1) =x2, g(x2) =x1 = a(xz,x1) = ] > I implies
F(x1) =x1, Y(x)=x2=PB(x1,x) = |:
and
glx1) =x3, flx2) =x3 = Blx3,x3) = ] > I, implies
g(xl):xl, J(X2)—X2:>OC)C1,X2 |:
Similarly, for (x,x3) € b X b3:
1 0 . .
f(x2) =x3, 9(x3) =x2 = x(x3,x2) = > I, implies

0 1
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30
F(x2) =x2, 9 (x3) =x3 = B(x2,X3) = = b.

0 3
and
1 0 ) _
g(x2) =x1, flx3) =x1 = Bx1,x1) = > I, implies
01
1 0
G(x2) =x2, F(x3)=2x3= ot(x2,x3) = = b.
01

Hence, the pair (#,9) is (f,g)-cyclic-(«, 3)-admissible in the C*-algebra valued G-metric
space (V..o pe+).
Definition 3.8: Let (V,.o/, p.«) be a €*-/V-G-MS. Lett € N, b, b5 - - - h, be non-void subsets
of Vand E = U}_,h;. An operators . ,%,f,g: = — & be satisfying (.#,¥) is a (f, g)-cyclic-
(o, B)-admissible. Then (.#,9) is a (f, g)-cyclic («, 3)-(§&, @)-generalized weakly contraction
type-I and type-II if

(i) E=Uj_,b; is a cyclic representation of Z with respect to .7, ¥, f, g respectively,

(ii) for any (s,e) € (b;,bir1),i=1,2,---v (with h;1; = b;) and a € &7 with ||a|| < 1,

type-I:

(1) x(fs,ge) B (g5,fe) = 1oy = E(per(F5,Ge,Ge)) 2 E(ahi(s,e)a”) — @ (ady(s,¢)a”)
type-II:

@) «(fs,g¢) B(gs,fe) E(per (F5,Fe,Fe)) 2 E(ahi(s,e)a”) — @ (ada(s,¢)a”)

where Al(s,e):max{ P (fs,ge,g¢),pe+ (f8, 7 5,.75) pe- (ge, e, Ge) }

pe (fs,ge, ge),

3 (pe (75,9¢,9¢) + pe+ (ge, F 5, F5))
and @© : &/, — <7, is lower semi-continuous, such that @(s) > 0., for all s > 0,

Ay(s,¢) = min

and discontinuous at s = 0, with @(0,/) = 0., & : &/, — &7, is an altering distance

function.

Theorem 3.9: Let (V, o/, p.+) be a €*-o/V-G-MS. Letrt € N, hy,hs - - - b, be non-void subsets

of Vand E=U}_,bh; and o, 3 : £ x E — &7, be two mappings. Let .#,¥,§, g be a self mappings
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on E and pair (.#,¥) is a (f, g)-cyclic-(«, 3)-admissible mappings such that (.#,¥) is a (f, g)-
cyclic («, 3)-(&, @)-generalized weakly contraction type-I and type-II satisfying the following
conditions:
(3.1) F(E) Cg(E)and 4(E) C (&) with g(E) or f(E) is closed subspace of E;
(3.2) there exists (s9,81) € h; X b1 i =1,2,---¢v (with b1 = by) with «(fsg,gs1) = 1
and B (gso,fs1) = 1o
(3.3) if {sp}y_, is a sequence in V with «(s,5y41) = 1, for all v and limy_,c. 5y = 5 then
B(gt,5p+1) = 1. for some t € E;
(3.4) «(fs,50) = 1o and B (gs,8y) = 1 whenever, Fy=s=1fpand Yr =5 = gt
(3.5) (#,f) and (¥, g) are weakly compatible pairs.

Then, .#,%,§ and g have a unique common fixed point in N;_, b;.

Proof Let sy € h; (h; is non-void for all i) be an arbitrary point. Since, .#(E) C g(E) and

¢ (Z) C f(Z) then consider the sequence {s,} and {e,} in V as

3) F 820 = §520+1 = €011, 52011 = fS2042 = €2042, for v € NU{0}.

Observes that in C*-algebra, if k,b € &7, and k < b, then for any x € o/, both x*kx and x*bx
are positive. If ep, = epy41, then ey, is a point of coincidence of .%#, ¢ § and g . Therefore, we
assume that ey, # epp for all v > 0. Since, « (fso,g51) = 1 and (.F#,¥9) is a (f,g)-cyclic-

(o, 3)-admissible mapping, we have
B (gs1.fs2) = B (Fs0,951) = 1oy = (951, F %) = «(fs2,083) = 1oy

and 3 (gs3,fs4) = B (F%2,953) = 1y = (Y53, Fs4) = u(fs4,085) = 1.
By continuing this procedure, we obtain that:
“4) & (f$20,8520+1) = 1oz and B (982011, 5204+2) = 1oy V 0 € NU{O}.

