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Abstract. Over a complete metric space endowed with an integral metric, some fixed point theorems for operators

including Cirié type operators satisfying non-expansive type condition have been established.
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1. Introduction and preliminaries

In 1968, Kannan [1] first considered discontinuous operators, and successfully proved some
fixed point theorems for such operators.
In a metric space (X,d), an operator T : (X,d) — (X,d) is called a Kannan operator if T

satisfies the condition:

d(T(x),T(y)) < Bld(x,T(x)) +d(, T())],
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where 0 < 8 < % for all x,y € X. See [1] and the references therein. Immediately thereafter

Kannan operator 7" has been extended to a form like satisfying the condition below:

d(T(x),T(y)) < ald(xT(x) +d,T ()] + Bd(x,y) +ymax[d(x,T(y)),d(y, T (x))],

where 0 < o, 8,y with max(a, ) +7v < 1 forall x,y € X.
This extended form of Kannan operator has been studied by researchers when (X,d) is com-
plete.

In 1975 , Ciri¢ considered another type of operator T : (X,d) — (X,d) satisfying

d(T"(x),T"(y)) < q"(x,y)6(x,y), n=1,2,...

for all x,y € X, where g and 6 are two non-negative real-valued functions over X x X satisfying

q(x,y) < 1forall d(x,y) € X x X with sup g(x,y) = 1.
x,yeX

These operators T are designated as Ciri¢ operators. Let R denote the set of all non-negative
reals with usual topology and ¢ : RT — R be non-negative, finitely Lebesgue summable over
each compact set of R™ satisfying following properties:

() [ o()dr < [ (t)de + [y ¢(¢)dt if u,v € RT and
(i) for every € > 0, [ ¢(t)dt > 0.

Ciri¢ operators include a contraction operator over a metric space but converse is not true.
It is known that a Ciri¢ operator may not possess a fixed point, and that is why, attempts have
been in progress to frame appropriate conditions to be satisfied by Ciri¢ operator to attract a
fixed point. Relevant references have been cited at the end in this connection.

In this paper, we define for the first time a ¢-type Ciri¢ operator over (X,d) via integral met-
ric, and search for appropriate conditions that ensure fixed point of ¢-type Ciri¢ operator over
a complete metric space; allied matters like continuity of fixed points have also been investi-
gated into. Examples are cited either in support of relevant Theorem or to examine strength of

hypothesis made in Theorem.

2. Main results
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Definition 2.1. In a metric space (X,d), an operator 7 : (X,d) — (X,d) is said to be a ¢-type

Ciri¢ operator if

4T (). T"(3))
/‘ 0()dt < ¢"(x,)8(x,y),n=1,2,...,

0

where ¢, g and § are as above.

Here 1-type Ciri¢ operator is a Ciri¢ operator.

Theorem 2.2. Let (X,d) be a complete metric space and T : (X,d) — (X,d) be a ¢-type Ciri¢

operator satisfying the following condition:

d(T (x),T(y))
/ o()dt < «o

40T () +d(,T () d(xy)
A ¢mw+ﬁA 0 (t)dt

/max{d (6T ()T (x))}

0

+y O(t)dt

0

forall x,y € X such that 0 < o, B,y with max (o, B) +y < 1.

Then T has a unique fixed point u in X, and for each x € X, lgn T"(x) =u.
n—oo

Proof. Take x = xo € X, then for positive m and n,

d(T™ (x0),T" (x0)
/ (1)
0
d(T(T™ 1 (x0)), T(T" ! (x0))
_ / 0 (t)di
0
d(T™ 1 (x0)),T™ (x0))+d(T" " (x0),T" (x0)) d(T™ 1 (x0), 7" 1 (x0))
< af o(0)dr+B | o (1)di
0 0
max{d(T™ " (xo),T" (x0)),d(T"~ ! (x0),T™(x0)) }
+v /0 o (t)dt
d(T™ 1 (x0),T™ (x0))+d(T" ! (x0),T" (x0))
< o / o (r)dt
0

o (r)dt
/max{d(Tm_l (x0), ™ (x0)+d (T™ (x0),T" (x0)),d(T" " (x0),T" (x0))+d (T" (x0), T™ (x0)) }

