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Abstract. In this paper new refinements of classical Jensen’s inequality are obtained by using some refinements of

discrete Jensen’s inequality. To apply our refinements, new quasi-arithmetic means are introduced, the properties

of these means are studied, and refinements of the left hand side of the Hermite-Hadamard inequality are given.
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1. Introduction

Jensen’s inequality is one of the most important inequality in mathematics. The key to this

inequality is convexity: the real function f defined on a convex subset C of a real vector space

V is called convex if

f (αx+(1−α)y)≤ α f (x)+(1−α) f (y), x,y ∈C, 0≤ α ≤ 1.
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The measure theoretical setting of Jensens inequality:

Theorem A. (classical Jensen’s inequality, see [6]) Let g be an integrable function on a proba-

bility space (X ,A ,µ) taking values in an interval I ⊂R. Then
∫
X

gdµ lies in I. If f is a convex

function on I such that f ◦g is integrable, then

(1) f

∫
X

gdµ

≤ ∫
X

f ◦gdµ.

The discrete version of Jensen’s inequality:

Theorem B. (discrete Jensen’s inequality, see [6]) Let C be a convex subset of a real vector

space V , and let f : C→ R be a convex function. If p1, . . . , pn are nonnegative numbers with
n

∑
i=1

pi = 1, and v1, . . . ,vn ∈C, then

(2) f

(
n

∑
i=1

pivi

)
≤

n

∑
i=1

pi f (vi) .

In recent years, many papers dealing with refinements of discrete Jensen’s inequality have

appeared in the literature, see the recent monograph by Horváth, Khuram Ali Khan and Pečarić

[6], where further references are given. However, refinements of classical Jensen’s inequali-

ty have been much less extensively studied, results are quite rare, see Horváth [3] and [5]. A

natural and interesting problem is whether we can construct refinements of classical Jensen’s

inequality by using some refinements of discrete Jensen’s inequality. The next result in this

direction is obtained by Brnetić, Pearce and Pečarić [1] (the existence of all integrals are sup-

posed):

Theorem 1. Suppose I ⊂ R is an interval. Let f : I → R be a convex function, g : [a,b]→ I,

and w : [a,b]→ R a positive function. Let p1, . . . , pn be positive numbers with
n

∑
i=1

pi = 1, and

w :=
b∫

a

w(x)dx. Further, let

Fk,n :=
1(n−1

k−1

)
wk
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· ∑
1≤1<i1<...<ik≤n

k

∑
r=1

pir

b∫
a

. . .

b∫
a

(
k

∏
s=1

w(xis)

)
f


k

∑
j=1

pi jg
(
xi j

)
k

∑
j=1

pi j

dxi1 . . .dxik .

Then

f

 1
w

b∫
a

w(x)g(x)dx

≤Fn,n ≤ . . .≤Fk+1,n ≤Fk,n ≤ . . .≤F1,n

=
1
w

b∫
a

w(x) f (g(x))dx.

The previous result is based on the following well-known refinements of discrete Jensen’s

inequality (see Pečarić [8] and Horváth and Pečarić [4]):

Theorem 2. Let C be a convex subset of a real vector space V , and let f : C→ R be a convex

function. If x1, . . . ,xn ∈C, p1, . . . , pn are positive numbers with
n

∑
i=1

pi = 1, and

Fk,k =
1(n−1

k−1

) ∑
1≤i1<...<ik≤n

(
k

∑
s=1

pis

)
f


k

∑
s=1

pisxis

k

∑
s=1

pis

 , k = 1, . . . ,n.

then

f

(
n

∑
r=1

prxr

)
= Fn,n ≤ . . .≤ Fk,k ≤ Fk−1,k−1 ≤ . . .≤ F1,1 =

n

∑
r=1

pr f (xr).

In this paper, among others, we obtain new refinements of classical Jensen’s inequality by

using an essential extension of Theorem 2 by Horváth and Pečarić [4]. The methods and results

are somewhat similar to those of Brnetić, Pearce and Pečarić [1], but there are key differences.

To apply our refinements, new quasi-arithmetic means are introduced, the properties of these

means are studied, and refinements of the left hand side of the Hermite-Hadamard inequality

are given.