Similarly, Since, 3 (gso,fs1) = 1.7 and (#,9) is a (f, g)-cyclic-(, 3)-admissible mapping, we

have

oc(fsl,gﬁz) = oc(%so,ﬁsl) 1l = B(ﬁﬁl,gﬁz) = B(gﬁz,f53> =1y

and « (fs3,954) = (952, F53) = 1oy = B (F83,954) = B (954,f55) = 1.
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By continuing this procedure, we obtain that:
®) B (9520, s20+1) = 17 and & (f820+1,952042) = 1oy V0 € NU{0}.
From Eq.(4) and Eq.(5), it follows that:

o (820, 8520+1) B (9520, f520+1) = 1oz V0 € NU{O0}.

Then from (1), we have i = i(v) € {1,2,--- ¢} for all v such that (epy,¢20+1) € b; X h;11 so that

E(Per(e2041,02042,€2042)) = &E(Per (F520,9520+1,9520+1))
(6) = &(aA1(520,520+1)a") — @ (aAr(s20,520+1)a")
where
Pe (F520, 852041, 8520+1) 5 P+ (FS20,F 520, F $20)
Ai(s20,50041) = max
Pe (052041, 9 52041, 520+1)
= max{ Pe (€20, €2041,€20+1) , Per (€205 €20415€20+1) 5 P (20415 €2042, €2042) }
= max{ Pe (€20, €2041,€20+1) , Per (€2041, 02042, €20+2) }
and
. Pe (f520, 952041, 9520-+1) 5
A>(520,520+1) = min

3 (e (F820, 5201, G52041) + Per (852041, F 620, F 520))
= min 1 )
{ Per (€20, €204 1,€2041) 5 5P (€205 €2012, €2042) }
If possible, let for some v, P+ (€24, €2041,€20+1) < Per (€20-+1, €20+2,€20+2) then,
A1(820,520+1) = Per (€201, €202, €2042). Since,
007 < P+ (2041502042, €2042) — Per (€20, €204+ 1, €2011) = Pe+ (€20, €2042, €2042), We have
As($2v,520+1) = 0. Then from Eq.(6) and the property off & and @ functions, we have
E(Per (02041502042, 02042)) =X &E(aA1(S20,52041)a") — @ (ala(s20,52041)a™)
= &(aper (e2011, 02042, 02042)a") — @ (ah2 (820,520 11)a”)

< &(ape (e2o+1,02042,€2042)a")
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Using the monotonically increasing property of & function, we have

(7) |pe(e20415 2012, €20:2)|| < [|al|*||Per (20415 €202, €2012) || < |[Pe (€201, €2042, €2042) ||

which is a contradiction. Hence, for all v > 0, we have

Pe (€20+15€204+25 €20+2) = Per (€20, €201, €20+1) -

Hence, we conclude that

A1 (820,52041) = Pe+ (€20, €201, €20+1) and Ax (824, 82041) = 5Pc+ (€20, €202, €2042).

Then from (6), we have
* 1 *
E(Pe(e2041,02042,02042)) = &(aper (20,2041, ¢2041)a ) — D asPe (€20, €2042,€2042) @

Since ||a|| < 1, and both & and @ are continuous on <7, with @(s) > 0., for all s > 0./, we
conclude:

& (P (€2041,02042, €2042)) = & (ape (€20, €2041,0204+1) ")

which implies that

*
P (€20+1,€204+2,€2042) = aPe+ (€20,€2041,¢2041)d

PN

(a)zpc* (e20-1,€20,20) (a*)z

= (a)20+1p6‘* (207 €1, el) (a*)20+1 — 0@/ as v — oo,
Again from Eq.(4) and Eq.(5), it follows that:

ot (f520+1,9520+2) B (952041, S2042) = 17 V0 € NU{O}.

