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1. Introduction

Let us consider the functional in [1]

W T e (1 frwa) (55 fewar)

where f and g are two synchronous and integrable functions on [a, b].
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Over the last decade, this classical inequality has been improved and generalized in a number
of ways; there have been a large number of research papers written on this subject, ([9]-[12],
[15]) and the references therein.

In this paper, we obtain some integral inequalities for (1) type functional via generalized

fractional integrals.

2. Preliminaries

Definition 2.1. Leta,b € R, a < b,and o > 0. For f € L (a,b)

@ (J2.1) () = i [r— 0% f(0)de, >0, x> a
and

b
3) (JEf) (x) = ﬁf(t —x)*"Lf(t)dt, b >0, b > x.

These integrals are called right-sided Riemann-Liouville fractional integral and left-sided Riemann-
Liouville fractional integral respectively [2]-[7].

Definition 2.2. Let (a,b) be a finite interval of the real line R and o > 0. Also let /2 (x) be

an increasing and a positive monotone function on (a, 5], having a continuous derivative i (x)

on (a,b). The left- and right-sided fractional integrals of a function f with respect to another

function % on [a, b] are defined by [13]

@) (J.8) )= g LW =0 W (07 @) dr. >
and

) (25 1) )= gy O =R W (07 @) e+ < b
For (4) and (5)

(2 f ) (@) = (4 1) () =0,

If we take A (x) = x in (4) and (5), we will obtain

J;x+7h — J‘(lx+ and Jéfol — Jgf
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k+1
I for k > 0, then the equalities (4) and (5) will be

Also if we choose h(x) =

©6) (U2 f)(x) = CHE (bt e yatgk (), x> a
and
(7 (& o f)(x) = Lf(rk“ WK F(1)dr, x < b

X

respectively. This kind of generalized fractional integrals are studied in [5], [7], [14] and [16].

For a = 0 in (4), we can write
® (5.4 () = ey [ ()= RO)* 1 (1) f(0)dt, x>0
and
(482 1) () = £(2).
For the convenience of establishing the results, we give the semigroup property:
a+ha+hf() ;X++£f() O‘ZOaBZOa
which implies the commutative property:
T Tl ) = T T ().
From (8), when f(x) = h(x), we get:
X
(V) @) = g [ R = h )™ k(o) (e
©)

Let ¢ = 01n (9), then

From (8), when f(x) = x* and h(x) = xX**! we get:

Jov p ()

(10)

_ W e

(@D >0, k>0, u>—1,1>0.
F(a+ k )
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From (8), when f(x) = 1 and h(x) = xX**! we get:

1 —OC
(11 J& (1) :%Mkﬂ), a>0;k>0,u>—1,1>0.

3. Main results

Theorem 3.1. Let f and g be two synchronous functions on [0,0). Also let /4 (x) be an
increasing and a positive monotone function on (a, b], having a continuous derivative 3 (x) on

(a,b). Then fort > a, o« > 0;

1
(12) I (fe)(t) = ﬂ—(l)Jﬁ,hf(t)J;i,hg(t)-
at,h
Proof. For f and g synchronous functions, we have

(13) (f (1) = f(p)) (g(7) —g(p)) 2 0.

From (13) it can be written as following

(14) f(D)g(r)+ f(p)g(p) = f()g(p) + f(p)g(T).
If we multiply two sides of the (14) with (h (1) }(hog;c))“_l K (1), 7€ (a,1), we get
_ a—1 , _ a—1 ,
B @) 5mgte) + O (0 7))
(15)
_ a—1 _ oa—
OB () eyato)+ LOD ) pppa

Then integrating (15) inequality over (a,t), we obtain:

ﬁ Ja(h(2) - h(T)% ' (1) f(1)g(T)dT

gy Ja (1) = (7))* ' () f(p)g(p)dT
(16)

> o S ()~ h(2) 2 (3) f(2)g(p)dT
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Consequently,

I (£8)(1)+ F(P)8(p) iy ()= (1) H () dx
(17) > 8(P) gy Ju (1 (£) =R (2)*7 'R () f(r)dT

) gy Jh (0 = (@)W (3)g(o)
So we have
(18) JE W (F) )+ f(p)e(p)g 4 (1) > g(P)E f (1) + f ()T 18(1).

. o—1
Now multiplying two sides of (18) by (h(2) F?O(cl)))) K (p), p € (a,t), we obtain:
_ a-1
O LB a0

(19)

By integrating to (19) over (a,7), we get:

o a—1 ,
I () 1 L

(p)dp

Teall) s h(t)—h(p)* 'H (p)d
+ (o) Jof(P)g(p)(h(t) —h(p)) (p)dp

(20)

IS0 L
> Fv(’*a)m Ji(h ()= () 'K (p) g(p)dp

J% '
n arkhigt) Ja(h(e) =R (p))*~"'h (p) f(p)dp.
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This inequality is can be written as the following at the same time,

o l (04 o
(21) Ja*,h(fg)(t) > mja+,hf(t)Ja+,hg(t)'

So the proof is completed.
Theorem 3.2. Let f and g be two synchronous functions on [a,b]. Then for t > a, a > 0, and

B >0,

284038 7 0+ LU (0

> J% W fOIN 8(t)+T% 800 F(2).

"(p), we obtain:

(22)

Integrating to (22) over (a,t), we get:

(h0)—h(p)P~"
r(B)

f (0)J% (&) ()dr

(23)
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Consequently,

B (IS, (F9) () + 7% (IP, (F9) ()
(24)

> J% (00 80 +I% 2P, f(0).