0

d(T™ 1 (x0),T™ (x0))+d (T™ (x0), T" (x0))+d (T" (x0), T~ (x0))
+BA

+Y o(t)dt
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d(T™ (x0),T™ (x0))+d(T"~ ! (x0), 7" (x0))
<« / o(t)dt
0
d(T™ " (x0),T™ (x0))+d (T (x0),T" (x0))+d(T" (x0), 7"~ (x0))
+B /0 o (t)dt
d(T™ ! (x0),T™ (x0)+d(T™ (x0),T" (x0))+d(T" " (x0), 7" (x0))
+y /0 o(r)dt
d(T™ 1 (x0),T™ (x0))+d(T" " (x0),T" (x0))
< (2max{a,ﬁ}+}’)/0 ¢ (2)dt
d(T™(x0),T"(x0))
B+ [ o ().
This gives,
d(T™(x0).T" (x0) d(T"! (x0),T" (%0))+d (T~ (x0).T" (x0))
[ emar< zmix(%’my” o T e,
0 —-B - 0

using property (i) of ¢. And therefore,

¢(t)dr

- 1-p-y
— 0asm,n — .

/d(Tm (x0),T"(x0)
0

[¢" " (x0, T (x0)) +¢" " (x0. T (x0))]8 (x0, T (x0))

So {T"(xp)} is Cauchy in (X,d) which is complete.

Let lgn T"(xp) = u for some u € X. Now
n—oo

o(t)dt

AT (30)," (x0))+ (T (w) AT (o))
/O ¢(z)dr+[3/0 ¢(t)dt

man (11 (5. T 1) (0 T (x0)) )
+

/d(T”(XO%T(M))
0

< o

o (r)dr.
Passing on limit as n — oo, we have

d(u,T (u)) d(u,T (u))
A ¢mmgw+ﬁA ¢(r)dr.

That is,
d(u,T (u))
/ o(t)dt = 0.
0
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Hence using property (ii) of ¢, we have u = T(u). For uniqueness of fixed point u of T, let

v e X withv=T(v). Then

d(u,v) d(T (u),T(v)) d(T" (u),T"(v))
/ o(r)dt :/ q)(t)dt:/ o (t)dt
0 0 0

<q"(u,v)8(u,v) — 0asn — oo.

Hence u =v.

Theorem 2.3. Let (X,d) be a metric space, and T : (X,d) — (X,d) be a ¢-type Ciri¢ operator

satisfying
d(T (x),T(y)) d(x,T (x))+d(»T (y)) d(x.y)
/ o()dr < oc/ ¢(t)dt+[3/
0 0 0
max{d(x,T(y)),d(y,T(x))}
+y /0 O (r)dt

forall x,y € X such that 0 < o, B,y with max{a, B} + v < 1. If for some point xo € X, {T"(xp)}
has a convergent subsequence converging to u € X, the u is the unique fixed point of T, and

lim 7" (xg) = u.

n—soo

Proof. Let Igim T"(xo) =u € X. Then
—>00

d(u,T (u))
[ et
0

/d(uank+l(XO))+d(Tnk+l(xO)vT(“))

0

< ¢(t)dt

d(u, T+ (xg)) d(T"k (x0), 7" (x0)) +d (u,T (u))
</ o )dt+a/ ¢(1)dt
0

(T (xo), max{d(T"* (xo),T (u)).d (u,T"* (x0)) }
+[3/ dt+y/ o(t)dt

/ (u,T"% (x0)) +d (T"¥ (x0), 7"k (x9))
0

<

o (t)dt

(7% ()T (30)) -l 0T () AT (x0)0)
‘o /0 o(t)dt + B /0 0 ()di

/max{d(T"k (x0),7 (1)), (1, 7"k (x0))+d (T" (x0), 7"+ (x0)) }

0

+Y o(t)dt
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d(u,T" (x0)) .
< (1) + (30,7 ()8 (30, T (x0))