Then from (1), we have i = i(v) € {1,2,--- ,t} for all v such that (e2y41,¢20+2) € b; X hi+1 and

arguing as above, we obtain
& (Per (02042, 2043, €2043)) = &(Per (F62041,952042,9 52012))
= &(aA(52011,52042)a") — @ (aA2($2041,52042)a") — 07 @S 0 — oo,

Therefore, for all v € NU {0} we have limy_e || e (€0, eo+1,¢0+1) || = O Next,we will show

that {¢,} is a Cauchy sequence in V with regard to <7. For this,it is enough to show that the
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sub-sequence {epy } is a Cauchy sequence. To the contrary, suppose that {¢;, } not be a Cauchy
sequence,then for some € > 0, and the sequence of natural numbers {20(j)} and {2u(j)} such

that 2u(j) > 2v(j) > 2j for j € N and

(8) pe (€20()): €2u(j) C2u(j)) = €

corresponding to 2v(j). We can choose 2v(j) to be the smallest such that(8) is satisfied. Then

we have
©) P+ (€20(j), ©2u(j) 15 €2u(j)—1) < €
Using Inequalities (8) and(9) and the rectangle inequity,we have
€ = per(e20()r2u()> C2u()))
= Pes (20(7) @2u(j) - 15 e2u(i)-1) +Pe (€2u(j)—1502u(j)s e2u()) -
Letting j — oo,we get
(10) }Lfgpc* (e20(j), 2u(j), 2u(j)) = €.
It follows from the rectangle inequity that
Per (e20(j)s02u() €2u()) - = Per (€200 €2ui)++2u(iy 1) +Per (B2u(j) 15 2u()» Cau()) -
Letting j — oo, we get € < }EEOPC* (ezn(j)’ C2u(j)+1s eZu(j)Jrl) and
Per (020(7), 2u(j)+1>02u(j)+1) = Per (020(7)€2u(j) 02u(j)) +Per (€2u())s 2u(y+15 e2u(j+1) -
Letting j — oo, we get
(an }ijgpc* (20(7)> €2u(j) +15 C2u(j)+1) = &-

Similarly,we can show that

(12) }E};Pc* (e2u(j)s €20(j)+15 €20(j)+1) = E-

Again using the triangular inequality, we get

Pe (€200 Cau(iy 15 eau(it1) = Per (€20(7)s €20(j) 15 €20(i)11) +Per (€20(j) 415 €2u(i) 1> C2u(ji) 1) -
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Letting j — oo and (1), we get & < im pe- (e2u(j) 41, €2u(j) 1 e2u(j)+1) and

Pe (ezu(j)ﬂ»ezu(j)ﬂ»ezu(j)ﬂ) = P (ezu(j)ﬂ»eznu) €20 ))+Pc (ezu() ezu(j)ﬂ,ezu(j)ﬂ)-
Letting j — oo and (11), we get

(13) Jlg{}opc (€20(j)+ 1> €2u(j)+15 C2u(j)+1) = €

From Eq.(4) and Eq.(5), we obtain o (fEZU )> 9520, )) 3 (gszn F80u(j ) = 1lgy.

Then from (1), we have

& (Pt (20415 C2u(j)+1:e2u(y+1)) = & (Per (F 820y, T 5u(), D 52u())))
(14) = & (“Al (520(j)752u(j))a*) - (aA2(52n(j)752u(j))a*)
where

et (F520())> 982u( ) 852u(j)) - Pe* (F920())»-F 520())>F 520())) »

A1(52n(j)»52u(j)) = max
et (852u()>Z 52u( ), 9 5ou(j))
— max Pe+ (ezn(j),ezu(j)aezu(j))7Pc* (ezn(j)7ezn(j)ﬂ,ezn(j)ﬂ)7
Pc+ (ezu(j)a €2u(j)+1s 92u(j)+1)
and
. Pcr fﬁ 795 u(j)s 9520
Ao(S2y(j),S2u(j)) = min | ( 2o T TR ))
5 (Pe (F820(j)>F52u(j)s D52u(j)) + Pe (852u(j)>F 520(j) F $20(j)) )

P (320(,'), €2u(j)> e2u(j)) ) }

= min
{ % (Pc* (e20(j)7eZu(j)—i—lanu(j)-i-l) + Pe+ (22u(j)7320(j)+]a92t1(j)+1))
Letting j — oo in Eq. (14) with respect <7 and ||a|| < 1 and using Eq.(10), (11), (12), (13)
and with &, @ being continuous such that @ (s) > 0, for s > 0./, then we we obtain that
&(e) < &(aga”) — @(aga”)

< &(aga®)

which implies that € < ||a||>€ < €, which is a contradiction. Hence {¢,} is Cauchy sequences

in V with regard to /. However, (V, o/, p.) is complete, so there exists 3 € V such that
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limy_. ¢y = 3. Consequently, the subsequences also converge to 3 € V such that from Eq.(3),

we have
(15)  lim Fsy, = lim gsop41 = lim eppy 1 =3 lim ¥spp 1 = lim fspp12 = lim €340 = 3.
b—oo b—roo p—poo p—boo p—boo b—yoo

Now we show that 3 € N'_, h;. From the cyclic representation of Z concerning .%,¥,f,g, and
since eg € b, we have {ey }v>0 C by. Since b is closed, from (15 ),we obtain 3 € ;. Again
using a cyclic representation of E concerning .#,¥,f,g, we get {eye+1}o>0 C ha. Since by is
closed, from (15 ),we obtain 3 € h,. Proceeding this way, we get 3 € N7_,b;.

