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1. Introduction 

The topic of bounds on eigenvalues of symmetric matrices has a long history and does not seem 

to provide ultimate and definitive answers. In some situations optimal bounds have been found. 

For the set of complex matrices  njiaA ij  ,1),( , with real eigenvalues, Wolkowicz and 

Styan [14] obtained optimal bounds by given  )(ATr   and  )( 2ATr . For the same set of 
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matrices with positive eigenvalues, Merikoski and Virtanen [9], [10], have studied optimal 

bounds by given  )(ATr   and  )det(A . Zhan [15] obtains the optimal bounds for the smallest 

and largest eigenvalues of real symmetric matrices whose entries belong to a fixed finite interval. 

However, when restricted to the set of real  nxn   correlation matrices, these bounds collapse to 

useless or trivial bounds, as shown in Section 3. Moreover, for correlation matrices  

njirR ij  ,1),( , with unit diagonal elements, one has always nRTr )( , and the separate 

knowledge of  )( 2RTr   and  )det(R   does not provide full information. It is therefore 

justified to search for further possibly optimal bounds on eigenvalues of correlation matrices. 

The present study offers an extension of the method in [5] for bounding the largest eigenvalue of 

3x3 correlation matrices. In Theorem 2.1 we derive some new optimal bounds for a class of  

nxn   correlation matrices with restricted information. In Section 3 they are compared to the 

optimal bounds by Wolkowicz and Styan [14] and found to be more stringent in some specific 

cases. Section 4 illustrates with numerical comparisons. 

 

2. Quadratic eigenvalue bounds under certain restricted information 

Starting point is a real  nxn   matrix  4,,1),(  nnjiaA ij , with characteristic 

polynomial 
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where  )det(Aden    is the determinant, and the  sek '   satisfy Newton’s identities 
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where  ,1,...,2,1),(  njATrs j

j  are the traces of the matrix powers. Each zero   of this 

polynomial is called an eigenvalue (abbreviated EV). Restricting the attention to correlation 
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matrices njirR ij  ,1),( , with unit diagonal elements, one has  nRTrse  )(11 . 

Expressed in terms of the variable  1 z   the polynomial simplifies to the “depressed 

characteristic polynomial” 
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The coefficients  QP, , and  sCk '   are uniquely determined by the recursive equations 
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The system (2.4) is obtained through binomial expansion of the polynomial  )1( np   and 

comparison with (2.1). In particular, solving (2.4) for  QP,   using (2.2) yields the values in 

(2.3). The set of correlation matrices is uniquely determined by the set of  )1(
2
1 nn   upper 

diagonal elements  
)1(
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ijrr , nji 1 , the  n -dimensional elliptope, 

denoted by  nE . It is known that, up to permutations, one has  nEr   if, and only if, the 

following representation holds (see [4], Theorem 3.1): 
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with the abbreviation  )1)(1(),( 22

,,  jijiijij xxxxyy  . The formulas (2.5) are useful for 

algorithmic generation of arbitrary correlation matrices, and some applications of them have 
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been discussed in [6], [7]. On the other hand, through straightforward calculation one obtains 
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Comparing (2.3) with (2.6) one sees that the first two coefficients of the depressed characteristic 

polynomial are given by 
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We ask for possibly optimal bounds for the largest EV (abbreviated LEV) of a  nxn   

correlation matrix by given  ),...,,,( 121 nsssd , or equivalently by given  ),...,,,( 40 nCCQP , 

which is the maximum available information. The following sharp inequality, which 

characterizes the semi-definite property of a correlation matrix, plays a crucial role in the 

analysis. For all  nEr   the determinant of the correlation matrix is non-negative, i.e., one has 
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In the following, we assume that  )0()(  ijrr   does not generate the identity correlation 

matrix, which implies that the LEV, denoted by  1 , satisfies the condition  11  . Therefore, 

we search for a positive zero  01  z   of the depressed characteristic polynomial (2.3). 

