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Abstract. In this paper, we give some results concerning the generalization of two mappings associated to the fa-

mous Hermite-Hadamard integral inequality for convex functions. As application, some new inequalities involving

potential means are derived.
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1. Introduction

Let f be a convex function on [a,b]⊂ R. The following inequality

(1) f
(a+b

2

)
≤ 1

b−a

∫ b

a
f (x)dx≤ f (a)+ f (b)

2

is known in the literature as the integral Hermite-Hadamard inequality [16].

It is well known that the Hermite-Hadamard inequality plays an important role in nonlinear

analysis. Over the last decade, this classical inequality has been improved and generalized in a

number of ways; there has been a large number of research papers written on this subject, see
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[9], [10], [11], and [12] and the references therein.

It has many applications for special means (see [8], [13], [14] and [17]) and also provides

necessary and sufficient condition for a function f to be convex on (a,b) (see [19]).

Dragomir introduced in 1991. the following associated mapping H : [0,1]→ R defined by

H(t) =
1

b−a

∫ b

a
f
(

tx+(1− t)
a+b

2

)
dx

for a given convex function f : [a,b]→ R.

The corresponding double integral mapping F : [0,1]→ R in connection with the Hermite-

Hadamard inequalities is defined as

F(t) =
1

(b−a)2

∫ b

a

∫ b

a
f (tx+(1− t)y)dxdy.

For main properties of these mappings and some related results see [2], [5], [6], [7] and [18]

and the references therein.

S.S.Dragomir [4] gave the following bounds for two mappings related to the Hermite-Hadamard

inequality for convex functions:

Theorem 1.1. [4] Let f : [a,b]→ R be a convex function on the interval [a,b]. Then we have

t
b−a

∫ b

a
f (x)dx+(1− t) f

(a+b
2

)
−H(t)

≤ t(1− t)
[ f (a)+ f (b)

2
− 1

b−a

∫ b

a
f (x)dx

]
(2)

and

1
b−a

∫ b

a
f (x)dx−F(t)

≤ 2t(1− t)
[ f (a)+ f (b)

2
− 1

b−a

∫ b

a
f (x)dx

]
(3)

for any t ∈ [0,1].

In the present paper, we establish a weighted generalization of the above results involving a

generalization of the two mappings associated to the Hermite-Hadamard inequality. Applica-

tions for potential means are also provided.
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2. Preliminaries

Let f : [a,b]→ R be a convex function on the interval [a,b]. Let p,g : [a,b]→ R be inte-

grable functions such that p ≥ 0,
∫ b

a p(x)dx = 1 and a ≤ g(x) ≤ b for any x ∈ [a,b] and let

ḡ =
∫ b

a p(x)g(x)dx.

In order to state our results, we first need to introduce the following associated mapping

H : [0,1]→ R defined by

H(t;g) =
∫ b

a
p(x) f (tg(x)+(1− t)ḡ)dx.

Some of the main properties of the mapping H are:

1. H is convex on [0,1];

2. H increases monotonically on [0,1];

3. One has the bounds:

inf
t∈[0,1]

H(t;g) = H(0;g) = f (ḡ)

sup
t∈[0,1]

H(t;g) = H(1;g) =
∫ b

a
p(x) f (g(x))dx.

We also need to introduce the corresponding double integral mapping

F : [0,1]→ R defined by

F(t;g) =
∫ b

a

∫ b

a
p(x)p(y) f (tg(x)+(1− t)g(y))dxdy.

Main results concerning this mapping are as follows:

1. F(τ + 1
2 ;g) = F(1

2 − τ;g) for every τ ∈ [0, 1
2 ]

2. F(t;g) = F(1− t;g) for every t ∈ [0,1]

3. F is convex on [0,1]

4. F decreases monotonically on [0, 1
2 ] and increases monotonically on [1

2 ,1]

5. We have the bounds:

inf
t∈[0,1]

F(t;g) = F(0;g) = F(1;g) =
∫ b

a
p(x) f (g(x))dx

sup
t∈[0,1]

F(t;g) = F
(1

2
;g
)
=
∫ b

a

∫ b

a
p(x)p(y) f

(g(x)+g(y)
2

)
dx.
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3. Main results

The following result gives us upper and lower bounds for the mappings F and H defined in

the previous section.