Now we shall prove that 3 is a common fixed point of .%#,¥,f and g. Since 4 (E) C f(E) and f(Z)
is closed subspace of &, there exist y € E such that 3 = f). Now, we will show that .% (y) = 3. Let
pe (3,79, F1) # 0., since for all v there exists i(v) € {1,2,-- -t} such that ey € b;(y). For this,
since e+ — 3, so from Eq. (3), it follows that (3, ezp+1) = ot(f), g520+1) = 1 forall v € N.
From Condition (3.3), we have «(3,e20+1) = (9, 8520+1) = 1oy = B(gv,fs20+1) = 17 and

thus, a(f, 9520+1) B (gh, fs20+1) = 1. then, from Eq.(1), we have

E(Pe (F0,952041,9520+1)) = & (a1 (9,82011)a") — @ (aAa(v,52011)a™)

where
P+ (fU;952n+15952n+1);Pc* (ft)ayt%yt))a
A1(9,52041) = max
Per (852041, 9520+1,9520+1)
= maX{ Per (3,€2041,€20+1) , Per (3, F 0, F 1), Per (€2041, €2042, €2042) }
and
. pC* (fUa g520+1, 9520+1) 5
Ar(9,82p+1) = min |
5 (Pe+ (19, 952041, 9520 +1) + P (852041,-F 9, FD))
= min{ Per (3, 020+1,020+1) 3 (Per (5, 02042, €20+2) + Per (02041, F 0, FY)) }
Thus

(% (57 €20+1, eZU—i—l) y

5(Pc*<a¢07320+2,620+2)) j E’ amax Pc* (37320732.1))7 a

Pe (2041, €2042,€2042)
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. P+ (37620—}—17620—%1) ) "
— @ | amin a

3 (P (3, 02042, €2042) + Per (2041, F 1, F))

Taking v — oo, we have

E(pe(F0,5,3) = 5(apc*(za,%,%>a*)—a’(aipc*(z,%ﬁw“*)'

Using discontinuity of @ at s =0, and @(s) > 0, fort s > 0./, we observe that the last term

on the right-hand side of the above inequality is non-zero. Therefore we obtain

Ev(pc*(y07573)) < ((.,((lpc* (5790752\0)61*)

By the properties of & and since, ||« \2 < 1, then we have

P (F9,3,3)|| < llall||pe (3, F 9, Z0) || < ||pe- (F9,5,3)]]-

Hence we arrive at a contradiction. Therefore ||ps(-#1,3,3)|| =0 = .#y = 3. Thus we
conclude that %y = 3 = fy. Since (Z#,f) is a weakly compatible pair of maps, so it commutes
at their coincidence point v, i.e .# fyy =%y = % 3 = f3. Now we shall show that .7 3 =3 = 3.
Let pe+ (%3,3,3) # 04, since %y = 3 = fy and for all v there exists i(v) € {1,2,---t} such that
¢y € bj(y). From Condition (3.4), we have «(f3,9%20+1) = 1 and B(g3,s20+1) = 1. thus,

(f3,8820+1)B(93,§520+1) = 1 then, from Eq.(1), we have

E (P (F5:G 52011, G500 41)) X E(adi(3,52041)a") — @ (aBo(3,52041)a”)

Pe (3, 9520+1, 9520+1) ,

= &| amax pC*(f37ﬁ37ﬁ3)7 B

Pe (952041, 9 520+1,9520+1)

. Pe (53, 852041, 8520+1) , .
—®@ | amin a

L (per (53, 952041, F52011) + Per (852041, F 3, F3))

Taking v — oo and using .% 3 = f3, we get

E(Pe(F3,3,3)) = E(ape (F3,5,3)a") — @ (ape (F3,3,3)a”)
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Using discontinuity of @ at s =0, and @(s) > 0, fort s > 0,/,we observe that the last term

on the right-hand side of the above inequality is non-zero. Therefore, we obtain

£<p6*(933375)) = E'(apC* (§57573>a*) :