Generalizing the method in [5] to arbitrary dimensions  4n  (assumed throughout), we make 

use of the determinant identity (2.8) in two different ways. First, insert the relationship  
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In a first step, we determine conditions under which the left-hand sides of (2.9)-(2.10) satisfy the 

following two quadratic inequalities (Equations (2.5) in [5]) 

 

(I)   022  Qzz ,   (II)   0)1(2  Pzz .   (2.11) 
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the inequality (I) is fulfilled. If  4,...,0,0  nkCk , then the inequality (II) is fulfilled. 

 

Proof.  Under the stated conditions, a positive zero  0z   of  0)( zpn   necessarily 

satisfies the inequality (I) of (2.11) in virtue of the identity (2.9).  Similarly, the inequality (II) 

of (2.11) is satisfied under the given conditions in virtue of the identity (2.10).  ◊ 

 

Clearly, the inequalities (I) and (II) are equivalent with the following quadratic EV inequalities 

(I)   0)1(232  Q ,   (II)   0)3(32  P .  (2.12) 

From the elementary analytical properties of quadratic polynomials, one knows that (2.12) 

implies the inequalities 
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and 

)343(
2
1  P , or )343(

2
1  P  provided 034 P  for (II).  (2.14) 

These inequalities lead to the following optimal bounds under specific restricted information. 

 

Theorem 2.1. (Optimal quadratic bounds for the LEV of non-trivial correlation matrices) 
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Case 1: optimal quadratic upper bound 
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Case 2: optimal quadratic lower bound 
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Proof.  Since the correlation matrix is not the identity matrix  11  z   is a positive zero of 

the depressed characteristic polynomial (2.3). The assumptions of Lemma 2.1 are fulfilled, hence 

(I), (II) in (2.12) are satisfied for  1  . The bounds (2.15)-(2.16) follow from the bounds 

(2.13)-(2.14) under the stated conditions. In both cases, equality is attained if, and only if, one 

has 0,4,...,0,0  dnkCk , or equivalently by (2.8) one has  4,...,0,0  nkCk , and  

03481  PQ . In this situation, the upper and the lower bounds coincide with the LEV.  ◊ 
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It is important to note that the obtained optimal quadratic bounds are only valid upon restricted 

information on correlation matrices in terms of the coefficients  ),...,,,( 40 nCCQP   of the 

depressed characteristic polynomial (2.3). Besides the common inequality  3481  PQ   

the following information is needed. For the upper bound the inequality  081  Q   and the 

non-negativity of the coefficients  4,...,0,  nkCk , are required, and for the lower bound the 

inequality  034 P  and the non-positivity of  4,...,0,  nkCk , must hold. 

 

3. Analytical comparison results 

It is interesting to compare the new optimal bounds with related results, which deal, however, all 

with larger sets of matrices. For the set of complex matrices  njiaA ij  1),( , of arbitrary 

dimensions with real eigenvalues, Wolkowicz and Styan [14] obtained optimal bounds by given  

)(ATr   and  )( 2ATr , called hereafter WS bounds. Although this is quite restrictive incomplete 

information for arbitrary  nxn   correlation matrices, a detailed comparison with the WS 

bounds is instructive and provided below. In contrast to this, for the same set of matrices with 

positive eigenvalues, the bounds by Merikoski and Virtanen [9] by given  )(ATr   and  

)det(A , hereafter called MV bounds, are not optimal, that is not attained for a specific matrix 

with the given properties. Even more, the best possible bounds cannot in general be expressed 

algebraically, as shown in Merikoski and Virtanen [10]. More recently, Zhan [15] obtains the 

optimal bounds for the smallest and largest eigenvalues of real symmetric matrices whose entries 

belong to a fixed finite interval. However, when restricted to the set of real  nxn  correlation 

matrices, the Zhan bounds collapse to useless or trivial bounds (see Zhan [15], Corollary 2 (ii), 

p.854, Theorem 5 (ii), pp. 854-855). 

