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Abstract. In this paper we obtain Jensen’s inequality for HH-convex functions. Also we get inequalities alike to

Hermite-Hadamard inequality for HH-convex functions. Some examples are given.
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1. INTRODUCTION

Let i be a positive measure on X such that u(X) = 1. If f is a real-valued function in L' (1),

a < f(x) < bforall x € X and ¢ is convex on (a,b), then

(1) 0 ( /. fdu) < [ (p.r)au

The inequality (1) is known as Jensen’s inequality [3],[4].
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Definition 1.1. A function ¢ : (a,b) — (0,00), where 0 < a < b < oo, is called HH-convex

(according to the harmonic mean) if the inequality
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or
(p( Xy ) < P(x)o(y)
Ay+(1=2A)x) = A(y)+(1-2)p(x)
holds, where a < x < b,a<y<b,and0 <A < 1.

In this paper we prove Jensen’s inequality and alike to Hermite-Hadamard inequality for

HH-convex functions. First we need the following theorem.

Theorem 1.2. A function ¢ is HH-convex on (a,b) if for 0 < a < s <t < u < b the following

inequality holds
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Proof. Let ¢ be HH-convex and A = s(u ), then
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It follows that
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Conversely let the inequality (3) holds, and A € [0,1],0 < a <x <y < b, then x <
By inequality (3) we have
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Thus ¢ is HH-convex

O
By similar way to the convex functions we can prove if ¢ is HH-convex on (a,b), then @ is
continuous on (a,b).

2. MAIN RESULTS

Theorem 2.1. Let i be a positive measure on a 6-algebra m in a set X, so that u(X) = 1. If f

’ X ==
is a real function in L' (1), 0 < a < f(x) < b for all x € X, and if ¢ is HH-convex on (a,b), then

1 1
“4) ¢
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fX goof

Proof. Putt:f - Thena <t <b. Let
X7
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Then M is no larger than any of the quotients on the right side of (3), for any u € (¢,b). It

follows that

1 1
o) — oG 1 1 11
ORIV S RPN
t

since ¢ is continuous, ¢ o f is measureable, and since f € L'(u), f(x) > a > 0, so ch eL'(n).

By integrating both sides with respect to measure (1, we obtain

/X(pdff—ﬁszw(xd%—;) (1(x)=1)

1

7z - 1t follows that
Xf

Now set t =

/d“_ L
xpof (;)_
?\

X

or

O

Corollary 2.2. Let f : [a,b] — (0,00) (b > a > 0) be a continuous function and ¢ : J — (0, )

be a HH-convex function on an interval J which includes the image of f. Then

1 1

®) 4 ab b _dx < ab_ b dx
b—aJta x2f(x) b—aJa x*(gof)(x)
dx
Proof. In theorem 2.1, put X = [a,b] and dpu = —. O
X

In the following theorem we prove a version for the inverse of Corollay 2.2

Theorem 2.3. Let ¢ : (0,00) — (0,00) be a function such that the inequality (5) holds, for

every positive real bounded measureable function f. Then @ is HH-convex.
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Proof. Let A € [0,1], ¢,d € (0,00). Define

ab

c a<x<s—F—7
F) = b Tat(1—A)b
d  gariioap SX<b
we have
ab /b _ la+1 s dx /b dx
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On the other hand we have
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Now the (*), (**) and (5) show that ¢ is HH-convex.

b-aJa x2¢(f(x)) (

1
Example 2.4. Let X = {x1,x2,...,x,}, u({x;}) = — and f(x;) = @; > 0. Then (4) becomes
n

or

n n
(6) (P(l i 1)S 0 i T
R I & + ottt o

Now we inestigate this inequality for @ (x) = x¥ and @ (x) = e
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(i) ¢(x) =x¥is HH-convex on (0, ) for 0 < y < 1, because x;f;i’;) = yxlﬂ’ is

[1]). The inequality (6) implies that

Y
n n
<1 1 1) S 1 1 1
TR sttt L+

put al, =p; (i=1,2,...,n). It follows that

n 4 n
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The number Cy = <W) is termed the mean power of numbers py, p2,

v. Inequality (7) shows that for 0 <y <1, Cy < Cy.

