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Abstract. In this paper, we establish some Hermite-Hadamard type inequalities for Lipschitz functions defined on

invex subsets of real line.
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1. Introduction

Let I = [c,d] be an interval on the real line R, f: I — R be a convex function and a,b €

[c,d],a < b. We consider the well-known Hermite-Hadamard inequality

Several refinements and generalizations of Hermite-Hadamard have been found in [1-5, 8-12,
16] and references therein. In recent years several extensions and generalizations have been
considered for classical convexity. A significant generalization of convex functions is that of
preinvex functions introduced by Ben-Israel and Mond in [7] (see [6, 14] for more property and
generalizations).
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Now, we recall some notions in invexity analysis which will be used throughout the paper
(see [2, 13, 14, 17] and references therein). A set S C R is said to be invex with respect to
the map n : S x S — S, if for every x,y € S and every ¢ € [0,1], y+11(x,y) € S. Recall that an
n—path for x,y € S is a subset of S defined by

Py :={x+m(yx)|[0<t <1}

It is obvious that every convex set is invex with respect to the map 1 (x,y) = x — y, but there
exist invex sets which are not convex. The mapping 1 : § X § — S is said to be satisfies the

condition C if for every x,y € Sand ¢ € [0,1],
77()’7)’+t77(x7)’)) = _tn(xvy)7
77(%)"“”7(%)’)) = (1 _t)n(xay)'
For every x,y € S and every 11,1 € [0, 1] from condition C we have
ny+onxy),y+unxy)) = (L —un)nxy). (1.2)

Let S C R be an invex set with respect to 1 : S x S — S. Then, the function f : § — R is said to

be preinvex with respect to 7, if for every x,y € Sand ¢ € [0, 1],

Fo+mx,y)) <tf(x)+(1—1)f(y).

Every convex function is a preinvex with respect to the map 1 (x,y) = x —y but the converse does
not holds. The following Hermite-Hadamard inequality for preinvex functions is introduced in

[15],

1 1 patniba) fla)+f(b)
Z < <=t 1.
flatgn(ba) < coos [T e < FEOTEE (13)
where a,b € S, (see also [5]).
On the other hand, Dragomir in [9] defined two mapping H,F : [0,1] — R, as follows and

established several important results in connection to Hermite-Hadamard inequality.

/bf<tx+(l —t)ﬂ>dx,

H(t): 5

- b—a

F(t):= ﬁ/j/jf(lx—k(l —t)y)dxdy.
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Since then numerous articles have appeared in the literature reflecting further applications and
properties of mappings H, F, (see [3, 8, 10, 11, 16]) and references therein. In [10] Dragomir
by relaxing convexity and utilizing two above mapping, introduced some Hermite-Hadamard

inequalities for Lipschitz functions defined on intervals as follows;

Theorem 1.1. Let f: 1 C R — R be a M—Lipschitz function and a,b € I with a < b. Then, we

have the following inequalities

150 -5 [ 1w

(b—a), (1.5)

and

(b—a). (1.6)

Theorem 1.2. Let f : 1 C R — R be a M—Lipschitz function and a,b € I with a < b. Then,
(i) The mapping H is * (b — a)—Lipschitz on [0, 1].

(ii) For every t € |0, 1] we have the following inequalities

‘ ()~ a/f 1_t>(b—a), (1.7)
'f(a;b)—H(t) S%(b—a), (1.8)

and
‘H(t)—t 1a/abf(x)dx—(l—t)f(a;b)’ < ’(I?)M (b—a). (1.9)

Theorem 1.3. Let f : I C R — R be a M—Lipschitz function and a,b € I with a < b. Then,

(i) F(t) =F(1 —t),forallt € [0,1]
M(b—a)
3

(ii) The mapping F is a —Lipsschitz function on [0, 1].

(iii) We have the following inequalities

b b _
‘F(t)—(b_l—a)z/a/(lf(%)dxdy‘g%(b—a), (1.10)

‘tba/f M?

(b—a), (1.11)
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and

Fo 10 <6 ) (1.12)

The main purpose of this paper is to establishing some new inequalities involving generaliza-

tions of two above mappings for Lipschitz functions on invex subsets of R.
2. Main results

At first we start with the following theorem connecting two inequalities of Hermite-Hadamard

type for Lipschitz functions defined on invex sets.