Restricting the attention to correlation matrices, the WS bounds depend on the squared Frobenius 

norm  
22 )(
F

RRTr    only, or equivalently on  P . Since the new bounds of Theorem 2.1 
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depend on  ),( QP   and some additional restrictions, it is interesting to analyze the conditions 

under which the one bounds are more stringent than the others. For  nxn   correlation matrices 

the WS bounds are (see Wolkowicz and Styan [14], equation (2.3)): 
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Theorem 3.1. Under the required restricted information, the WS bounds compare with the 
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According to Theorem 3.1 the new upper bound is more stringent than the WS upper bound in 

Case (c). The new lower bound is always more stringent than the WS lower bound. Of course 

these statements hold only under the conditions of Theorem 2.1. In particular, the two new 

bounds can hold simultaneously only if they are equal, and in this situation they coincide with 

the LEV. Similar comparison statements can be made for other LEV bounds. For example, one 

can compare Theorem 2.1 with the MV bounds in Merikoski and Virtanen [9], Theorems 1, 2, 3, 

or with Theorem 2.1 in Huang and Wang [2]. It might also be useful to compare the new lower 

bounds with the classical lower bound  
 ji
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1 1   and its improvement in Walker and 

Van Mieghem [13], or with the lower bound by Sharma et al. [11], Theorem 3.1. We note that 

these few further possibilities do certainly not exhaust the list of possible LEV bounds. 

 

4. Some numerical comparisons 

For an easy algorithmic generation and a more precise analysis of the conditions in Theorem 2.1, 
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The main coefficients  ),( QP   in (2.7) are parameterized as follows: 
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The coefficients  4,...,0,  nkCk  can also be parameterized as univariate functions )(xCk . 

In Table 4.1 below the calculated largest eigenvalues are also expressed as function of  12rx  . 

To illustrate numerically, we focus on the special case  4n . The coefficients of the 

depressed quartic in (2.3) are given by 
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For  ),( QP   this is (2.7). For the remaining coefficient note that  QPdC 210    by 

(2.8) and that the determinant is given by (use Proposition 2.1 and 2.2 in [3]) 
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Since the LEV is the largest root of a quartic polynomial, a lot of formulas exist to calculate it. In 

particular, it is possible to combine Ferrari’s method with a resolvent cubic, whose roots can be 

expressed exactly using the trigonometric Vieta formula (see [5], Section 4, for the latter). 

Following Tignol [12], Section 3.2, one gets the roots of the depressed quartic equation (2.3) as 

follows. 

For the non-trivial case  0Q   the roots  4321 zzzz    of (2.3) are given by 
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The trigonometric Vieta formulas, which solve (4.7), read: 
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The use of analytical formulas to compute the eigenvalues of a 4x4 matrix is found in several 

papers (e.g. Ichige et al. [8]). 

On the other hand, another quite recent and attractive evaluation of the LEV, which can be 

applied to correlation matrices of any dimension, is the limiting Bernoulli type ratio 

approximation formula in Cirnu [1], Theorem 2.1 and Section 3. For an arbitrary correlation 

matrix  njirR ij  ,1),( , one has the limiting formula 

 

)(

)(
lim

1

1 k

k

k RTr

RTr 


 .       (4.9) 

 

The Table 4.1 below provides a typical selection of numerical examples for Theorem 3.1. In 

particular, the new optimal quadratic lower bound offers a substantial improvement over the WS 

lower bound. 

 

Table 4.1:  Numerical comparison of LEV bounds 
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Upper Bound 
43424231413 ),,,,,( Errrrrxr   )(1 x  )(1 xM  )(,

1 xWSM  

(b) )1,,,,,1(
2

2

2

2

2

2

2

2   3.41421 3.56155 3.44949 

(c) )0,,,,,,0(
3

3

3
2

2
1

3

3

3
2

2
1  2 2 2.22474 

 ),,54426.0,,92173.0,51158.0(
2
1

4
1

8
1  2.51286 2.523 2.61353 

 )1,,,,,0(
2

2

2

2

2

2

2

2  3 3 3.12132 

Lower Bound 
43424231413 ),,,,,( Errrrrxr   )(1 x  )(1 xm  )(,

1 xWSm  

(b) )1,,,,,1(
2

2

2

2

2

2

2

2   3.41421 3.30278 1.8165 

(c) )0,,,,,,0(
3

3

3
2

2
1

3

3

3
2

2
1  2 2 1.40285 

 ),,54426.0,,92173.0,51158.0(
2
1

4
1

8
1  2.51286 2.4928 1.53784 

 )1,,,,,0(
2

2

2

2

2

2

2

2  3 3 1.70711 
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