By the properties of & and since, ||a||> < 1, then we have

1P (Z3,3,3)|| < llall||pe (F3,3,3)]] < 1P (F3,3:3) ]

which is contradiction. Therefore, p.(-#3,3,3) = 0. implies .#3 = 3. Hence, %3 = 3 = 3.
Similarly, we can show that ¥3 = g3 = 3. Hence, %3 = f3 = ¥3 = g3 = 3. For uniqueness,
suppose that 3" is another fixed point with %3 = f3’ = 43’ = g3’ = 3/. Then,by the cyclic
representation of = concerning .%,¥, f,g it implies that 3’ € N}_,h;. From Condition (3.4), we

have o(3,93")B(g3,f3’) = 1., then, from Eq.(1), we have

E(pe(3,3,3) = &E(pe (F3,95,95) = E(ari(3,3))a") — @ (ary(3,3)a”)
< &(ape (3,05, 03) a*) — @ (ape- (3,03, 93") a*)
< &(ape (3.3,3") a")

which implies ||pc+(3,3,3") < llal[*|lpe(3,3",3)| < [lpe+(3,5',3)[|- Which is a contradic-
tion.Hence, we have p.+(3,3',3') =0, = 3 =3'. Hence .#,¥, f and g have a unique common

fixed point in N}_, h;. Let oc(fs, ge) B (gs, fe) = 1, then from Eq.(2), we get
E(per (Fs,9e,9e)) 2 E(aA(s,e)a”) — @ (aly(s,e)a”).

Thus, the Eq.(1) is satisfied, hence, the proof easily follows similar lines of above and .#,¥, f
and g have a unique common fixed point in N_, ;.
Corollary 3.10: Let (V, o7, p) be a €*-o/V-G-MS. Let v € N, bi,h--- b, be non-void
subsets of V and E = U_, b; is a cyclic representation of = with respect to .%,% where
F,9 . & — E be two self-mappings which satisfy the following inequality:
For any (s,¢) € (h;,hi+1),i=1,2,---v (with h;y; =b;) and a € &7 with ||a|| < 1,

Pex (s,¢,¢),pcx (8, F5,Fs),

E(per (Fs,9e,9e)) =< & amax a*
Per (e,9e,Ge)
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. Pc* (57672)7 %
—@ | amin a

(e (5,9¢,%¢) + pe- (¢, F 5, F5))

and @ : o/, — </, is lower semi-continuous, such that @(s) > 0, for all s >= 0., and discon-
tinuous at s = 0,y with @ (0,/) =0, & : &/, — <7, is an altering distance function.Then there
exists a unique fixed point of ., ¢ in N;_, b;.
Proof The result follows directly from Theorem (3.9) by setting f = g = 1/, and choosing the
morphisms x(fs,ge) = 1, and 3(gs,fe) = 1.
Corollary 3.11: Let (V,«7,p.+) be a €*-o/V-G-MS. Lett €N, hy,h,---h, be non-void
subsets of V and E = U_, by, is a cyclic representation of Z with respect to .# where .7 : & — &
be a self-mapping which satisfy the following inequality: For any (s,¢) € (h;, biv1),i=1,2,---¢
(with ;41 =b;) and a € &7 with ||a|| < 1,

Pe (8,¢,¢), per (5,75, F5),

E(per (Fs,Fe,Fe)) = & | amax a*
Per (e, Fe, Fe)

Per (5,3,?), x

—® | amin a
S (pe (5, F ¢, Fe) +pe- (¢, 75, Fs))

and @ : &7, — <7, is lower semi-continuous, such that @(s) > 0, for all s > 0., and discon-
tinuous at s = 0,y with ®(0,/) =0, & : &7, — 7, is an altering distance function.Then there
exists a unique fixed point of .# in N{_, b;.
Proof The result follows directly from Corollary (3.10) by setting .% =¥ on E.
Corollary 3.12: Let (V,«7,p.+) be a €*-o/V-G-MS. Lett €N, hy,bhy---h, be non-void
subsets of V and E = U!_, b is a cyclic representation of E with respect to .# where .7 : & — &
be a self-mapping which satisfy the following inequality: For any (s,¢) € (b;,hi41),i=1,2,---¢
(with ;41 =b;) and a € &7 with ||a|| < 1 and A € (0, 1) such that

E(py(ﬁE,?t,ﬂ?)) jl‘i(aPC* (E,Q,Q)Cl*)

where & : o/, — <7, is an altering distance function.Then there exists a unique fixed point of
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Proof The result follows directly from Corollary (3.11) by setting Aj(s,¢) = Ay(s,e) and

@(s) = 252,
Example 3.13: Let V= C and & = M3(C), the algebra of 3 x 3 complex matrices.
G(s1,52,53) 0 0
Define pe- : V> — o/ by pe(s1,82,53) = 0 1G(s51,5,53) 0 ,
0 0 kG(s1,52,53)

where 1,k > 0 are constants and G(s1,52,63) = |§] — 82|+ |s2 — 83|+ |s3 —s1|. then (V, o7, p.+)
isa ¢*-o/VGMS.

