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Abstract. In this paper, some monotonic functions and some inequalities concerning certain ratios of generalized

gamma functions are established. The procedure utilizes the series forms of the generalized digamma functions.
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1. Introduction and Preliminaries

The classical Euler’s Gamma function, I'(¢) and the digamma function, y(z) are well-known in

literature as

M= [T ax and y(r) = 2 In(r) =

The p-Gamma function, I',(¢) and the p-digamma function, y,(¢) are defined for p € N as
(see [6])
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The ¢g-Gamma function, I';(7) and the g-digamma function, y, () are also defined for g €
(0,1) as (see [2])

2 d I (t)
Ly(t) = I'[1 Hn and wq(t)_alnrq(z)_m, r>0.

Also, the k-Gamma function, I';(¢) and the k-digamma function, y;(¢) are defined for k > 0
as (see [1])

Fk(t):/wex:xtldx and wk(t):%IHFk(t):
0

In 2005, Diaz and Teruel [5] defined the (g,k)-Gamma and the (g, k)-digamma functions for
g€ (0,1)and k > 0 as

1 71 l—‘/

(g0 (")

—,’ and t)=—InI" t) = — , >0,
(1 —q)E*I lI/(%k)( ) dt (q,k)( ) F(q,k)(t)

where (), =t(t+k)(t+2k)...(t +(n—1)k) = ;?;é (t+ jk) is the k-generalized Pochham-

L) =

mer symbol.
Also in 2012, Krasniqi and Merovci [4] defined the (p,q)-Gamma and the (p,q)-digamma

functions for p € Nand g € (0,1) as

Lol J .0
r 1) = and t)=—1InT )= =", t>0
() (1) gt +1],..- [t + pPlg () (1) dt () (1) C(pg) (1)
where [p], = 1:’;.

The generalized digamma functions W, (t), Wi(t), ¥ q)(f) and W, ) (7) as defined above

exhibit the following series representations (see also [8], [9], [10], [11] and [12]).

00 nt
(1) Volt) = —In(1=q)+Ing }, 1~
n=1
CInk—y 1 ¢ t
@ W) =—— =7+ Z' nk(nk +t)
14 nt
3) V(p.q)(t) =In[plg+ (Ing) Z
—In(1—gq = g™
“4) Vg () = (k + (Ing) Z
n:1

where 7 is the Euler-Mascheroni’s constant.
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In 2010, Krasniqi and Shabani [7] presented the following inequalities:

ple"I(a)  T(a+1) p e’ I(o+1)
Ip(a) [p(a+1) Ipa+1)

fort € (0,1), where « is a positive real number such that o +¢ > 1.

Also in that same year, Krasniqi, Mansour and Shabani [6] presented the following results.

(1-q)e™(@) Tlatr) (1—gf Mot 1)
Iy(a) Ly(a+1) Fy(a+1)

forr € (0,1), where « is a positive real number such that o +¢ > 1 and g € (0,1).

Several results of this nature as well as some generalizations have since been established.
These can be found in the papers [8], [9], [10], [11] and [12].

In the present paper, our main objective is to present similar results involving the ratios

OIS ONS NORSIS 0
L) (1) Tigay () T g)(0) Ligu (1)

2. Auxiliary Results

Lemma 2.1. Let oo > 0,1 >0, p€ N and g € (0,1). Then,

In(1 —¢q)+In[pl,+ y,(a+1) — ‘V(p,q)(o‘ +1) <0.

Proof. By the series representations (1) and (3) we have,

i qnt P qnl
In(1—g) +Inlply + ¥4(0) ~ ¥y () = (ng) |1 72— Y 77
n=1 n=1
©0 qnl‘
=(Ing) }, —— <0
n=p+1 4q
Replacing t by o+t completes the proof.
Lemma 2.2. Let « > 0,1 >0, g € (0,1) and k > 1. Then,
1
In(1—gq)— %ln(l —q) + (o +1) — Y (o+1) <O0.
Proof. By the series representations (1) and (4) we have,
L1 oo qnt ant
In(1—gq) "%+ y,(t) — Wy (t) = (Ing) Z [1 7 7 _an} <0.
n=1

Replacing t by o +¢ completes the proof.
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Lemma 2.3. Let oc > 0,1 >0, k>0, pe N and g € (0,1). Then,

Ink — 1
Infply ==+ —— 4 yila+1) = (g (@ +1) >0,

Proof. By the series representations (2) and (3) we have,

Infply — T 4 i) P LA RS i
n|pl, — — (In
Pla= % Vi = Lk nk+t Vg
Replacing t by o +¢ completes the proof.
Lemma 24. Let oc > 0,1 >0, g € (0,1) and k > 0. Then,
In(k(1-q)) v 1
—_— e AR o+t 0.
Proof. By the series representations (2) and (4) we have,
In(k(1—q)) v 1 - o g™
- (1
PR (O ng‘lnknk—H “qn;

Replacing t by a +¢ completes the proof.