d(u,T (u)) d(T"(x0)u)
g (0. T(x0)S (0. T(xo) v [ o(0)dr+P [ o(r)dr

max{d(T" (xo),T (u)),d (u,T"* (xp))} )
o (1) + (v0.T(30))8(x0.T (x0))}

()
—>(a+y)/ 0 ()dt as k — oo.
0

This gives u = T (u), and uniqueness of u is clear.
If (X,d) is a complete metric space it is known that a Kannan operator 7 : (X,d) — (X,d)

satisfying

d(T(x),T(y)) < Bld(x,T(x)) +d(y T(y))],

where 0 < 8 < % for all x,y € X has a unique fixed point in X. See [1]. If contractive parameter
B exceeds %, T may fail to possess a fixed point in X. Theorem 2.2 above permits 3 to exceed %
to the extent of B < 1, and ensures a fixed point of T provided that T is a ¢-type Ciri¢ operator.

Here is an Example to support this statement.

Example 2.4. Take X = {0, 1} with usual metric d of reals, and T : X — X where 7(0) = 1 and
T(1) = 0. One finds that

d(T(x),T(y)) <BldxT(x))+d(»T(y))]

for all x,y € X by taking 8 = % > % Thus conditions of Theorem 2.2 are partially met by 7.

Now,
d(T°(0),T"(1)) =d(0,1) = 1 > ¢"(x,y) 8 (x,)
for large N where ¢(x,y) and 8(x,y) are as in Ciri¢ operator. Thus 7 is not 1-type Ciri¢ opera-

tor(taking @ = 1) over X; and 7 has no fixed point in X.

Example 2.5. Let X = [0,1], and ¢ : Rt — R (R" = set of non-negative reals) with usual

metric of reals, where ¢ () = %tz ast €R". Take T: X — X as T(x) = 5 whenx € [0, 1].
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Now x,y € X gives

d(T"(x),T"(y)) d(5r,5m)
/ o(t)dt = / 77 L
0 0

2

3
o Lyx o oy P 1 x—y)
 6lon on| 23 g

Let 8,4 : [0,1] — Reals be taken as

1—|x—y|,if|x—y| < 3

q(x,y) = . ;
bR lf|X—y| > 8

3
and 8(x,y) = @ for all x,y € [0, 1].
Now take ¢ =y = 1—16 and 3 = é; then 7 is a ¢-type Ciri¢ operator that fits in Theorem 2.2;

it supports Theorem 2.2. 0 is, of course, the unique fixed point of 7.
3. Continuity

Theorem 3.1. Let (X,d) be a complete metric space, and each T; : X — X satisfies conditions

like

(T (). TE)) )
0| 0(1)dr < ¢ (x.3)3(x3)n = 1.2...

and

d(Ti(0).T() d(xT()+d(.T5(7)) d(x)
(i) [ oidr < o oidr+p [ g0
0 0 0

max{d(x,T;(y)),d(y,Tj(x))}
—|—y/ ¢(t)dt

0
forallx,y € X where 0 < a, B,y withmax{o,B} +y <L Ifu;=Tj(u;) €X,and T : X = X is
an operator such that T"(x) = lim 7} (x) for all x € X,n = 1,2, ..... Then T has a unique fixed
J—reo

point uin X if and only if u = lim u;.
Jj—ree

Proof. Here as x € X, T"(x) = lim T}'(x). In (ii) of Theorem 3.1 make j — oo to obtain
e

o(r)dt < «

/d(T(XLT(y)) /d(x,T(X))+d(y7T(Y))

d(x.y)
0 o (1)dr + B /0 ¢ (¢)dt
/max{d (T (). d(»T(x))}

0

+y o (t)dt,

0
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where a, 8,7 > 0 with max(a, B) +y < 1. Now

/d (T"(x),T"(v))

4T (), T ()
o()dt < /
0

O(t)dt

AT (). T()) ATI0). ()
+A ¢mm+é 0 ()t
d(T"(x),T™

2).T7(x) ) d(T ()T ()
JA 0(1)dr +q"(x.)8(xy) + | o(r)dr.