Leth ={z€C:R(z) >0} and h, = {z € C: R(z) <0}, s0 E = h; Ubh; is a cyclic represen-
tation with v = 2. Define the mappings: .7 (z) = 5, 9(z) =5, f(z) =z, 9(z) =z Define

&, PB:EXE— ) by

1+ |R(z1 —22)| 0 0
0 1+ |R(z1 —22)] 0 ifz;,€b1,22,€ b2
(X(Zl ,Zz) _ 0 0 1+ ]m(m —Zz)|
| 0. otherwise,
1+(3(z1 —22)] 0 0
0 1+(3(z1 —22)] 0 ifz1,€ b1,22,€ b2
B(z1,22) = 0 0 1+[3(z1 — 22)]|
0. otherwise,

\

here, R(z) denotes the real part of z and 3(z) denotes the imaginary part of z.
Define & : o7, — </, as (A) =A% and @ : o/, — o7, by @(A) = €A, for some fixed & > 0.
Let a € o/ with ||a]| < 1, and (s,¢) € h; X bh2. Then All conditions of Theorem 3.9 are satisfied.

Therefore, the mappings .%,¥, f, g have a unique common fixed point in h; N h, = {0}.
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4. APPLICATIONS

4.1. Application to functional equations.
In this section we denote by V = C([0,1],R*) C L=([0,1],R*) and .« = B(L?*([0,1])) is C*
algebra with operator norm : [|A|| = sup,c(o i) || (Aa, Aa)||. We equip V with pe- : V3 = o,
which is ascertained by pe+(p,v,q) = Mjy_q|4c—q for all p,v,q € V, where My : & — o/ be
ascertained by My (a) = ¢ o a composit of these operators where & € L2([0,1]) and ¢ € 7.
Therefore, (V,.o7, p.+) is a complete €*-o7/' V-G-MS.

In this setting, we discuss the problem of dynamic programming related to multistage

process[29, 30]. Indeed, this problem reduces to the problem of solving the functional equation

(16) s(b) = supye g {f(o,u) + 2 (b,u,5(0(v,u))}, v €[0,1] -

where 0 :[0,1] x 2 — [0,1],§:[0,1] x 2 - R" and % : [0,1] x Z x Rt —» R™.

Specifically, we will prove the following theorem.

Theorem 4.1: Let 2 :[0,1] x 2 x Rt — RT and f:[0,1] x 2 — R* be two
bounded functions and let h; = h, = V = C([0,1],R"). Tt is clear that h; and b, are
closed subsets of V. Consider the self mapping @ : h; Uby — by Uby be as Q(s) (v) =
sup,c g {f(o,u) + 2 (v,u,5(0(b,u))} for all s € h Ubhy and v € [0,1]. Clearly, Q(h;) C b
and Q(hy) C ;. Thus, Q is cyclic map on b Uh,. Suppose the following condition hold:

let h; and b, be a nonempty closed subsets of V such that s € h;,¢r € h and 1 € (0, 1), then
1
[ (0,1,5(0)) = (0,u,2(0))| < Z[[s(6) —#(b)[| Yo € [0,1],5(b) € R™.

Then the functional equation (16) have a bounded solution.

Proof Note that (V,.«7,p.+) is a complete -2/ V-G-MS. Let € > 0,/ be an arbitrary and
5 € by, ¢ € by, then there exist uj,u; € Z such that

Q(s) (v) < f(o,u)+# (v,u1,5(0(b,uy)))+ €

Q(x) (0) < f(v,u2) + 7 (0,u2,2(0(b,u2))) + &

Q () (0) = f(v,u2) + 7 (0,12,5(6 (b, 12)))

Q(x) (0) = (o, u1) + 2 (0,41,2(68(b,11))).
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Then, we conclude that

Q(s) (0) — Q) (0) < A (0,u1,5(0(b,u1))) = (0,u1,£(6(b,u1))) + €

|<%/(07u175(6(b7u1))) - %(Uaulag(e(baul))ﬂ +E

IN

IN

[
S lIs(6) —x(b)[| +&

and similarly,

2

Q@) () -Q(s)(v) = lls(b) —x(b)[[+€

Since € > 0, is arbitrary, then

[Q(s)(0) = Q) (0)| = Ss(b) —x(b)]]

Now, consider

‘We obtain that

1P+ (R(5), Q). QI = [Migu-awill= sup M(ge)m-aue)h)

< swp [ In(g)Pdg.31s(b) ~ k(b))

< g 5w [h(5)I*ds]|s(b) — 2 (b)]|eo.