Now let0 < y= % < 1, then (7) becomes,

QM=

o o

prtpatotpn [ PLtpy+tpn

n n
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Put p? =gq; (i=1,2,...,n). It follows that

<ﬁ+£+m+#>

==

n

1
>(q?‘+q3‘+~'+612‘>“
o n

increasing (see

..., pn of order

Soif 0 < a < B, then Cy < Cg. By HH-concavity of ¢(x) = x” on (0,e0) for y <0, and y > 1

and similar way we can prove for ¢ < 0 < 8 and o < 8 < 0 we have
Ca < Cﬁ

Thus the mean power of order ¥ monotonically increasing together with 7.

1 /
(ii) @(x) = " is HH-concave on (0,), because o) _ —e v s decreasing (see [1]). The

¢lx)
inequality (6) follows that
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put LL = pi, = 1,2,...,]’1. Hence

e’

1 n
>
pPip2---Pn P1+p2+--+pn

SO

Pitp2t-+pn
n

/P1P2---Pn <

That is, the geametric mean of positive numbers is not greater than the arithmetic mean of the

same numbers.

In the following theorem we obtain inequalities alike to Hermite-Hadamard inequality for

HH-convex functions.

Theorem 2.5. Let f: [a,b] — (0,00) (b > a > 0) be a HH-convex function. Then the following

inequalities hold:

() J(25) < o < T
)

atb) = 2‘177 J+7(5)
. 2by < ab b MO G@ETw) ax _ 2f(@)f(b)
(ii) f(m) = Jb—alJa f( )+ ( u}bzx b)x_2 < fla)+f(b)

Proof. (i) The inequality (5) follows that

1 1 2ab
ab b dx Zf( ab bdx) :f(a+b)
b—a

b—ala 2f(x) ax
on the other hand by change of variable x = — H“lbf b = t(af‘é’) 5 dx = ((;’(Tl)))dt and HH-

convexity of f we get

ab b dx 1 dt L dr L dr
b—a/a xzf(x):/o f(L):/O f(#)z/o L
_|_
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1 2f(a)f(b)
ab b dx f(a)_|_f( )
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(i1) Since f is HH-convex, we have

A2 — p 2 )=f<( — ,)>

< 2f(tb+(ab t)a )f(ta+(a1b t)b)
e + Gt

By integrating both sides and HH-convexity f we obtain

I
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2
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On the other hand by change of variable

ab ab B ab(b—a)

at (=0 ta—b)+b " Ga-by+pp? =%

we see that
[ 2ttt , b L 0/ () d
0 f(tb+(1 —t)a )+f(ta+ )b) b-a f(x)—{—f()%) X
The proof is complete. 0

Corollary 2.6. Let f : [a,b] — (0,0) (b > a > 0) be a HH-convex function. Then the following

inequalities hold:

ab /b 2f( 0 Gty =) dx _ 2f(@f®b)
T b—ala f)+ flpipa) ¥ f@+fB)
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Proof. By theorem 2.5 it is sufficient that prove the middle part.

abt
t(a+b)—ab’

/b dx /b dx
a xzf(x) N a Xzf( abx )

(a+b)—ab

we see that

By change of variable x =

Hence

ab b dx ab b dx b dx
i=al, o " mo—al, 7w . #r >]
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Put h(x) = ﬁ 4+t X =[a,b] and du = %. Thus

ab [P dx 1
=— | hdu.
b—a/a x2f(x) Z/X #

On the other hand by these notations we see that

ab b 2O (GiB—m) dx  2ab [P I dx du
/ / J
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By Holder’s inequality we have
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