0

Passing on limit j — oo, we have

/d (T"(x),T"(v))

A ¢ (t)dt < q"(x,y)6(x,y)

for all x,y € X. Now Theorem 2.2 applies to conclude that 7" has a unique fixed point u € X. So
T(u)=u.IfTj(u;) =uj,i=1,2,..., we have

d(uu;) d(T (u),Tj(uj))
[ ewar = | o (1)di
0 0
d(T (u),T;(u)) d(T;(u),Tj(uj))
/O ¢(t)dt+/0 o (1)dt
d(T (u),T;(u)) d(u,Tj(u))+d(u;,Tj(u;))
/ ¢(t)dt+oc/ o (r)dt
0

0
d(uu;) max{d(u,Tj(u;)),d(u;,T;(u))}
B[ pdi+y | o(r)dr

IA

IN

or,

d(u.uj) d(u,T;(u)) d(u,T;(u)) d(u.uj)
/0 o(r)dr < /O ¢(t)dt—|—oc/0 ¢(t)dt-|—ﬁ/0 O (t)dt

/max{d(u,uj),d(ujjj(”))}

+y O(t)dt.

0
Case I. Suppose max{d(u,u;),d(u;,Tj(u))} = d(u,u;). Then from above

d(u,Tj(u))

d(uu;)
(1=B-n [ ewar<ra) [ o

Therefore

d(u,uj) 1 d(u,Tj(u))
/ ’¢(t)dz§i/ P 0 (0)dr = 0 as j— oo
0 1-B—-7Jo
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and we have lim u; = u.
J=ree

Case II. Suppose max{d (u,u;),d(u;, Tj(u))} = d(u;,T;(u)). Then

d(uu;) d(u,Tj(u)) d(u,uj)
/ o(dt < (1+a) / o(t)dt + B / 0 (t)dt
0 0 0

(. Tj(u))
+Y /0 O(t)dt
or
d(uu;) d(u,T;(u)) d(uj,u) d(u,T;(u))
[ i< 2 [T oware Lo [T owar [T owar
0 1-BJo 1-B"Jo 0
or (1 — #) fod(u’uj) ¢(t)dt — 0 as j — oo, where lim Tj(u) = T'(«) and we have lim u; = u.
e Joee

Conversely, let lim u; = u. We have
jreo

d(u;,Tj(u)) d(Tj(u;),Tj(u))
/ o(t)dt = / o (r)dt
0 0

0T+ 0T ) d(u;0)
« /O 0(t)di+ B /0 0(t)dr

max{d(u;,Tj(u)),d(uu;)}
+r

IN

o (t)dr.

As j — oo, we have

d(u,T (u)) d(u,T (u))
[ ewd <oy [T o

So, (1—a — ) [&“TW) ¢ (1)dr = 0. Hence T (1) = u.
4. Simultaneous fixed points

Theorem 4.1. Let (X,d) be a complete metric space, and Ty, T» : (X,d) — (X,d) be two com-

muting operators satisfying

o d(BT)"(0),(T2Th)"(v)) "
oy 0(1)dr < ¢ (x.3)3(x, )0 = 1.2...
and
d(Ti(x),2(y)) d(x,11(x))+d(»T2(y)) d(x,y)
(i) [ oidr < af odi+p [ oldr
0 0 0

o (1)dt

max{d(x,1>(y)),d(y,T1(x))}
[

0
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forall x,y € X where a, 3,y > 0 withmax{a,B}+7y <1, and where §,q,0 have the properties
as in Theorem 2.2.

Then Ty and T, have a unique common fixed point in X.

