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Abstract. In this note we give an improvement toa recent result obtained by Savas and Rhoade cocerning
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1. Introduction

Let T be a lower triangular matrix, (s,) asequence, and

T, =D t.5,. (1.1)

A series Y a, is said to be summable [T| , k 1, if (see [1])

S AT, [ <o, (1.2)
n=1

Given any lower triangular matrix T one can associate the matrices T and T, with

entries defined by
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n
tnvzztnh n,i = 0,1,2..., tnv :tnv _tn_lvv

i=v

respectively. With s, =>"" a4,

i=0 171!

t, :Zn:tnvsv = ” L V ak = ” aiﬂ’iitnv = it—niaiﬂ’i' (1.3)
v=0 v=0 i=0 i=0 V=i i=0
n n-1 n
Y, =t, -t = aniaifli _Zt—n-l,iaifli = aniaiﬂ’i’ ast,,,=0  (14)
i=0 i=0 i=0
Xn =u,-u,= ianiaiﬂi : (15)

We call T atriangle if T is lower triangular and t,, =0 for all n.

We assume that (pn) is a sequence of positive real numbers such that

P,=p,+p, +..+p, >0 @ N—>oo

In the special case when t,, = p,/P,, summability [T| reduces to ‘N, P,

) summability.

Generalizing the result of [2], Rhoads and Savas [3] proved the following result
Theorem 1.1. Let A be atriangle with nonnegative entries satisfying

() a,=1 n=01,..

(i) a_, =a, fornzv+l,

nv
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(i) na,,=0(@1), 1=0(na,,),

(iv) Alt/a,,)=00),

v > a,

=0(a,,).

a'n,v+1
If (X,) is a positive nondecreasing sequence and the sequences (4, ) and (3, ) satisfy
(vi) |A4,|<B,,
(i) limg, =0,

(viii) |4,|X, =0(),

(x) S n[ag|X, <o,

n=1

x) T = 2:105v|k /v)zo(xn),

then the series ' (a,4, )/ na,, is summable |A , k>1.

The object of this paper is to give two improvements to theorem 1.1 as follows
1. Replacing the four conditions (vi)-(ix) by two conditions ,
2. By weakening the condition (x),
and adding a simple condition. In fact we prove the theorem without any loss of
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powers through estimation. In [3], through the proof, there is a loss of some powers

through estimation. For example |2.n|k is replaced by the factor |2,| as|4,|=0O(1), and in

such case we are losing the power |ﬁ,n|k_1 without any advantage.

In what follows we prove the following
Theorem 1.2. Let A be atriangle with nonnegative entries satisfying

(i) a,=L n=01..,
(i) a,,, za, fornzv+l

@) na,, =0(), 1=0(na,,),

(iv) AQl/a,,)=0(),

v) DA

=0(a,,).

an,v+l

A

a ..l =o@.

(VI) Zn:w—l n “

n,v+1

If (X,) is a positive nondecreasing sequence and the sequence (4, ) satisfy

(vii) 4,—>0,a n—ow



W. T. SULAIMAN 96

vili) A%,

n=1

X, <o,

and
i) T,=>" (s, rvxi?)=o(x,),

then the series »_(a,4, )/ na,, is summable |A , k=>1.

We have to mention that whenever X & — oo, condition (vii) of theorem 1.2 is weaker than
condition (viii) of theorem 1.1. For if (viii) is satisfied, then X, — oo implies that

A, — 0, while if (vii) is satisfied, thatis A, — 0, then by choosing

/1 :nfl/Z’ Xn :ne+(l/2)' e> 0'

n

we obtain |4, X, =O(n°) = O(1).

Lemma 1.2. Condition (ix) of theorem 1.2 is weaker than condition (x) of theorem 1.1.

Proof. If (x) holds, then we have

m |Sn|k { 1 jm 1,
—_ =0 — “s,|° =0(X,,),
an:l Xlkl Z | |

n=1 n=1 n

while if (ix) is satisfied then,
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m

1 ow_ s 1 Ko ke
IR ops R

n n=1

USIRY |SV|k k-1 " |Sn|k k-1
= z o |AX, T+ Z o | Xn
n=1 Vi n

v=1 \Y n=1 nX

m-1
= 0(1)D X, |AX I+ O(X, )X K*
n=1

m

m-1

= O(X )X (Xf5E = XE1) + O(x k)

>

Lemma 1.3. Conditions (vii)-(viii) of theorem 1.2 imply that
nX,|A4, |= 0(@),
D XA, |< o,
n=1
and (1.7) implies

2, X, =0@).