2. New refinements of the classical Jensen’s inequality

First, we recall some of the essential basic tools from [4] needed in the rest of the paper.
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Let X be a set. The power set of X is denoted by P(X). |X | means the number of elements in

X . The usual symbol N is used for the set of natural numbers (including 0). Let u≥ 1 and v≥ 2

be fixed integers. Define the functions

Sv,w : {1, . . . ,u}v→{1, . . . ,u}v−1 , 1≤ w≤ v,

Sv : {1, . . . ,u}v→ P
(
{1, . . . ,u}v−1

)
,

and

Tv : P({1, . . . ,u}v)→ P
(
{1, . . . ,u}v−1

)
by

Sv,w (i1, . . . , iv) := (i1, i2, . . . , iw−1, iw+1, . . . , iv) , 1≤ w≤ v,

Sv (i1, . . . , iv) :=
v⋃

w=1

{Sv,w (i1, . . . , iv)} ,

and

Tv(I) :=


/0, if I = /0,⋃

(i1,...,iv)∈I

Sv (i1, . . . , iv) , if I 6= /0.

Next, let the function

(3) αv,i : {1, . . . ,u}v→ N, 1≤ i≤ u,

be given by: αv,i (i1, . . . , iv) means the number of occurrences of i in the sequence (i1, . . . , iv).

For each I ∈ P({1, . . . ,u}v) let

αI,i := ∑
(i1,...,iv)∈I

αv,i (i1, . . . , iv) , 1≤ i≤ u.

The following hypothesis plays an important rule in the generalization of Theorem 2.

(H1) Let n≥ 1 and k ≥ 2 be fixed integers, and let Ik be a subset of {1, . . . ,n}k such that

αIk,i ≥ 1, 1≤ i≤ n.

Starting from Ik, we introduce the sets Il ⊂ {1, . . . ,n}l (k−1≥ l ≥ 1) inductively by

Il−1 := Tl(Il), k ≥ l ≥ 2.



REFINEMENTS OF THE JENSEN’S INEQUALITY 5

Obviously, I1 = {1, . . . ,n}, by (3), and this insures that αI1,i = 1 (1≤ i≤ n). From (3) again, we

have that αIl ,i ≥ 1 (k−1≥ l ≥ 1,1≤ i≤ n). For any k≥ l ≥ 2 and for any ( j1, . . . , jl−1) ∈ Il−1

let

HIl ( j1, . . . , jl−1)

:=
{
((i1, . . . , il),m) ∈ Il×{1, . . . , l} | Sl,m(i1, . . . , il) = ( j1, . . . , jl−1)

}
.

Using these sets we define the functions tIk,l : Il → N (k ≥ l ≥ 1) inductively by

tIk,k (i1, . . . , ik) := 1, (i1, . . . , ik) ∈ Ik;

tIk,l−1( j1, . . . , jl−1) := ∑
((i1,...,il),m)∈HIl ( j1,..., jl−1)

tIk,l (i1, . . . , il) .

We use some special expressions, which we now describe. Associate to each k ≥ l ≥ 1 the

number

Ak,l = Ak,l (Ik,x1, . . . ,xn, p1, . . . , pn)

:=
(k−1)!
(l−1)! ∑

(i1,...,il)∈Il

tIk,l (i1, . . . , il)

(
l

∑
s=1

pis
αIk,is

)
f


l

∑
s=1

pis
αIk ,is

xis

l

∑
s=1

pis
αIk ,is

 .

Now, we are in a position to formulate the main result in [4] which is an essential generaliza-

tion of Theorem 2 (see the examples of this paper).

Theorem 3. Assume (H1). Let C be a convex subset of a real vector space V , and let f : C→R

be a convex function. If x1, . . . ,xn ∈C, p1, . . . , pn are positive numbers with
n

∑
i=1

pi = 1, then

(a)

(4) f

(
n

∑
r=1

prxr

)
≤ Ak,k ≤ Ak,k−1 ≤ . . .≤ Ak,2 ≤ Ak,1 =

n

∑
r=1

pr f (xr).