Theorem 3.1. Let the conditions stated above hold. Then we have

0≤ t
∫ b

a
p(x) f (g(x))dx+(1− t) f (ḡ)−H(t;g)

≤ t(1− t)
∫ b

a
p(x) f ′(g(x))dx

[∫ b
a p(x)g(x) f ′(g(x))dx∫ b

a p(x) f ′(g(x))dx
− ḡ

]
(4)

and

0≤
∫ b

a
p(x) f (g(x))dx−F(t;g)

≤ 2t(1− t)
∫ b

a
p(x) f ′(g(x))dx

[∫ b
a p(x)g(x) f ′(g(x))dx∫ b

a p(x) f ′(g(x))dx
− ḡ

]
(5)

for any t ∈ [0,1].

Proof. Function f is convex, so the following inequality holds

(6) f (tx+(1− t)y)≤ t f (x)+(1− t) f (y)

for all x,y ∈ [a,b] and for all t ∈ [0,1]. We can first replace x with g(x) and y with ḡ, and

then x with g(x) and y with g(y) in (6) because ḡ,g(x),g(y) ∈ [a,b] for all x,y ∈ [a,b], and get

respectively

(7) f (tg(x)+(1− t)ḡ)≤ t f (g(x))+(1− t) f (ḡ)

and

(8) f (tg(x)+(1− t)g(y))≤ t f (g(x))+(1− t) f (g(y)).

Multiplying the inequality (7) by p(x) ≥ 0 and then integrating it over x on [a,b] we get the

first inequality in (4) and multiplying the inequality (8) by p(x) ≥ 0 and p(y) ≥ 0 and then

integrating it over x and y on [a,b] we get the first inequality in (5).



MAPPINGS RELATED TO THE HERMITE-HADAMARD INEQUALITY 5

Since the class of convex differentiable functions is dense in the uniform topology in the class

of all convex functions defined on the interval [a,b], we can assume that f is differentiable on

(a,b).

If we use the convexity of the function f , we get the gradient inequality

(9) f (u)− f (v)≥ f ′(v)(u− v)

for any u,v ∈ (a,b).

Because tx+(1− t)y ∈ (a,b) holds for any x,y ∈ (a,b) and t ∈ [0,1], from (9) we get

(10) f (tx+(1− t)y)− f (x)≥ (1− t) f ′(x)(y− x)

and

(11) f (tx+(1− t)y)− f (y)≥−t f ′(y)(y− x).

Now, if we multiply (10) by t and (11) by (1− t), and add together the obtained inequalities,

we get

t f (x)+(1− t) f (y)− f (tx+(1− t)y)

≤ t(1− t)[ f ′(y)− f ′(x)](y− x)(12)

for any x,y ∈ (a,b) and t ∈ [0,1].

Since a ≤ g(x), ḡ ≤ b, we can replace x with g(x) and y with ḡ in (12), multiply the obtained

inequality by p(x)≥ 0 and then integrate it over x on [a,b] and get

t
∫ b

a
p(x) f (g(x))dx+(1− t)

∫ b

a
p(x) f (ḡ)dx−

∫ b

a
p(x) f (tg(x)+(1− t)ḡ)dx

≤ t(1− t)
∫ b

a
p(x)[ f ′(ḡ)− f ′(g(x))](ḡ−g(x))dx,(13)

which is equivalent to (4).

Further more, if we replace x with g(x) and y with g(y) in (12), and then multiply that in-

equality by p(x) ≥ 0 and p(y) ≥ 0 and integrate it over x and y on [a,b] we can obtain the
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following inequality

t
∫ b

a

∫ b

a
p(x)p(y) f (g(x))dxdy+(1− t)

∫ b

a

∫ b

a
p(x)p(y) f (g(y))dxdy

−
∫ b

a

∫ b

a
p(x)p(y) f (tg(x)+(1− t)g(y))dxdy

≤ t(1− t)
∫ b

a

∫ b

a
p(x)p(y)[ f ′(g(y))− f ′(g(x))](g(y)−g(x))dxdy.(14)

After some calculations, from (14) we easily get (5), and this completes the proof.

Remark 3.2. If we replace t with 1− t in (4), add together the obtained results, and then divide

it by 2, we get the symmetric inequality

1
2

[∫ b

a
p(x) f (g(x))dx+ f (ḡ)

]
− H(t;g)+H(1− t;g)

2

≤ t(1− t)
∫ b

a
p(x) f ′(g(x))dx

[∫ b
a p(x)g(x) f ′(g(x))dx∫ b

a p(x) f ′(g(x))dx
− ḡ

]
(15)

for any t ∈ [0,1].