(1.6)

(1.7)

(1.8)
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Proof. Since 4, — 0, then A4, — 0, and hence

X, |A4,| = nxniA|Mv| = 0() nxniwzv = omivxv A2l =0().
m m-1 n m
D X, |A4| = Z( xvjA|Mn| + (Z xnj|Mm|
n=1 n= v=l n=1
m-1
=0 nX |A’2,| +O@)mX, |A2,|=0(Q)
n=1
As A —0,
4,]X, = X, S A2, =0@) 3 X,[a2,] =0().
Lemma 1.4. Under the conditions of theorem 1.2,
n-1
>.A.4,]=Of(a,,), (1.9)
v=1
m+1
> A4, =0(,), (1.10)
n=v+l
m+1
D fa. =00 (1.11)

n=v+1

For the proof, see [3].
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2. Proof of Theorem 1.2.
then

nn?

Let T, denote the nth term of A-transform of the series Z(anﬁn)/ na

T,-T.,=Ya, ny

_ E(Avénv ﬂ,VSV n én,v+]_ //ifvsv " a’\'n,v{l A(ijﬂ' S +MJ
VTV

va,, viv+la, v+1 (a, (V+ 1)av+1’v+1

LS,
n

=T, +T, +T 3 +T,,+T,5.

In order to prove the theorem , by Minkowski's inequality, it is sufficient to show that
> T, [ <o, v=1,2345.
n=1

Applying Holder's inequality, (ii), (iii), Lemma 1.3, and (ix),

k

m+1 m+1 n-1 A é. /1 S
nk—lT k — nk—l Vv v Sy
Zl T Zl 21 va,

m+1 n-1 X
0w Zlnk@maw||zv||sv|j
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= 0(1)mzﬂnk-lnf:|Avanv
n=1 v=1

n-1
: V|k(z|Avam
v=1l

;

=003 (a, ) a4,
n=1 v=1

k k
|

_O(l)Z|i| |S| Z|Av nv

n=v+1

—0®Y a4l
v=1l

Ay k1

X Ty k1

[Als.
Xkl

_0(1)2

k
m SV

_0(1)ZA|/1|Z| k| +O(1)|/1mlzv|xk|_l
=0 r v=1 v

= 0(1)i|mv| X, + 0|4, X,
v=1

=0(@),

by using (1.9), Lemma 1.3, (1.10), (ix), and Holder's inequality.
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A,8,

z nv+l

v=0 V(V + 1)aw

m+1 1 K m+1 ‘1
2Tl =20n
n=1

n=1

= O(l)zn [Z nv+l |ﬂ“v||SV|j

m+1 - n-1 . K K n-1 k-1
= O(l) Zn B Zaw an,v+1 |/1v| |Sv| [Z a'W a‘n,v+l j
n=1 v=1 v=1

a

AL IS

n,v+1

= 0(1)m2+1(nam)k*ln2_law
n=1 v=1

= 0(1)Zaw A Sa

n=v+l

n,v+1

=0 a, |/1V|k |sv|k, by using (v), (1.11), and Holder's inequality,
v=1

=0(@),

asinthecaseof T .

m+1

an 1|Tn3| — an -1

n-1 a
Z n,v+1 [i]i\,sv
= v+l \a

W

k
el Al j . by using (iv),

—O(l)an l(Za

=0(@,
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asinthecaseof T ,.

m+1 m+1 n-1 4 AALS
nk—l Tn k — nkfl n,v+1 vV
; | 4| ; ;(V—i_l)awl,vﬂ
m+1 AL X
ong {5 bl
v=1 Vi

m+1 nv+ Aj’ k-1
Sop3in Sl P )

v=1 v=0

m+1

0(1)Z|A/1||S | Zn —1

n=v+1

n v+1

VIAA, s
- onF sl

v=1

m-1 v IS k
=0 AMaz])> Jxll +O@)m|AL,| X,
r=1 r

v=1

=0 > |a1| X, + omiv\AuV
v=1 v=1

A2 X s

using Holder's inequality, Lemma 1.3, (vi), (ix), and (viii).

Finally, using Lemma 1.3,
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k

n=1 n=1
A )Is, | (12 X, )
=0(1
0wy

ST

AllS
:O(l)z_:‘ n”x ~—, using Lemma 1.3,

=0(),
as in the case of T.,. The proof is complete.

3. Corollary
Corollary 3.1. Let

(i) np,=0(P,), P,=0(np,),

(i) A(P,/p,)=0(@),

k
(i) Z‘;’_Mn“($J - OL/PY).
n' n-1

If (X,) is a positive nondecreasing sequence and the sequence (1, ) is satisfy conditions

(vii)-(ix) of theorem 1.2, then the series Z(a PA )/npn is summable ‘N, P,

n"-n°"n

, k>1.
k
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