(b) Suppose |HIl ( j1, . . . , jl−1)|= βl−1 for any ( j1, . . . , jl−1) ∈ Il−1 (k ≥ l ≥ 2). Then

Ak,l =
n

l |Il| ∑
(i1,...,il)∈Il

(
l

∑
s=1

pis

)
f


l

∑
s=1

pisxis

l

∑
s=1

pis

 , (k ≥ l ≥ 1) .
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We list further hypotheses that will be used to derive our main results.

(H2) Let (X ,B,µ) be a probability space, and let p1, . . . , pn be positive numbers with
n

∑
i=1

pi =

1.

(H3) Let g be an integrable function on X taking values in an interval I ⊂ R.

(H4) Let f be a convex function on I such that f ◦g is integrable.

Let l ≥ 2 be a fixed integer. The σ -algebra in X l generated by the projection mappings prm :

X l → X (m = 1, . . . , l)

prm (x1, . . . ,xl) := xm

is denoted by Bl . µ l means the product measure on Bl: this measure is uniquely (µ is σ -finite)

specified by

µ
l (B1× . . .×Bl) := µ (B1) . . .µ (Bl) , Bm ∈B, m = 1, . . . , l.

To establish a new refinement of the classical Jensen’s inequality, we begin with the intro-

duction of some expressions and a function: under the hypotheses (H1)-(H4), assign to each

k ≥ l ≥ 1 the number

Ak,l = Ak,l (Ik, f ,g,µ, p1, . . . , pn) :=
(k−1)!
(l−1)! ∑

(i1,...,il)∈Il

tIk,l (i1, . . . , il)

·

(
l

∑
s=1

pis
αIk,is

)∫
Xn

f


l

∑
s=1

pis
αIk ,is

g(xis)

l

∑
s=1

pis
αIk ,is

dµ
n (x1, . . . ,xn) ,(5)

and define the function Hk on [0,1] by

Hk (t) = Hk (t, Ik, f ,g,µ, p1, . . . , pn) := ∑
(i1,...,ik)∈Ik

(
k

∑
s=1

pis
αIk,is

)

(6) ·
∫
Xn

f

t

k

∑
s=1

pis
αIk ,is

g(xis)

k

∑
s=1

pis
αIk ,is

+(1− t)
∫
X

gdµ

dµ
n (x1, . . . ,xn) .
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Remark 4. (a) It follows from Lemma 2.1 (b) in [3] that the integrals in (5) exist and finite (there

are at most n different between the variables xi1, . . . ,xil for every k ≥ l ≥ 1). Let l ∈ {1, . . . ,k},

and let (i1, . . . , il) ∈ Il be fixed. If i1, . . . , il are all different (in this case n≥ l ≥ 1), then

∫
Xn

f


l

∑
s=1

pis
αIk ,is

g(xis)

l

∑
s=1

pis
αIk ,is

dµ
n (x1, . . . ,xn)

=
∫
X l

f


l

∑
s=1

pis
αIk ,is

g(xis)

l

∑
s=1

pis
αIk ,is

dµ
l (xi1, . . . ,xil) ,

while if there are identical members, then similar integral can be obtained after contraction.

For the sake of lucidity, we use integrals over Xn.

(b) If µ is a finite measure on B such that µ (X) 6= 0, then µ

µ(X) is a probability measure on

B, and we can therefore extend our results to finite measures on B.

(c) Slight modification of the proof of Lemma 2.1 (b) in [3] shows that the integrals in (6)

exist and finite for every t ∈ [0,1].

First of all, some important properties of the function Hk are derived in the next result.

Theorem 5. Assume (H1)-(H4). Then

(a) Hk is convex.

(b)

min
t∈[0,1]

Hk (t) = Hk (0) = f

∫
X

gdµ

 ,

max
t∈[0,1]

Hk (t) = Hk (1) = Ak,k.

(c) Hk is increasing.

After these preparations we can present the following new refinements of the classical Jensen’s

inequality.
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Theorem 6. Assume (H1)-(H4).

(a) Then for every t ∈ [0,1]

f

∫
X

gdµ

≤ Hk (t)≤Ak,k ≤Ak,k−1 ≤ . . .≤Ak,2 ≤Ak,1 =
∫
X

f ◦gdµ.

(b) Suppose |HIl ( j1, . . . , jl−1)|= βl−1 for any ( j1, . . . , jl−1) ∈ Il−1 (k ≥ l ≥ 2).

