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Abstract. The aim of this paper is to obtain, Hermite-Hadamard type inequality for product of convex function
using Sugeno integral which is based on general (¢, m, r)-convex function. Some examples are also given.
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1. Introduction

M. Sugeno [17] has introduced the theory of fuzzy measures and fuzzy integrals which has
a wide applications in systems and control theory. Since then many authors have studied the
various properties and applications on fuzzy integrals. In [15] Relescu and Admas proposed the

equivalent definition of fuzzy integrals.
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Recently [1]-[9] authors have generalized the Sugeno integral. Recent literature reveals
the integral inequalities for Sugeno integral such as Berwald type inequality [10], Barnes-
Godunova-Levin type inequality [11], Hermite-Hadamard type inequality [12], general Minkowski
type inequality [13], Cauchy-Schwarz type inequality [14], Sandor type inequality [16], etc.

The main objective of this paper is to study the Hermite-Hadamard type inequality for product

of convex functions in fuzzy context.

2. Preliminaries

In this section we give some basic definitions and properties of the fuzzy integral see [17],

[22].

Definition 2.1. [18] Let I C R be an interval, A € [0,1]. A function f : I — R is said to be

convex on I if

(1) fAx+(1=2)y) SAf(x)+(1=2)f(y)

for all x,y € 1. If the above inequality reverse, then we say that the function f is concave on I.
Let X be a nonempty set and let P(X) = {A|A : X — [0, 1]} be the class of all subsets of X.

Definition 2.2. [22] Let 6-algebra  be a nonempty subclass of P(X) with the following prop-
erties:

(1) X,¢ € .

(2) If A € @, then A€ € p.

(3) If {An} € 2, then U, Ap € 9.

Let & be a o-algebra of subsets of X and U : 2 —> [0,) be a non-negative, extended real
valued set function. We say that u is a fuzzy measure if it satisfies:
(1) u(¢)=0.
(2) E,F e pand E C F imply u(E) < u(F).
(3) {Ex} C @,E1 CEy C ..., imply limy, oo f(En) = u(Uy—1 En)-
(4) {En} C@, E1 D Ey D ...y U(E)) < oo, imply limy, oo (l(Ey) = U((y2y En)-
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If f is non-negative real-valued function defined on X, we denote the set {x € X : f(x) >
af={x€X:f>a}by Fy for a > 0. Note that if o < B then Fg C Fy.

Let (X, g2, 1) be a fuzzy measure space, we denote M the set of all non-negative measurable

functions with respect to .

Definition 2.3. (Sugeno [17]). Let (X, 2, L) be a fuzzy measure space, f € M* and A € g, the

Sugeno integral of f on A, with respect to the fuzzy measure W, is defined as

(5) [ fau =\ l@npanFy),

o>0

when A = X,

where \/ and N denote the operations sup and inf on [0,0), respectively.
Now we give some basic properties of fuzzy integral given in [21].

Proposition 2.1. Let (X, @, L) be fuzzy measure space, A,B € @ and f,g € M then:

(1) (s) [y fdu < p(A).

(2) (s) [ykdu =k A u(A), k non-negative constant.

(3) (s) Jafdu < (s) [s8dn, for f < g.

(4) p(AN{f = 0a}) > o= (s) [y fdu > .

(5) pAN{f = a}) <a=(s) [y fdu < o

(6) (s
(7) (

Consider the distribution function F associated to f on A, that is, F(a) = u(AN{f > a}).

U
U
)[4 fdu > o <= there exists y > o such that u/(AN{f > 7v}) > a.
$) [y fdu < a <= there exists Y < & such that W(AN{f > y}) < a.

Then from (4) and (5) of Proposition 2.1, we have F(a) = oo = (s) [, fdu = a. Thus, the

fuzzy integral can be calculated by solving the equation F (o) = a.