Theorem 2.1. Let S C R be an invex set with respect ton : S X S — S. Suppose that M satisfies
condition C. Assume that f : S — R is a M—Lipschitz function and a,b € S with 1(a,b) # 0.
Then,

(i)

1 1 ¢ 1
Flat gn(ed) - oo [ fas| < GMinGa)]. 1)
where ¢ :=b+1(a,b).
(ii) If a > b and n(a,b) > a — b, then,
fla +f
‘ (a,b) / f)
(2.2)

M(a—b) Mn(a,b)+M(b—a)
= 3n(a,b)?2 2 2

where ¢ :=b+1(a,b).

Proof. (i) Leta,b € Sandt € [0, 1]. Then,

\rf<a>+<1—t>f<b>—f<b+rn<a,b>>\
= [t(f(a) ~ 16+ m(a.))) + (1) (/(b) ~ f(b+n(a.b))]
<t‘f f(b+1m(a, b))‘ (1—1) )f f(b+1n(a, b)))

<tMl|a—b—1tn(a,b)|+t(1—t)M|n(a,b)|.
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Fort— , we get
b 1
)f(a)‘;f( ) —f(b—l—in(a,b))‘
| | | (2.4)

If in (2.4) we put b+1n(a,b) and b+ (1 —t)n(a,b) instate of a and b, respectively then we

obtain

f(b+m(a,b))+f(b+ (1 —-1)n(a,b))

~ b+ n(ab))

1 2 (2.5)
< SM[2t =1 (a,b)].
Integrating on [0, 1] implies that
1 1 _Anla
0+t 3 0= Omfabe i L
(2.6)
< Mln(a.p)].
(ii) For every t € [0, 1], from (2.3) we have
tf(a)+(1=1)f(b) = f(b+1n(a,b))
(2.7)
<tM|a—b—1tn(a,b)|+t(1—t)Mn(a,b).
By integrating on [0, 1] we get
‘f(a)/oltdt—l—f(b)/l(l—t)dt—/olf(a—l—tn(a,b))dt
fla +f 1 ¢
(=[5 [ 105
< {/0 tM |a—b—1tn(a, b)|dt} /Olt(l —t)Mn(a,b)dt (2.8)
_ [M(a—b)* Mn(a,b) M(b—a)] Mn(a,b)
B [3n(a,b)2 L T A }“L 6
~ M(a—b)* Mn(a,b) +M(b—a)
~ 3n(a,b)? 2 2
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Note that, by simple computation we have
1
/ tla—b—m(a,b)|di
0

A 1
:/0 t(a—b—tn(a,b))dt+At(b—a+t'n(a,b))dt

_ (a—b)* n(a,b) b-a
 3n(a,b)? 3 2

where A ;= @b

Remark 2.1. If in Theorem 2.1, N(x,y) = x —y, for every x,y € S, then we have the results in

Theorem 1.1, as a special case.

Motivated by [9] for a real valued function f defined on an invex set S C R with respect to

n:SxS— S, we consider two mappings H,F : [0,1] — R, as follows;

1

0= )

/acf(a+%n<b,a)+tn(y,a+%n(b,a)))dy,
and
1 C C
)= oo | [ reeeme)dsay,

where a,b € S and ¢ := a+ 1n(b,a). Note that in the special case, if n(x,y) = x —y for every
x,y € S then, the mappings H and F reduce to mappings H and F defined in (1.4), respectively.

The following theorem is a generalization of theorem 1.2 in invexity setting.

Theorem 2.2. Let S C R be an invex set with respect to n : S X S — S. Suppose that N satisfies
condition C and for every x #y € S, N(y,x) # 0. Assume that f : S — R is a M—Lipschitz
function. Then, for every a,b € S one has

(i) The mapping H is % |1 (b,a)|—Lipschitz on [0, 1].