Then for any k ≥ l ≥ 1

Al,l := Ak,l =
n

l |Il| ∑
(i1,...,il)∈Il

(
l

∑
s=1

pis

)∫
Xn

f


l

∑
s=1

pisg(xis)

l

∑
s=1

pis

dµ
n (x1, . . . ,xn) ,

and

Hk (t) =
n

k |Ik| ∑
(i1,...,ik)∈Ik

(
k

∑
s=1

pis

)

·
∫
Xn

f

t

k

∑
s=1

pisg(xis)

k

∑
s=1

pis

+(1− t)
∫
X

gdµ

dµ
n (x1, . . . ,xn) , t ∈ [0,1] .

It will be seen in the next section that the previous result is a significant sharpening of Theo-

rem 1.

3. Examples in special cases

First, we give some special cases of Theorem 6.

Proposition 7. Let

Ik :=
{
(i1, . . . , ik) ∈ {1, . . . ,n}k | i1 < .. . < ik

}
, 1≤ k ≤ n,

and assume (H2)-(H4). Then

f

∫
X

gdµ

≤ Hn (t)≤An,n

≤An−1,n−1 ≤ . . .≤A2,2 ≤A1,1 =
∫
X

f ◦gdµ, t ∈ [0,1] ,
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where for every n≥ l ≥ 1

Al,l =
1(n−1

l−1

) ∑
1≤i1<...<il≤n

(
l

∑
s=1

pis

)∫
X l

f


l

∑
s=1

pisg(xis)

l

∑
s=1

pis

dµ
l (xi1 , . . . ,xil) ,

and for each t ∈ [0,1]

Hn (t) =
∫
Xn

f

t
n

∑
s=1

psg(xs)+(1− t)
∫
X

gdµ

dµ
n (x1, . . . ,xn) .

Proof We deduce this from Theorem 6 by using Example 2 in [4].

By considering Remark 4 (b), it follows that Theorem 1 is a special case of the previous

result.

Proposition 8. Let

Ik :=
{
(i1, . . . , ik) ∈ {1, . . . ,n}k | i1 ≤ . . .≤ ik

}
, k ≥ 1,

and assume (H2)-(H4). Then

(a)

f

∫
X

gdµ

≤ . . .≤Al,l ≤Al−1,l−1 ≤ . . .≤A2,2 ≤A1,1 =
∫
X

f ◦gdµ,

where for every l ≥ 1

Al,l =
1(n+l−1

l−1

) ∑
1≤i1≤...≤il≤n

(
l

∑
s=1

pis

)∫
Xn

f


l

∑
s=1

pisg(xis)

l

∑
s=1

pis

dµ
n (x1, . . . ,xn) .

(b) For every fixed k ≥ 1

f

∫
X

gdµ

≤ 1(n+k−1
k−1

) ∑
1≤i1≤...≤ik≤n

(
k

∑
s=1

pis

)

·
∫
Xn

f

t

k

∑
s=1

pisg(xis)

k

∑
s=1

pis

+(1− t)
∫
X

gdµ

dµ
n (x1, . . . ,xn)≤Ak,k, t ∈ [0,1] .
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Proof. It can be obtained from Theorem 6 by using Example 3 in [4].

Proposition 9. Let

Ik := {1, . . . ,n}k , k ≥ 1,

and assume (H2)-(H4). Then

(a)

f

∫
X

gdµ

≤ . . .≤Al,l ≤Al−1,l−1 ≤ . . .≤A2,2 ≤A1,1 =
∫
X

f ◦gdµ,

where for every l ≥ 1

Al,l =
1

nl−1l ∑
(i1,...,il)∈{1,...,n}l

(
l

∑
s=1

pis

)∫
Xn

f


l

∑
s=1

pisg(xis)

l

∑
s=1

pis

dµ
n (x1, . . . ,xn) .

(b) For every fixed k ≥ 1

f

∫
X

gdµ

≤ 1
nk−1k ∑

(i1,...,ik)∈{1,...,n}k

(
k

∑
s=1

pis

)

·
∫
Xn

f

t

k

∑
s=1

pisg(xis)

k

∑
s=1

pis

+(1− t)
∫
X

gdµ

dµ
n (x1, . . . ,xn)≤Ak,k, t ∈ [0,1] .