This is the proof of the theorem.

Remark 3.3. Applying Theorem 3.2 for oo = 3, we obtain Theorem 3.1.

Theorem 3.4. Let (i), __, be n positive increasing functions on [0,0). Then for all 7 >

a, o« >0,
l-n [ 1 o
(25) awHﬁ_(wJ) [172 . ) )
i=1

Proof. We will prove this theorem by induction.It is clear that for n = 1 and all > 0, o > 0,

we have Jﬁ’h(fl)(t) > J5‘+7hf1 (t). And for n =2, we obtain (12),

26 S0 > (12,0) (75,8) 0 (8 0) 0

Now assume that( induction hypothesis)
2—n [n=l
@7) wﬂh} > (78,0) " TT9& ) @
i=1

If (fi);—, , are positive increasing functions, then (H ﬁ) (t) is an increasing function. So

n—1
we can use Theorem 3.1 for functions [] f; = g, and f,, = f, therefore we obtain
i=1

(28) Jmnﬁ = I8 (f8)0) = (U 4(D) (H f) ) (e ata) ().

By (27)

29) a*h Hfl < purty h( ))1 ( a*h > (H +hfz> ( g+7hfn) ().

This completes the proof.
Theorem 3.5. Let & (x) be an increasing and positive monotone function on (a,b], having a

continuous derivative 4 (x) on (a,b). If f is an increasing and g is a differentiable functions
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and there exist a real number mh (1) := ig(f) g'(t) on [0,+c0). Then for all 7 € [a,b] and o > 0,
>

Jg+7h(fg) (t)
(30)
mh(t)
oa+1

—1
> (72 ,(1) I8 FOI% 8 = TS F() +mI%  (f) (1),

Proof. Consider the given function H(r) = g(¢t) —mh(t). It is clear that H is an increasing

function and differentiable on [0, +e0). Then using Theorem 3.1 we obtain

Joe y(HL) () = T2, ((8() —mh(2)) £(2))

> (18 ,(0) T8 () [T8 80~ mI2 ()

-1
> (42 ,(1) %102 ,80)

(31)
m (92,(0) " (hie) ~ ) (40 + )
. s 0
> (s, ) ) - OO jo
Also,
1))
(2) % (8(6) — mh(e)) £(1)

= 1% (F&)(0) ~mJ% , () (1)

From (31) and (32), we get:

I (P02 (12 ,0) 7% 0% 50

(33)

_m (h(t;—:_?h(a»‘]g*,hf(t) + m‘]c(zxﬂh (hf)(2).

This is the proof of theorem.
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Corollary 3.6. Let /(x) be an increasing and positive monotone function on (a,b], having a
continuous derivative 4 (x) on (a,b). If f is an increasing and g is a differentiable functions
on [0,+o0). Then for all ¢ € [a,b] and @ > 0,

1. If there exist real numbers m /' (t) := igg f(x), and mol' (¢) := iI>l£ g'(¢). Then we have:
> >

I () (6) —miJ%, (hg) (1) = maJ % (hf) (1) +mimyJ® k(1)
—1
(34) > (Jc?i,,,(l)) [in,hf ()5 8(1) —miJ g yh(2) 2 ()

2
% ()% £+ muma (% (1)) } .

I1. 1f there exist real numbers M/’ (¢) := sup f'(x), and MK (¢) := supg’(¢). Then we have:
t>0 t>0

2
T2 (£8)(1) =M, (hg) (6) — MaJ% , (hf) () + MM (Jgi’hh (;))
—1
(35) > (Jggyhu)) [Jg+7h FOI% 8(t) =M% b (6)J% ,8(0)
2
IS (0 IE L F () + Miby (J% (1)) } .
Proof. Consider the given function F(¢) = f(t) —mh(t) and G(t) = g(t) —mah(z). It is clear

that F and G are an increasing function and differentiable on [0, +-oo). Then using Theorem 3.1

we obtain
JE(FG)(t) =% (F(1) —mih (1)) (3(e) —moh (1))
-1
> (42 ,(1) %, (10 = mih(0)J% , (g(r) ~mah (1)
-1
> (Jg+7h(1)) [Jg+7hf(t)*]g+7hg(t) _mIJng,hh (f)Jsi,hg(f)

2
ol f(OI% (1) +mimy (I 0 (1)) ]
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Therefore
T (F9) (1)~ miJe, (hg) (1) — o (hf) (1) + mymaJ% , (h (1))’
-1
> <J3‘+7h(1)> [J‘fi’h FOT% (1) —miI% b (0)T% 8(0)
2
% f(OJ% (1) +mims (I h (1)) ] .
This is the proof of ().

Consider the given function F (1) = f(t) — M h(t), G(t) = g(t) — Mph(t). It is clear that F

and G are an increasing function and differentiable on [0, 4-cc). Then using Theorem 3.1 we

obtain
T J(FG) (1) =T, (f() = Mk (1)) (2() — Mah (1))
> (72,(10) T8 () MR () I (5(6) Mok (1)
-1
> (48 ,(0) & L f0I% 8() —MIE (1) I 8(0)
2

Sl (008 0)+ e (15 0))

Therefore

% (F0)(6) — MAJE, (he) (1)~ Mad%, (1) (1) + MyMsJCE , (h (1))
1
> (Jf+7h(1)> [J§+7hf(f)ff+7hg(f) _Ml-]g+’hh (t)-]g+’;1g(t>

2
~MyI%  f(0T% (1) + MiMy (J;g’hh (t)) ] .

This is the proof of (II).
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