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Abstract. In this article, we introduce a new subclass of meromorphic bi-univalent functions and obtain the general

coefficient estimates for such functions in this class. For this purpose, we use the Faber polynomial expansions. In

certain cases, our estimates improve some of existing coefficient bounds.
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1. Introduction

Let Σ denote the class of meromorphic univalent functions f of the form

f (z) = z+
∞

∑
n=0

bn

zn (1.1)

defined on the domain 4= {z : z ∈ C and 1 < |z|< ∞}. It is well known that every function

f ∈ Σ has an inverse f−1, defined by

f−1( f (z)) = z,(z ∈4),
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and

f ( f−1(w)) = w,(M < |w|< ∞, M > 0).

For f ∈ Σ given by (1.1), the inverse map g = f−1 has the following Faber polynomial expan-

sion:

f−1(w) = g(w) = w+
∞

∑
n=0

Bn

wn = w−b0−
b1

w
− b1b0 +b2

w2 −
b2

1 +b1b2
0 +2b0b2 +b3

w3 + ...

= w−b0−
∞

∑
n≥1

1
n

Kn
n+1

1
wn , (w ∈4), (1.2)

where

Kn
n+1 = nbn−1

0 b1 +n(n−1)bn−2
0 b2 +

1
2

n(n−1)(n−2)bn−3
0 (b3 +b2

1)

+
n(n−1)(n−2)(n−3)

3!
bn−4

0 (b4 +3b1b2)+ ∑
k≥5

bn−k
0 Vk,

(1.3)

and Vk with 5 ≤ k ≤ n is a homogeneous polynomial of degree k in the variables b1,b2, ...,bn.

(See [1], [2], and [3]).

Analogous to the bi-univalent analytic functions, a function f ∈ Σ is said to be meromorphic

and bi-univalent if f−1 ∈ Σ. The class of all meromorphic and bi-univalent functions is denoted

by ΣM .

The coefficient problem was investigated for various subclasses of the meromorphic univalent

functions, for example, Schiffer [4] obtained the estimate |b2| ≤ 2
3 for meromorphic univalent

functions f ∈ Σ with b0 = 0. In 1983, Duren [5] obtained the inequality |bn| ≤ 2
n+1 for f ∈ Σ

with bk = 0, 1 ≤ k < n
2 . For the coefficient of the inverse of meromorphic univalent functions

g ∈ ΣM , Springer [6] proved that

|B3| ≤ 1 and |B3 +
1
2

B2
1| ≤

1
2
,

and conjectured that

|B2n−1| ≤
(2n−1)!
n!(n−1)!

(n = 1,2, ...).

In 1977, Kubota [7] has proved that the Springer conjecture is true for n = 3,4,5, and subse-

quently Schober [8] obtained sharp bounds for |B2n−1| if 1≤ n≤ 7. In 2007, Kapoor and Mishra

[9] found the coefficient estimates for the inverse of meromorphic starlike univalent functions

of order α in 4. In 2011, Srivastava et al. [10] found sharp bounds for the coefficients of
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inverses of starlike univalent functions of order α(0 ≤ α < 1) having m-fold gap series repre-

sentation. The interests in this direction is increasing. Recently, Hamidi et al. [11] introduced

the following class of meromorphic bi-univalent functions f ∈ Σ and used the Faber polyno-

mial expansions to obtain bounds for the general coefficients |bn| of meromorphic bi-univalent

functions in the class BΣ(α,λ ).

2. Preliminaries

Definition 2.1. [11] For 0 ≤ α < 1 and λ ≥ 1, let BΣ(α,λ ) be the class of meromorphic

bi-univalent functions f ∈ Σ so that:

ℜ

(
(1−λ )

f (z)
z

+λ f ′(z)
)
> α, z ∈4

and

ℜ

(
(1−λ )

g(w)
w

+λg′(w)
)
> α, w ∈4,

where the function g is given by (1.2).

Theorem 2.1. [11] Let f be given by (1.1). For 0 ≤ α < 1 and λ ≥ 1 if f ∈ BΣ(α;λ ) and

bk = 0; 0≤ k ≤ n−1,then:

|bn| ≤
2(1−α)

λ (n+1)−1
; n≥ 1,

|b0| ≤
2(1−α)

λ −1
, |b1| ≤

2(1−α)

2λ −1
,

|b2| ≤
2(1−α)

3λ −1
, and |b2 +b0b1| ≤

2(1−α)

3λ −1
.

For functions f ∈ Σ in the form (1.1), we define the following new linear operator

D0
λ

f (z) = f (z)

D1 f (z) = D f (z) = z f ′(z)

= z+
∞

∑
n=0

[−n]
bn

zn ,

and

D2 f (z) = D[D f (z)] = z+
∞

∑
n=0

[−n]2
bn

zn ,
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hence, it can be easily seen that

Dk f (z) = D[Dk−1 f (z)] = z+
∞

∑
n=0

[−n]k
bn

zn , (k ∈ N0). (3.1)

For 0 ≤ α < 1, λ ≥ 0 and k ∈ N0, let BΣ(k,α,λ ) be the class of meromorphic bi-univalent

functions f ∈ Σ so that

ℜ

(
(1−λ )Dk f (z)+λDk+1 f (z)

z

)
> α

and

ℜ

(
(1−λ )Dkg(w)+λDk+1g(w)

w

)
> α

where z,w ∈4 and the function g = f−1 is given by (1.2).

In this paper, motivated by the previous works, we shall use the differential linear operator

Dk f (z) given above to obtain our results. Similar to the work done by [11], we use the Faber

polynomial expansions to obtain bounds for the general coefficients |bn| of meromorphic bi-

univalent functions in BΣ(k,α,λ ).