Proof. It follows from Theorem 6 by using Example 4 in [4].

Proposition 10. Let ci ≥ 1 be an integer (i = 1, . . . ,n), let k :=
n

∑
i=1

ci, and let Ik = Pc1,...,cn

consist of all sequences (i1, . . . , ik) in which the number of occurrences of i ∈ {1, . . . ,n} is ci

(i = 1, . . . ,n). Assume (H2)-(H4). Then

f

∫
X

gdµ

≤Ak,k−1 ≤
∫
X

f ◦gdµ,

where

Ak,k−1 =
1

k−1

n

∑
i=1

(ci− pi)
∫
Xn

f


n

∑
r=1

prg(xr)− pi
ci

g(xi)

1− pi
ci

dµ
n (x1, . . . ,xn) .
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Proof. This is a consequence of Theorem 6 and Example 5 in [4].

4. New quasi-arithmetic means

In this section some new quasi-arithmetic means are introduced. The conditions (H3) and

(H4) will be changed:

(Ĥ3) Let g be a measurable function on X taking values in an interval I ⊂ R.

(Ĥ4) Let ϕ , ψ : I→ R be continuous and strictly monotone functions.

Definition 11. Assume (H1)-(H2) and (Ĥ3)-(Ĥ4).

(a) For k ≥ l ≥ 1, we define quasi-arithmetic means with respect to (5) by

Mψ,ϕ (Ik,g,µ, l) := ψ
−1

(
(k−1)!
(l−1)! ∑

(i1,...,il)∈Il

tIk,l (i1, . . . , il)

(7) ·

(
l

∑
s=1

pis
αIk,is

)∫
Xn

(ψ ◦ϕ
−1)


l

∑
s=1

pis
αIk ,is

ϕ (g(xis))

l

∑
s=1

pis
αIk ,is

dµ
n (x1, . . . ,xn)

 ,

if the integrals exist and finite.

(b) For t ∈ [0,1], different kind of quasi-arithmetic means can be defined with respect to (6)

by

(8) Mψ,ϕ (t, Ik,g,µ) := ψ
−1

(
∑

(i1,...,ik)∈Ik

(
k

∑
s=1

pis
αIk,is

)

·
∫
Xn

(ψ ◦ϕ
−1)

t

k

∑
s=1

pis
αIk ,is

ϕ (g(xis))

k

∑
s=1

pis
αIk ,is

+(1− t)
∫
X

ϕ ◦gdµ

dµ
n (x1, . . . ,xn)


if the integrals exist and finite.

Mψ,ϕ (Ik,g,µ, l) and Mψ,ϕ (t, Ik,g,µ) really define means, since it follows from the proof of

Lemma 9 in [4] that

(9)
(k−1)!
(l−1)! ∑

(i1,...,il)∈Il

tIk,l (i1, . . . , il)

(
l

∑
s=1

pis
αIk,is

)
= 1, k ≥ l ≥ 1.
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If ϕ ◦g and ψ ◦g are integrable on X , and ψ ◦ϕ−1 is either convex or concave, then the integrals

in (7) exist and finite (see Remark 4).

Based on the results of [3], quasi-arithmetic means like (7) have been obtained in the work

Khuram Ali Khan and Pečarić [7]. Their construction involves not just one but finitely many

probability spaces. However, they use only the set (see Proposition 7)

In = {(1, . . . ,n)} ,

and just consider the mean Mψ,ϕ (In,g,µ,n).

To investigate the monotonicity of the introduced means, some other means are also needed.

Assume (Ĥ3), and let h : I→ R be a continuous and strictly monotone function such that h◦g

is integrable on X . Define the mean

Mh (g,µ) := h−1

∫
X

h◦gdµ

 .

Theorem 12. Assume (H1)-(H2), (Ĥ3)-(Ĥ4), and assume that ϕ ◦g and ψ ◦g are integrable on

X.Then

(a)

Mϕ (g,µ)≤Mψ,ϕ (t, Ik,g,µ)≤Mψ,ϕ(Ik,g,µ,k)

≤ . . .≤Mψ,ϕ(Ik,g,µ,1) = Mψ (g,µ) , t ∈ [0,1] ,

if either ψ ◦ϕ−1 is convex and ψ is increasing or ψ ◦ϕ−1 is concave and ψ is decreasing.