Proof. Let xy be any point in X, and define x5, 1 = T1(x2,,),%20+2 = T2 (x2+1), for n > 0. Then

Xop = T2<x2n—1) =1T (in_z) =..= (Tle)n(x()) and xp,, 11 = (T2T1)n(T1 (X())). So

d(x2n:X2n+1) d((T2Th)" (x0),(T2T1)"(T1(x0)))
/ o()di = / 0 ()t
0 0

< ¢"(x0,T1(x0)) 8 (x0,T1(x0)) ..(4.1)

and

d(X2n41.%2042) d(Ti (x20), T2 (x2041))
| oar [ (1)
0 0

/d (20,11 (x20))+d (2011, T2 (%20 11))

IN

o

d(xXonX2n+1)
0(t)dt + B / 0 ()t
0 0

max{d(x2n7T2 (x2n+l))7d(x2n+1 ,T1 (x2n))}
+7/ o(1)dt

0

/d(x2n 7x2n+1)+d (x2n+1 7x2n+2)
= o

d(x2n7x2n+l)
o(1)di + B / 0 ()
0 0

max{d (x2n,%2n+2),d (X2n+1%2mn+1) }
+y /0 o (1)dr

d(x2n M2n+1 )

IN

d(X2p41,X2042)
(a+B) /0 o(1)di + /0 o (1)dt

/d (X2n,%2n41)+d(X2n41,%2012)

+Y ¢(r)dr.

0

This gives

d(Xon41,%2n42) a+ B+ d(xonX2n+1)
J o < (SEBT) | (1)
0 —a—=vr Jo

o+B+y

<
_<1—a—y

)" (x0, Ti(x0)) 0 (x0, T1 (x0))- (4.2)

From (4.1) and (4.2) we have for n > 0

a+ﬁ+%

d(Xp41,%n) di < 1
/0 (p(t)t_max(,l_a_y

q" (x0, T (x0))0 (x0,T1(x0))- (4.3)

Since lim ¢" (xo,T1(x0)) = 0, we have f:(x”“’x") ¢(t)dt — 0asn— coand lim d(x,41,x,) = 0.
n—oo n—oo
)

Suppose m,n are positive integers with n > m. Then taking / = max(1, ?jgf;/ )6 (x0,T1(x0)),
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where 1g" (xo,T1(x0)) < 1 for large n. Then we have from (4.3),

d(xm axn) d(xm Xm+1 ) d(xm-H 7xm+2)
[ ewar <[ o+ | o(1)dt + ..

—Jo
d(xn—l 7xn)
+ [ sy

< 1(¢" (x0. T1 (x0)) +¢" " (x0, T3 (x0)) +...)

_ qm(x(), I (X()))
1 —g(xo,T1(x0))’

which — 0 as m — oo. Thus {x,} is shown to be Cauchy in X; and let lim x, = u € X.
n—yoo

Now

d(Ty (u) Xn42) d(Ty (u),T>(x241))
/“ o(0)dr = / 0 (t)dt
0 0

IA

d(u, Ty (u))+d (x20+1,T2 (X20+1))
«f

d(uxn+1)
sar+p [ g(wr
0 0

/max{d(u,Tz (2n41)),d (x2p4-1,T1 (1)) }

+Y o (t)dt

0

/d(M,Tl (u))+d (x2p41,X2042)
= O

d(uxon41)
o+ [ gtar
0 0

/max{d(M,X2n+2)7d(x2n+l T (u)}

+vy o (1)dr.

0

Passing on limit as n — oo we get

d(u7Tl (M)) d(uaTl (M))
[ emd <oy [ o

This gives d(u,T1(u)) = 0; so u is a fixed point of 77. Similarly, it is shown that u is a fixed

point of 75. For uniqueness of u, let w € X such that 71 (w) = w = T>(w). Then

d(u,w) d(Ti(u),T2(w))
/ o(t)dr = / o(t)dt
0 0

d(u,T () +d(w,Tr(w)) d(u,w)
A ¢mm+BA 0(t)dr

max{d(u,Tr(w)),d(w,T; (u))}
i

IN

o

o(t)dt

d(u,w)

= B[ o0

Since max{a,B} + y < 1, we have fod(u’w) o (t)dt = 0 which implies u = w and so the fixed

point is unique.
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