3. Main Results

Theorem 3.1. Define a function S by
(1-q)Ty(a+1)
[p]l;[r(p,q)(a +t) ’
fora>0,peNandqe (0,1). Then S is non-increasing on t € (0,0) and the inequalities

(1—) " Ty(e) _ Tyla+n) _ (1—g)Tyla+1)
[p]@ll"(p’q)(a) - F(pg)(a—f—l) - [p];_lr(pﬂ)((x—{—l)

are valid for every t € (0,1).

(3) S(r) = t € (0,00)

(6)

Proof. Let g(t) = InS(z) for every t € (0,00). Then,

(1—q)Ty(o+1)
[Plg ' T(pg)(c+1)

g(t)=In
=tIn(1—gq) +tIn[p], +InTy(oc+1) —In[, ,y(t+1). Then,

g'(t) =In(1—q) +1n[ply+ yy(a+1) =y, »(a+1) <0. (by Lemma 2.1)
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That implies g is non-increasing on ¢ € (0,0). Hence S is non-increasing on 7 € (0, o) and for
every t € (0,1) we have,

5(0) = S(z) = 8(1)

yielding the result.

Theorem 3.2. Define a function T by

(1—q)Ty(a+1)

(7 T(t)= ; ,
(1 =)y gy +1)

t € (0,00)

fora>0,q€(0,1)and k> 1. Then T is non-increasing ont € (0,c) and the inequalities

(I_Q)_trq(a) > Fq(OH’t) > (I_Q)l_trq<a+1)
(1—q) (@)~ Taun(@+1) = (1-g)t0-0r y(a+1)

(®)
are valid for every t € (0,1).

Proof. Let 4(t) =1InT(¢t) for every t € (0,00). Then,

(1—q)Ty(a+1)

h(t) =1In -
(1 =) L (gp(a+1)

:tln(l—q)—éln(l—q)—l—lnFq(oH—t)—lnl“(%k)(a—i—t). Then,
I
W(t)=In(1—q)— z In(1—q) +yy(a+1) = Yyurp(a+r) <0. (by Lemma2.2)

That implies 4 is non-increasing on ¢ € (0,e). Hence 7T is non-increasing on ¢ € (0,o0) and for
every 1 € (0,1) we have,

T(0)>T(t) > T(1)

establishing the result.

Theorem 3.3. Define a function U by

(o +1)k tek Tp(a+1)
[p]l;tr(p,q) (OC + t)

fora>0,peN, ge (0,1)and k > 0. Then U is increasing ont € (O, o) and the inequalities

9) Ult) = € (0,00)

(a+1)

(19) s 1r ola+1)

akte T Ty(ct) (o) _(a+t DT
(+0)[pleT g (@)  Tppla+n) — (a+1)[p

are valid for every t € (0,1).
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Proof. Let u(¢) =InU(z) for every t € (0,0). Then,

(a+t)k‘iey?t1“k(oc+t)

u(t) =In -
[Plg ' T(pg)(+1)
— In(a+1)— %1nk+ % +¢In[ply +InT(c+1) —InT(, o) (@+1). Then,
/ Ink—vy
p'(t) =1In[pl, — . + o +W(o+1) — Y, g) (0 +1) > 0.(by Lemma 2.3)

That implies u is increasing on ¢ € (0,00). As a result, U is also increasing on ¢ € (0,0) and for

every t € (0,1) we have,
U)<U(r)<U(1)

yielding the result.

Theorem 3.4. Define a function V by

Vg
(11 V) = t(a+t)etkl“k(a+t) 7
ki (1 —q) T p) (0t +1)

t € (0,00)

fora>0,q€(0,1)andk > 0. ThenV is increasing on t € (0,0) and the inequalities

akte K Ty(a) _ Dilatn) (o + DT eV FT(a+1)

(12) : T
(@+1)(1—q) T yp(a) Cigm(o+1) (1)1~ q) F Lyp(a+1)

are valid for every t € (0,1).

Proof. Let 6(t) =1InV(z) for every t € (0,00). Then,

(a+1)efTi(a+1)
kE(1—q)FT (g (0t +1)

—In(a+1)+ % - éln(ku —))+InT¢(@+1)—InT( 4 (a+1). Then,

In(k(1— 1
&' (t) = —M + % + P + (@ +1) — g (e+1) > 0.(by Lemma 2.4)

0(t)=1In

That implies J is increasing on ¢ € (0,c0). As a result, V is also increasing on z € (0,0) and for

every t € (0,1) we have,
V(0) < V()< V(1)

establishing the result.
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