(b)

Mϕ (g,µ)≥Mψ,ϕ (t, Ik,g,µ)≥Mψ,ϕ(Ik,g,µ,k)

≥ . . .≥Mψ,ϕ(Ik,g,µ,1) = Mψ (g,µ) , t ∈ [0,1] ,

if either ψ ◦ϕ−1 is convex and ψ is decreasing or ψ ◦ϕ−1 is concave and ψ is increasing.

Proof. Theorem 6 (a) can be applied to the pair of functions ψ ◦ϕ−1 and ϕ ◦ g (ϕ (I) is an

interval), if ψ ◦ϕ−1 is convex, and to the pair of functions −ψ ◦ϕ−1 and ϕ ◦ g, if ψ ◦ϕ−1 is

concave, then upon taking ψ−1, we get (a) and (b).

5. Refinements of the left hand side of the Hermite-Hadamard inequality
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The set of Borel subsets of [a,b]⊂R is denoted by B. λ means the Lebesgue measure on B.

The classical Hermite-Hadamard inequality (see [2]) says: if f : [a,b]→R is a convex function,

then

f
(

a+b
2

)
≤ 1

b−a

b∫
a

f dλ ≤ f (a)+ f (b)
2

.

We can obtain the following refinements of the left hand side of the Hermite-Hadamard in-

equality:

Theorem 13. Assume (H1), let [a,b] ⊂ R (a < b), and let p1, . . . , pn be positive numbers with
n

∑
i=1

pi = 1. If f : [a,b]→ R is a convex function, then

f
(

a+b
2

)
≤ Hs

k (t)

≤A s
k,k ≤A s

k,k−1 ≤ . . .≤A s
k,2 ≤A s

k,1 =
1

b−a

b∫
a

f dλ , t ∈ [0,1] ,

where for every k ≥ l ≥ 1

A s
k,l :=

1
(b−a)n

(k−1)!
(l−1)! ∑

(i1,...,il)∈Il

tIk,l (i1, . . . , il)

·

(
l

∑
s=1

pis
αIk,is

) ∫
[a,b]n

f


l

∑
s=1

pis
αIk ,is

xis

l

∑
s=1

pis
αIk ,is

dλ
n (x1, . . . ,xn) ,

and for each t ∈ [0,1]

Hs
k (t) :=

1
(b−a)n ∑

(i1,...,ik)∈Ik

(
k

∑
s=1

pis
αIk,is

)

·
∫

[a,b]n

f

t

k

∑
s=1

pis
αIk ,is

xis

k

∑
s=1

pis
αIk ,is

+(1− t)
a+b

2

dλ
n (x1, . . . ,xn) .

Proof. Theorem 6 (a) can be applied with X = [a,b], µ = 1
(b−a)λ and g(x) = x (x ∈ [a,b]).

If (see Proposition 7)

Ik :=
{
(i1, . . . , ik) ∈ {1, . . . ,n}k | i1 < .. . < ik

}
, 1≤ k ≤ n,
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then the main results in the paper Yang and Wang [9] contain

f
(

a+b
2

)
≤ Hs

k (t)≤A s
k,k ≤A s

k,k−1 ≤
1

b−a

b∫
a

f dλ , t ∈ [0,1] ,

which is a very special case of the previous theorem.

6. Proofs of Theorem 5 and 6

Proof. [Proof of Theorem 5](a) Since the function

t→ t

k

∑
s=1

pis
αIk ,is

g(xis)

k

∑
s=1

pis
αIk ,is

+(1− t)
∫
X

gdµ, t ∈ [0,1]

is linear for each (i1, . . . , ik) ∈ Ik and for all xi1, . . . ,xik ∈ X , the convexity of f and the mono-

tonicity of the integral yield that the function

t→
∫
Xn

f

t

k

∑
s=1

pis
αIk ,is

g(xis)

k

∑
s=1

pis
αIk ,is

+(1− t)
∫
X

gdµ

dµ
n (x1, . . . ,xn) , t ∈ [0,1]

is convex for every (i1, . . . , ik) ∈ Ik. The result follows from this, because the sum of convex

functions is also convex.