Definition 2.4. [16] Let I C R be an interval, A,oc,m € [0,1], r € R. t be a continuous and

monotonous function on R. A function f : 1 — R is said to be general (a,m,r)-convex on I if

@ (A m(1=2)y]7) <t (Ao ) (@) +m(1 =A%) (o £) D)), r#0,



4 DEEPAK B. PACHPATTE AND KAVITA U. SHINDE

or

3 SR < (o )M () (0 MV, r=0,

for all x,y € 1. If the above inequalities reverse, then we say that the function f is general

(a,m,r)-concave function on I.

Remark 2.1. [16] If, in Definition (2.4), t = id ( i.e., t(x) = x for any x € I), then one obtains
the definition of (a,m,r)-convexity.

If, in Definition (2.4), a,m = 1, then one obtains the definition of general r-mean convexity.

If, in Definition (2.4), oo,m = 1, t = id, then one obtains the definition of r-mean convexity [20].
If, in Definition (2.4), r = 1, then one obtain the definition of general (., m)-convexity.

If, in Definition (2.4), r = 1, and t = id, then one obtains the definition of (o.,m)- convexity [18].
If (a,m,r) € {(0,0,1),(e,0,1),(1,0,1),(1,m,1),(1,1,1),(et,1,1)} and t = id

in Definition (2.4), one obtain the following classes of functions: increasing, o.-starshaped,

starshaped, m-convex, convex and Q-convex respectively.

3. Main Results

Hermite-Hadamard type inequality for product of convex function was established by B

G. Pachpatte [19] which is as follows.

Theorem 3.1. Let f, g be real valued, nonnegative and convex function on |a,b]. Then

1
) — / F)g(x)dx < M(a b)+ N(a.b)

b b 1 1
(5) 2f(“+ ) (“; ) <— a/ F(@)g(x)dx -+ SM(a,b) + 3N(a,b).

where M(a,b) = f(a)g(a)+f(b)g(b) and N(a,b) = f(a)g(b) +f(b)g(a).

Now consider an example.
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Example 3.1. Consider X = [0,1] and let 1 be the Lebesgue measure on X. Now we take the
function f(x) = %xz and g(x) = %xz and t(x) = /x, then f(x),g(x) are general (1/2,1/3,2)-

convex function. Then

2
%xzzf([xz.lz—l—%(l—xz)ﬂz] 1/2> < ([xé+%(1—x).o}l/z>

For x € |0, 1], from a simple calculation we get

1

1
—x*du =0.034727.

() . 23

Also, M (a,b) + £N(a,b) = 0.01333.

This proves that right hand side of (4) is not satisfied for Sugeno integral.
Now we give the Hermite-Hadamard type inequalities for product of convex function via

Sugeno integral using general (o, m, r)-convex function.

Theorem 3.2. Let (ot,m) € (0,1]2, r € R, and r # 0, let t be a continuous and monotonous func-
tion, let f,g:[0,1] — [0,00) be general (o, m,r)- convex functions and let 1 be the Lebesgue

measure on R. Then

Case 1: If (to f) (1) —m(tof)"(0) >0and (tog) (1) —m(tog)"(0) > 0, then

1
(5) || S()gx)d < min{B, 1},
where B is given by

_( t"(B) —m(t0g)"(0) )”W ( t"(B) —mf(to £)(0) )”W
(tog) (1) —m(tog)"(0) (0 )7 (1) —m(ro £)7(0)

t(B) —m(rof)r(0) " (B) —m(rog) (0) \"*
© +<Ooﬁ%U—m09ﬂ%®> <Uo@<> <o><>) =
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Case 2: If (to f)' (1) = m(t o f)(0) = 0 and (tog)' (1) —m(t 0 )"(0) = 0, then
) [ P8 e)dse < minf” 5 0)5(0),1)
Case 3: If (to f)" (1) —m(to £)"(0) < 0 and (tog)" (1) —m(t 0 g)"(0) < 0, then
) [ F)gedu < minfp. 1),
where B satisfies the following equation
B (o) (1) = m(ro £)(0))((rog) (1) — m(tog)"(0)))
) — (t"(B) —m(to )" (0))(t"(B) —m(to8)"(0)) = 0.
Proof: As f, g are general (&, m, r)-convex function for x € [0, 1], we have
Fx) =f (W17 +m(1=7).07"7)
<t ! (X (20 )7 (1) + m(1=x) (0 £)7(0)]'/7)
—h (x).
g(x) =g (W 1"+ m(1—x").0""")
<t~ ([ (10 g) (1) +m(1—x")( 0 g)"(0)]'/")

:/’lz(x).