3. Main results

Our first theorem introduces an upper bound for the coefficients |bn| of meromorphic bi-

univalent functions in BΣ(k,α,λ ).

Theorem 3.1. For 0≤ α < 1, λ ≥ 1, and k ∈ N0, let f be given by (1.1). If f ∈ BΣ(α;λ ) and

bk = 0;(n−1≥ k ≥ 0), then

|bn| ≤
2(1−α)

[(n+1)λ −1]k
; n≥ 1. (3.1)

Proof. For meromorphic functions f ∈ BΣ(k,α,λ ) of the form (1.1), we have

(1−λ )Dk f (z)+λDk+1 f (z)
z

= 1+
∞

∑
n=0

[1−λ (n+1)]k
bn

zn+1 , (3.2)

and for its inverse map, g = f−1 ,we have

(1−λ )Dkg(w)+λDk+1g(w)
w

= 1+
∞

∑
n=0

[1−λ (n+1)]k
Bn

wn+1
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= 1− (1−λ )k b0

w
−

∞

∑
n=1

[1−λ (n+1)]k
1
n

Kn
n+1(b0,b2, ...,bn)

1
wn+1 . (3.3)

On the other hand, since f ∈ BΣ(k,α,λ ) and g = f−1 ∈ BΣ(k,α,λ ), by definition, there exist

two positive real part functions

p(z) = 1+
∞

∑
n=1

cnz−n ∈ Σ

and

q(w) = 1+
∞

∑
n=1

dnw−n ∈ Σ,

where ℜ{p(z)}> 0 and ℜ{q(w)}> 0 in4 so that

(1−λ )Dk f (z)+λDk+1 f (z)
z

= α +(1−α)p(z) = 1+(1−α)
∞

∑
n=1

K1
n (c1,c2, ...,cn)z−n,

(3.4)

and

(1−λ )Dkg(w)+λDk+1g(w)
w

= α +(1−α)q(w) = 1+(1−α)
∞

∑
n=1

K1
n (d1,d2, ...,dn)w−n.

(3.5)

Note that, by the Caratheodory Lemma (e.g., [5]),

|cn| ≤ 2 and |dn| ≤ 2 (n ∈ N).

Comparing the corresponding coefficients of (3.2) and (3.4), for any n≥ 2, yields

(1−λ (n+1))kbn = (1−α)K1
n+1(c1,c2, ...,cn+1), (3.6)

and similarly, from (3.3) and (3.5) we find

(1−λ (n+1))kBn = (1−α)K1
n+1(d1,d2, ...,dn+1). (3.7)

Note that for bk = 0; (0≤ k ≤ n−1), we have Bn =−bn and so

(1−λ (n+1))kbn = (1−α)cn+1, (3.8)

and

−(1−λ (n+1))kbn = (1−α)dn+1. (3.9)
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Now taking the absolute values of the above equalities and applying the Caratheodory lemma,

we obtain

|bn|=
(1−α)|cn+1|
|[1−λ (n+1)]k|

=
(1−α)|dn+1|
|[1−λ (n+1)]k|

≤ 2(1−α)

[λ (n+1)−1]k
.

which completes the proof of Theorem 3.1.

Remark 3.1. Let k = 1, we have f ∈ BΣ(1,α,λ ) = BΣ(α,λ ), Theorem 3.1 reduced to Theorem

1.1 in [11].

By imposing coefficient restrictions on Theorem 3.1, we capture the initial Taylor-Maclaurin

coefficients of functions f in BΣ(k,α,λ ) as well as a bound for the coefficient combination of

(b2 +b0b1) in the following theorem:

Theorem 3.2. For 0≤ α < 1, λ ≥ 1, and k ∈ N0, let f ∈ BΣ(k,λ ,α) be given by (1.1), then

(i) |b0| ≤
2(1−α)

(λ −1)k . (3.10)

(ii) |b1| ≤
2(1−α)

(2λ −1)k . (3.11)

(iii) |b2| ≤
2(1−α)

(3λ −1)k . (3.12)

(iv) |b2 +b0b1| ≤
2(1−α)

(3λ −1)k . (3.13)

Proof. Comparing Eqs. (3.2) and (3.4) for n = 0,1,2, we obtain:

(1−λ )kb0 = (1−α)c1, (3.14)

(1−2λ )kb1 = (1−α)c2, (3.15)

and

(1−3λ )kb2 = (1−α)c3, (3.16)

Also, from (3.3) and (3.5), for n = 2 we have:

−(1−3λ )k(b2 +b0b1) = (1−α)d3. (3.17)

Solving Eqs. (3.14), (3.15), (3.16) and (3.17) for b0,b1,b2 and (b2 +b0b1), respectively, taking

their absolute values and then applying the Caratheodory Lemma, we obtain:

|b0| ≤
(1−α)|c1|
|(1−λ )k|

≤ 2(1−α)

(λ −1)k ,
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|b1| ≤
(1−α)|c2|
|(1−2λ )k|

≤ 2(1−α)

(2λ −1)k ,

|b2| ≤
(1−α)|c3|
|(1−3λ )k|

≤ 2(1−α)

(3λ −1)k ,

and

|b2 +b0b1| ≤
(1−α)|d3|
|(1−3λ )k|

≤ 2(1−α)

(3λ −1)k .

Remark 3.2 From the above discussion it is understood that the estimates of b0,b1,b2 and

(b2 +b0b1) in Theorem 3.2 is the same as the corresponding estimates of Theorem 1.2 in [11],

when k = 1.
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