(b) By the classical Jensen’s inequality

Hk (t)≥ ∑
(i1,...,ik)∈Ik

(
k

∑
s=1

pis
αIk,is

)

· f


∫
Xn

t

k

∑
s=1

pis
αIk ,is

g(xis)

k

∑
s=1

pis
αIk ,is

+(1− t)
∫
X

gdµ

dµ
n (x1, . . . ,xn)



= ∑
(i1,...,ik)∈Ik

(
k

∑
s=1

pis
αIk,is

)
f

t
∫
X

gdµ +(1− t)
∫
X

gdµ


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(10) = ∑
(i1,...,ik)∈Ik

(
k

∑
s=1

pis
αIk,is

)
f

∫
X

gdµ

= f

∫
X

gdµ

= Hk (0) , t ∈ [0,1] .

(9) for l = k was used in (10).

It follows from this and from (a) that

Hk (t)≤ tHk (0)+(1− t)Hk (1)≤ tHk (1)+(1− t)Hk (1) = Hk (1) , t ∈ [0,1] .

(c) Suppose 0≤ t1 < t2 ≤ 1. The convexity of Hk, and Hk (t)≥ Hk (0) (t ∈ [0,1]) imply that

Hk (t2)−Hk (t1)
t2− t1

≥ Hk (t2)−Hk (0)
t2

≥ 0,

and thus

Hk (t2)≥ Hk (t1) .

The proof is complete.

Proof. [Proof of Theorem 6](a) The proof is divided into four parts.

First, we prove that

f

∫
X

gdµ

≤Ak,k.

By Lemma 2.1 (a) in [3]

f

∫
X

gdµ

= f

∫
Xn

n

∑
s=1

psg(xs)dµ
n (x1, . . . ,xn)

 ,

and therefore the classical Jensen’s inequality and the first inequality in (4) yield

f

∫
X

gdµ

≤ ∫
Xn

f

(
n

∑
s=1

psg(xs)

)
dµ

n (x1, . . . ,xn)

≤ ∑
(i1,...,ik)∈Ik

(
k

∑
s=1

pis
αIk,is

)∫
Xn

f


k

∑
s=1

pis
αIk ,is

xis

k

∑
s=1

pis
αIk ,is

dµ
n (x1, . . . ,xn) = Ak,k.

Now, we show that

(11) Ak,l ≤Ak,l−1, k ≥ l ≥ 2.
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Let l ∈ {2, . . .k}. It comes from Theorem 3 (a) that for every fixed x1, . . . ,xn ∈ X

1
(k−1) . . . l ∑

(i1,...,il)∈Il

tIk,l (i1, . . . , il)

(
l

∑
s=1

pis
αIk,is

)
f


l

∑
s=1

pis
αIk ,is

g(xis)

l

∑
s=1

pis
αIk ,is



≤ 1
(k−1) . . .(l−1) ∑

(i1,...,il−1)∈Il−1

tIk,l−1 (i1, . . . , il−1)

(
l−1

∑
s=1

pis
αIk,is

)

· f


l−1

∑
s=1

pis
αIk ,is

g(xis)

l−1

∑
s=1

pis
αIk ,is

 ,

thus (11) can be obtained by integrating over Xn both sides of the inequality.

Next, we prove that

Ak,1 =
∫
X

f ◦gdµ.

By applying Lemma 9 in [4], it follows that

Ak,1 =
1

(k−1)!

n

∑
i=1

tIk,1 (i)
pi

αIk,i

∫
Xn

f (g(xi))dµ
n (x1, . . . ,xn) =

∫
X

f ◦gdµ.

Finally, the task of confirming

f

∫
X

gdµ

≤ Hk (t)≤Ak,k, t ∈ [0,1]

remains. We can derive it from Theorem 5 (b) and (c).

(b) Theorem 3 (b) insures it.

The proof is complete.

Conflict of Interests

The authors declare that there is no conflict of interests.

Acknowledgements

The work was supported by Hungarian National Foundations for Scientific Research Grant No.

K101217.



REFINEMENTS OF THE JENSEN’S INEQUALITY 17

REFERENCES
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