By Proposition 2.1, we have

1

! 1 1
(s)/o F)g(x)du :(s)/o F 1 +m(1 =)0 g (17 +m(1 —x").0 ) dp
1
S(S)/O (Ko ) (1) +m(1=x) (10 £) (0)]'77).
(K (0 g) (1) +m(1—x7)(tog)"(0)]"")du

1

() —(s) /0 (¥ (x)d .

To calculate the right hand side of (8), we consider the distribution function F' given by

F(B) =u([0,1]N{A1(x)2(x) = B})
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=u([0,1]N {h1(x) = B1)-p([0,1] N {ha(x) > B})

— (0010 {ai (B o )+ m(1 =20 £ 017) 2 B ).

©) (10110 {00 (1) (1 =2 o9 O] ) 2 B} ).

Case 1: If (to f)"(1) —m(to f)"(0) > 0 and (rog)"(1) —m(t 0 g)"(0) > 0, then from (9), we

F(p) =u (0.0 x> ((mﬁ@(l)m(ﬁrﬁ;ﬁ)(o))]/W})'
m(t0g)(0) er
m(t o g)r(O)) }>

Z“(<<z iﬁgn—iﬁfz;ﬁ)m) /w’l)'

have

t'(B) ~mi(t0g)"(0) )/>
10 1 - )
o (- (oo
and the solution of the (10) is F () = B, given by (6). By Proposition 2.1, we have
1
(5) || f()gx)d < min{B, 1.

Case 2: If (to f) (1) —m(to f)"(0) =0 and (tog)" (1) —m(t 0 g)"(0) = 0, then from (9), we

have

F(B) =u([0, 1] N {x|m'/" £(0) > B}).11([0,1] N {x|m'/"g(0) > B})
(11) =m*'" £(0)g(0),

and the solution of (11) is F () = . By Proposition 2.1, we have

() [ F)a0dst < minf’ 7(0)5(0). 1)
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Case 3: If (o f)" (1) —m(to f)"(0) <0 and (fog) (1) —m(tog)"(0) < 0, then from (9), we

F6) :“([O’ 1n {x’“ ((rofgfil)m(t?rfg;)@(m) l/w})'
. oo 1/ar
“<[°’ ”“{x”‘ <<m$)<1 & <g>g(>(3)<o>) })
o 1/ar
- (0’(@@;?)(1) & (tf)f( )<o>> )
)

“(0’ ((rog> ) nf(;?rgo) g(>9)<o>)l/m)

have

av

(12)
and the solution of the (12) is F () = B, given by (7). By Proposition 2.1, we have
1 .
(5) | f()gx)d < min{B, 1.
Remark 3.1. If ¢ = 0 in Theorem 3.2, then we have
1 .
©) [ Fgtodu < minlF(1)g(1),1}.

Example 3.2. Consider X = [0, 1] and let u be the Lebesgue measure on X. If we take the
functions f(x) = x* and g(x) = x>, t(x) = \/x then f(x),g(x) are a general (1/2,1/3,2)-convex

function. In fact
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Then by Theorem 3.2, we have

1
(13) 0.2451 = (s)/ xdu < min{0.3819,1} = 0.3819.
0
Now the following theorem is the general case of Theorem3.2.