(ii) For every t € |0, 1] we have the following inequalities

'H@)— s [ < MO0 1n,a). (2.9)
et ynib) - Ho)| < Y .l (2.10)
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and
1
() (1= la+ 2n(b.0)
(2.11)
<M ),
where ¢ :=a+1(b,a).
Proof. Let t1,7, € [0, 1]. Then,
H(e2) = H(1)
= | [ et 3.0 +entat 3n(6,0)
- |T](b,(1> ; a 217 a 2nix,a 271 a
¢ 1 1
- [ flat s +nnixa+ 3n(.a))dx
< flat 3n(b.a) +on(xat 31(b.a)))
—_— a+=n(b,a x,a+=1n(b,a
N ’n(baa> a 2 ? 2 (2 12)
1 1 '
_f(a+§n(b7a)+t1n(x7a+_n(b7a))) dx
W tznxa+ r](b a))—nn(x,a+ = nba ‘dx
M|l‘2—l‘1|
n(b.a)] /‘nxa—i— n(b,a) |dx
_ Mm@l
4 2=t

Indeed, if we choose the change of variable x := a+s1n(b,a),s € [0, 1], and using (1.2) then we

have

¢ 1
| Int.a+5n(.0))ax

/01|n(a+sn(b,a),a+%n(b,a))“n(b,a)]ds (2.13)

I 1 1
_ 2 bt 2
=)l [ s=3lds=;in.a)

this completes the proof of (i).

(ii) It is easy to see that
1
H(0) = f(a+3n(b,a)),

and

H(1) = n(;,a) /acf(x)dx.
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Now, the inequalities (2.9) and (2.10) follow from (2.12) by choosing t; =t,t, =1 and #; =
0,1, = t, respectively. Inequality (2.11) follow by adding ¢ times (2.9) and (1 —¢) times (2.10).

This completes the proof.

Theorem 2.2. Let S C R be an invex set with respect to 1 : S x S — R. Suppose that for every
x#y€S n(yx)#0.If f: S — Ris a M—Lipsschitz function then; for every a,b € S,
(i) F(t) = F(1—t), forallt € [0,1]

M|n(b,a)|
3

(ii) If n satisfies condition C then, Fis a —Lipsschitz function on [0, 1].

(iii) If N satisfies condition C then, for every t € |0, 1] we have the following inequalities

‘F(t)—m/ac/acf(xjtén(y,x))dxdy’

iz 1] (2.14)
t_
< T|n(b7a)|a
1 ¢ Mt
A0~ o [ 10| < F oo, 215)
and
A0 - Ho) < =D e, (2.16)
Proof. (i) It is obvious.
(ii) Lett,0 € [0, 1]. Then,
F) - F( )
b e f(x+6n(x)) —f(x+tm(y,X))}dxdy’
(2.17)
o) f(x+tzn(y7X))—f(x+tm(y,X))‘dxdy

_M|t2_t1|//|n (v, x) |dxdy.

On the other hand, if we use the change of variables x := a+rn(b,a),y := a+sn(b,a), r,s €

[0, 1] then by simple computation we get
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hence det ‘3(();5) = 1n(b,a)?. Now, by using (1.2) we obtain

l C C
nb.a? a)z/a /a |1 (y,x)|dxdy

1 1
- n(bla>2/0 /0 |Tl(a+sn(b,a),a+rn(b,a))‘n(b,a)zdrds
e n(b,a)|
=)l [ [ [s—rfards = T

By combining (2.17) and (2.18) it follows that

)~ Fla)l < 0y .

(2.18)

(2.19)

(iii) The inequalities (2.14) and (2.15) follows from (2.19) if we choose #; = %,tz =t and

t1 = 0,1, =1, respectively.

Now, we prove the inequality (2.16). Since f is M —Lipschitz if we set
y:=a+sn(b,a), x:=a+rn(b,a), r,s € [0,1]
then, by using (1.2) we have

ot m(e) = £(at 3n(0,0) £t 5n(6.0)

< M|y (5) —a— 31(b,) —m(a+ 3(b,a)
= M[sm(b.a) +1(r=5)n(.0) - 31(6,0) 10~ n(b.)

= M|s11(b,a) ~15n(b,a) ~ 30 (b.)) + 31 (b.a)

— (1 -osnioa) - 00 nio.a)

1
= (l—t)M‘y—a—En(b,a) , forallz € [0,1].

(2.20)
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By integrating the inequality (2.20) on P,;, X P,;, we have

‘ b.a) // (x+ 3 T]y, x))dxdy

< (l—t)Mn(;,a) /ac y—a—%n(b,a) dy
(I =1)M
1 nba)

This completes the proof.
Corollary 2.2. If in Theorem 2.2, n(x,y) = x —y, for every x,y € S, then we have the results in

Theorem 1.3, as a special case.
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