Remark 3.3.

(i) Let the conditions of Theorem 2.1 hold. Then the integral version of the Slater inequality

for convex functions found in [1] is valid:

(16) 0≤
∫ b

a
p(x) f (g(x))dx− f (ḡ)≤

∫ b

a
p(x) f ′(g(x))(g(x)− ḡ)dx.

If we multiply the inequalities in (16) with 1− t and add it to (4), we get the following

inequalities:

0≤
∫ b

a
p(x) f (g(x))dx−H(t;g)

≤ (1− t2)
∫ b

a
p(x) f ′(g(x))(g(x)− ḡ)dx.(17)

(ii) Now, if we subtract the inequalities in (5) from the inequalities in (17) we get

0≤ F(t;g)−H(t;g)

≤ (1− t)2
∫ b

a
p(x) f ′(g(x))(g(x)− ḡ)dx.(18)
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4. Application for potential means

Let f ,w : [a,b]→ R be positive integrable functions. The potential mean of order r of a

function f with weight function w is given by

Mr( f ,w) =

[∫ b
a w(x) f (x)rdx∫ b

a w(x)dx

]1/r

, r 6= 0

M0( f ,w) = exp

[∫ b
a w(x) ln f (x)dx∫ b

a w(x)dx

]
, r = 0

(19)

Let us consider the convex mapping f : (0,∞)→ R, f (x) = xp, p ∈ (−∞,0)∪ (1,∞) and

0 < a < b. We define the mapping

(20) Hp(t;g) =
1

W

∫ b

a
w(x)(tg(x)+(1− t)ḡ)pdx, t ∈ [0,1],

where W =
∫ b

a w(x)dx and ḡ = 1
W
∫ b

a w(x)g(x)dx.

It is obvious that Hp(0;g)= 1
W
∫ b

a w(x)ḡpdx= ḡp and Hp(1;g)= 1
W
∫ b

a w(x)g(x)pdx=Mp
p(g,w),

and for t ∈ (0,1) and p ∈ N we have

Hp(t;g) =
1

W

∫ b

a
w(x)(tg(x)+(1− t)ḡ)pdx =

p

∑
k=0

(
p
i

)
(tMi(g,w))i((1− t)ḡ)p−i.

Now, consider the function

Fp(t;g) =
1

W 2

∫ b

a

∫ b

a
w(x)w(y)(tg(x)+(1− t)g(y))pdxdy, t ∈ [0,1].

We observe that Fp(0;g) = Fp(1;g) = 1
W
∫ b

a w(x)g(x)pdx = Mp
p(g,w) and we can calculate

that for p ∈ N

Fp

(1
2

;g
)
=

1
W 2

∫ b

a

∫ b

a
w(x)w(y)

(g(x)+g(y)
2

)p
dxdy

=
1
2p

p

∑
k=0

(
p
i

)
Mp−i

p−i(g,w)M
i
i(g,w).

Let g,w : [a,b]→R be positive integrable functions and let W =
∫ b

a w(x)dx and ḡ= 1
W
∫ b

a w(x)g(x)dx.

We define a new weight function p : [a,b]→ R with p(x) = w(x)/W . This is a positive, inte-

grable function such that
∫ b

a p(x)dx = 1.
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Since the function f : (0,∞)→ R, f (x) = xp is convex for all p ∈ (−∞,0)∪ (1,∞), the con-

ditions from Theorem 3.1 are satisfied, and we easily get the following result:

Theorem 4.1. Let w,g, f be as stated above. Then for all p ∈ (−∞,0)∪ (1,∞) and for all

t ∈ [0,1] we have

0≤ tMp
p(g,w)+(1− t)ḡp−Hp(t;g)

≤ pt(1− t)(Mp
p(g,w)− ḡMp−1

p−1(g,w))(21)

and

0≤Mp
p(g,w)−Fp(t;g)

≤ 2pt(1− t)(Mp
p(g,w)− ḡMp−1

p−1(g,w)).(22)

In particular, if we choose t = 1
2 , we get

0≤ A(Mp
p(g,w), ḡ

p)−Hp(
1
2

;g)

≤ p
4
(Mp

p(g,w)− ḡMp−1
p−1(g,w))(23)

and

0≤Mp
p(g,w)−Fp(

1
2

;g)

≤ p
2
(Mp

p(g,w)− ḡMp−1
p−1(g,w)).(24)

where A(a,b) = a+b
2 is the arithmetic mean of the numbers a and b.
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