Theorem 3.3. Let (a,m) € (0,1)%, r € R and r # 0, let t be a continuous and monotonous func-
tion, let f,g: [a,b] — [0,0) be general (a,m,r)-convex functions and let L be the Lebesgue

measure on R. Then

Case 1: If (to f) (b) —m(to f)"(a) >0and (tog)"(b) —m(tog)"(a) > 0, then

/f x)du < min{B,b—a},

where B is given by

‘b(“’r""")((rof>r<z;>n—1m<tof>r)<a>>l/a”"r) )
/

+ <(br —ma") ((; o;f)(b)m(t (er;)f() )(a)) e +ma,> l/r.
o (W Rl ( (o g’)(b) & (Ztgc? g()ci)(a) ) ’ i mar) W'

Case 2: If (1o f)(b) ~m(to f)'(a) = 0 and (1o g)(b) ~m(t 0 g)'(a) =0, then

(15) (5) /ff() () < min{n?!" f(a)g(a),b—a}.

Case 3: If (10 f)(b) —m(to f) () < 0 and (1o g) (b) ~m(tog)'(a) <O, then
/f x)djt < min{B.b—a},

where B is given by

(17 () o)

((br ) ( 0 tg(f)(b; T(;C()tgj ;()Ci)(a) ) n ma’) v

(o (G )
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(B)—m(tog)@ \" N o
Ot @) ) e

Proof: As f,g are general (a,m,r)-convex functions for x € [a,b], we have
x"—ma" X —ma V"
&) :f( [m(l b —mar)ar+ br —mar'br] )
¥ —ma™\ % ¥ —ma \* 1/r
< (1= () Yeorr@+ (3o ) worye)] )
=hi(x)
x"—ma" X —ma V"
:g({m(l_b’—ma’)aq—b’—ma"br] )
X —ma" \ % T —ma” \ ¢ 1/r
< (1= (o) Yeowr@+ () Goero) )

=hy(x).

(16) —a((br—mar)((

oQ

—~
po

SN—r

By Proposition 2.1, we have

6) [ rsan =) [ ([m(: b,_ma,) v }”’).
== T”)

<o) [ (|1 (;:ij:)a) (ro ) @)+ (Z,_:Zr)a(mf) <b>r/r).

! ([m(l — (;::Z:)a) (tog) (a)+ (z::zzz:)a(rog)r(b)} W)du

an =) | ()

To calculate right hand side of (17), we consider the distribution function F' given by
F(B) =i [a.61 (i (w)hats) > B) )
(10 1) 2 B ).t (010 (1n () 2 B

=u ([a,b] a {x]t_l ( {m (1 —~ (;::ZZ:) a) (tof) (a)+
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¥ —mad" o 1/r
r >
() Gorr| ) =8})
I X —ma \*
u([a,b]ﬂ{x|t ({m(l— (br—ma’) )(tog) (a)+
X —ma"\ ¢ Ir
r > .
(18) (o) woerw)] ) =p})

Case 1: If (ro f)"(b) —m(to f)"(a) > 0 and
(tog) (b) —m(tog)"(a) > 0, then from (18) we have

F(B) =u [a,b]m{x\xz((br—ma ( (b f)

@
u [a,b]ﬂ{x|x2 ((b”—ma ( )(b gd (a) )l/ ) })
) 1r

S )”a 7))
(o lsisin) )” :

a9 (o (0 -mn (o _m(z;?tggrg(ﬁ)(a)y/am‘”) )

and the solution of the above equation F(f3) = 3, given in (14). By Proposition 2.1, we get

~—
|

b
) [ 10gx)du < min{B.b~a),

The proof Case(2) and Case(3) can be given similarly, so we omit details.
Remark 3.2. If « = 0 in Theorem 3.3, then we have
b
) [ Fx)g @)y < min{f(b)g(b),b—a}.
a

Remark 3.3. Let (a,m) € [0,1)>, r € R, and r #0, t = id, let f,g : [a,b] — [0,) be an
(a,m,r) -convex functions, and let | be the Lebesgue measure on R. Then

Case 1: If f"(b) —mf"(a) > 0 and g"(b) —mg"(a) > 0, then

/f (x)du < min{B,b—a},
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where B is given by

. b((b’ o (gﬁr ~ g (a) )) /e —|—mar) 1/r

"(b) —mg"(a

oo ) )

() m)

oy (B e @ N N
20 (0=m (G ms) ) =P
Case 2: If f"(b) —mf"(a) =0 and g"(b) —mg"(a) = 0, then

) [ F)g0dn < mintn"f(a)g(a) b a).