By setting a = 11/, then a € &7 so that ||a|| =1 < 1, then it follows that

1pe (Q(5), Q) R < 3llalPllpe: (s.2,1)]].

Let&: .o/, — of as E(x) =xVx € & and A € (0,1). Consequently, we have

£ (P (R(s), R(x), R(¥))) 2 AE(a"pe(5,1,7)a)

Thus, by Corollary (3.12), @) has a fixed point, that is, the functional equation (16) has a

bounded solution.
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4.2. Applications to Homotopy.
In this section, we study the existence of an unique solution to Homotopy theory.
Theorem 4.2: Let (V,.o/,ps) be a €*-o/V-G-MS. Let v € N, hy,bh, - b, be non-void sub-

sets of V and & = U;_b; is a cyclic representation and (A, Ay, ---,A;) and (A1,A,---,A,) be
an open and closed subset of E such that (Aj,Ay,---,A,) C (A1,Az,---,A,) with Ni_Ai # 0.
Suppose 7 : U}Zl& x [0, 1] — E be an operator with following conditions are satisfying,

i) s # J(s,1), for each s € JU;_,A; and 1 € [0, 1] (Here dU_,A; is boundary of U}_,A; in
);

ii) for all (s,x) € (Aj,Air1), i =1,2,---t ( with A;y; = A1) and a € &7 with ||a|| < 1 and

(x]

1 € [0, 1] such that

E(per (H(5,1), 7(x,1), 7 (x,1))) 2 E(ape (5,1,1)a”) — @ (aper (s,8,1) a”)

where & : @/, — o/, be an altering distance function and @ : &/, — <7, is lower semi-
continuous, such that @ (s) > 0, for all s > 0, and discontinuous at s =0, with @ (0,/) =0, .

iii) IM € oy > &(per (H(s,1),5(5,0),5(5,0))) < ||M][||t — £| for every s € US_,A;,
1,0 €[0,1]

Then 77 (.,0) has a fixed point <= J#(.,1) has a fixed point.

Proof Let the set B = { 1€[0,1]: 7(s,1) = s for some s € U_, A, }

Suppose that .77°(.,0) has a fixed point in U}_,A;, we have that 0., € B. So that B # 0. Now
we show that B is both closed and open in [0, 1] and hence by the connectedness B = [0, 1].
As a result, (., 1) has a fixed point in Uj_,A;. First we show that B closed in [0, 1]. To see
this, Let {i,},_; C B with i, — i € [0, 1] as v — co. We must show that i € B. Since i, € B for
v=0,1,2,3,---, there exists sequences {s, } C U'_,A; with 5, = (8, 1y).

Consider

pc*(50750+1750+1) = Per (%(5137iU)?%(EIFFI7i0+1)7%(50+17i0+1))

P+ (%(gmiu)a%(504—1,10)7%(504—17%))
+Pcr (F(So11,10), 7 (So41,1041), 7 (S04 1,1011))
= Pper (H(50,10), I (Su11,10), K (Sp11,00)) + [ [M]|[ig —ipy1]-

IA
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Letting b — oo, and applying & properties, we get

lim a(pC* (50)5U+1750+1)) = t}gl;loa(pﬁ (%(50710)7%(504»17ib)7%(50+1>in)))

P00
= lim ( & (ape (Sv,5041,50+1)a") — @ (ape (Sv,5041,50+1)a") ) ‘

D—roo

By the definitions of &, @ and ||a|| < 1, we conclude that

Ulgl}oHPc* (S0, 50-+1,50+1) || < UILH(}OHGHZHPc* (80, S0+1,50+1) |-

which implies that lim (1—1]al|®) ||pe (S0,S0+1,50+1) || <O.

So that

lim pe: (s0,50+1,8011) =0,

Next,we will show that {s,} is a Cauchy sequence in V with regard to .<#. On the contrary,
suppose that {s, } not be a Cauchy sequence,then for some € >~ 0., and the sequence of natural

numbers {v(j)} and {u(j)} such that u(j) > v(j) > j for j € N and

(17) Per (So(j): Su(j): Su(j)) = €

corresponding to v(j). We can choose v(j) to be the smallest such that(17) is satisfied. Then

we have

(18) Per (8u(j)»Su(j)—1:%u(j)-1) =< &

From (17) and (18), we have

€ =X per (Su(j)»5u(j) Su(j)) = Per (Su(j)>Su(j)+1550(j)+1) +Per (So(j)1:5u(j)»5u(j)) -

Letting j — oo and applying & on both sides, we get

(19) &(8) < 1im & (Per (So(j)+1:5u(j)»5u())) -

But

lim & (pc- (5n( j)+175u(j)’5u(j)))

e

= 1im & (per (A (So(j) 415 to(i)+1)s 7€ (Su(jys (i) 7 (Su(j)riu(j)))

Jreo

= JL“;( & (@Per (Su(j)+155u(j)»Su(j) @*) — @ (ape (Su(j)+155u(j)s Su(j)) @) )
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It follows that jlgrolo(l —[lal[®)[|per (So(j)+155u(j)Su(y) || <O
Thus, lim P+ (Sy(j)41,5u(j)5u(j)) = 0. Hence, from Eq.(19) and properties of &, we have

J—reo

€ < 0., which is a contradiction. Hence {s,} is Cauchy sequences in V with regard to 7.
However, (V,.7, p.+) is complete, so there exists 3 € V such that limy_,e 5, = 3. Now we show
that 3 € Ni_, A;. From the cyclic representation of E concerning .7, and since sy € Ay, we have
{50:}o>0 C Ay. Since A; is closed, so that 3 € A;. Again using a cyclic representation of Z
concerning %, we get {Spr+1 fo>0 C Ag. Since Ay is closed, so we obtain 3 € A;. Proceeding
this way, we get 3 € N;_;A; and hence, N;_,A; # 0.
Now, we have

a(pc* (57%(571)’%(571))) = lim E»(pc* (%(50707‘%&(5707%(571)))

D—o0

< 1im (& (ape (50.3:3)a") — @ (ape- (s0,3.3)a”) ) = 0.

p—ro0

It follows that #°(3,1) = 3. Thus, i € B. Hence B is closed in [0, 1]. Let iy € B, then there exist
so € US_; A; with sg = J#(s0,ig). Since A1, Ay, -+, A, are open, then there exist » > 0 such that
B, . (s0,7) € US_,A;. Choose i € (ig — €,ip + €) such that |i —ip| < m < £, then for
s € By, (50,r) = {5 € U_ | Ai/pe+(8,50,50) = r+ pe=(50,50,50) } . Now we have

Pex (%(570750’50) = P (%(ﬁ,i),%(50,10),%(50,%))

< Pper (H(8,1),5(50,1), 5 (50,1)) + pe- ((80,1), 76 (S0, 10), 75 (50,10))
1

= per (H(s,1), Hp(50,1), 75 (50,1)) + e[

Letting v — o and applying & properties, we obtain

Ev(pc* (%(570750750)) = Ev(pc* (%(5,i),%(SO,i),%(so,i»)
=< &(ape (s,80,80)a™) — @ (ape (s,50,50) a”)

*
= é(apc* (5750,50)61 )
Since & is continuous and non-decreasing, we obtain

pe (F€(s,1),50,50) = ape+ (s,50,50) a”
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which implies that

lper (A (5,1),50,50) || < lal[*[|pe (5,50,50) || < [|pe (5,50,50) |

< r+||pe (50,50,50) |-

Thus for each fixed i € (ig — &,ig + €), H(.,1) : Bp,.(s50,7) = Bp_. (S0, 7). Since also (ii) holds
and & is continuous and non-decreasing and @ is continuous with @(¢) > 0, fort ¢t > 0./, then
all the conditions of Theorem 4.2 are satisfied. Thus, we conclude that .7#(.,1) has a fixed point
in N{_;A;. But this must be in N{_,A; since (i) holds. Thus, i € B for any i € (ip — €,i + €).
Hence (ig — €,ip + €) C B. Clearly B is open in [0, 1]. For the reverse implication, we use the

same strategy.

5. CONCLUSIONS

This study culminates in the successful formulation of common fixed point theorems (CFPT)
for generalized («, 3)-(&, @)-weakly cyclic contraction mappings, situated within the abstract
framework of ¢*-o7V-G-MS. The findings contribute significantly to the advancement of fixed
point theory and underscore its applicability to solving functional equations and exploring as-
pects of homotopy theory. These results not only deepen theoretical understanding but also

open avenues for further mathematical inquiry and interdisciplinary applications.
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