Case 3: If f"(b) —mf"(a) <0 and g"(b) —mg"(a) <0, then

b
) [ 10gx)du < min{B.b~a),

where B is given by

(o) om)

((br —ma") (gﬁr —mg'(a) )) /o +mar> 1

"(b) —mg(a
) 1/ 1r
~a{0rma) () )

o ) ) e

Remark 34. Letaxc =m=1,r € R, and r # 0, let t be a continuous and monotonous function,

let f,g:[a,b] — [0,00) be general r-mean convex functions, and let [l be the Lebesgue measure
on R. Then
Case 1: If (to f) (b)—(tof) (a) >0and (tog)"(b) — (tog) (a) > 0, then

b
(s) / F()g()dp < min{B,b—a},

where B is given by

oo ) )
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Ao i) )

0 (G gerr@) ) "~
(

= (0= (g rgrta) ) o
( (

8
Case 2: If (to f)"(b) — (tof) (a) =0and (tog)"(b) —

tog)(a) =0, then
) [ Fean < mints(@sia).b—a.
Case 3: If (to f)" (b) — (to f) (a) <O0and (tog)"(b) — (tog) (a) <O, then
b
©) [ 10g(x)au < min{B.b~a).

where B is given by

(vt o)
"(a 1/r
(v ey o
_a((br_ar><<tof tothf )a )“’r)l/r

B-Go /@
. (G ) ) s

Remark 3.5. Leta=m=1,reR,andr #0,t =id, let f,g: [a,b] —> [0,0) be an r-mean

convex functions and L be the Lebesgue measure on R. Then

Case 1: If f"(b) — f"(a) > 0 and g"(b) — g"(a) > 0, then

/f x)du < min{B,b—a},

where B is given by

b B Y ) (- (B )

—&(
o (- (L) ) (-0 (F ) ) =8
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Case 2: If f7(b) — f"(a) = 0 and g"(b) — g’ (a) = 0, then
©) [ £ < minf f(@)g(a),b—a}.
Case 3: If f7(b) — f(a) < 0 and g"(b) — g’ (a) < 0, then
[ et <o 5

where B is given by

i i
—a((br—ar) (%)W)

o0 - (S ) +a’)1/r+a2:ﬁ.

Remark 3.6. Let (a,m) € [0,1)?> and r = 1, let t be a continuous and monotonous function, let
f,g:[a,b] — [0,o0) be a general (o, m)-convex function, let | be the Lebesgue measure on R.
Then

Case 1: If (to f)(b) —m(to f)(a) >0and (tog)(b) —m(tog)(a) >0, then

b
) [ 10gx)du < min{B.b~a),

where B is given by

(b= ma? = (- ma)?

(B) —mito f)(a)
) “b‘m“)z((of)(b) o f)(

(
Case 2: If (tof)(b) —m(to f)(a) =0and (tog)(b) —m(tog)(a) =0, then
) [ F)edn < minfo f(a)g(a),b—a).
Case 3: If (to f)(b) —m(to f)(a) <0and (tog)(b) —m(tog)(a) <O, then

/f (x)du < min{B,b—a},
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where 3 is given by
() —mef)@) V(B mGog)a) \'
(b )<(rof)() m(tof)(a > (tog(b) (fog)(a))
1(B) —mitof)(a) )”‘”
(to f)(b) —m(to f)(a)

t(B) —m(tog)(a) \"* B
(26) +(ma—a)(b—ma)((tog)(b>_ (tog) (@ )) + (ma—a)*=pB.

+ (ma—a)(b—ma)
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