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Abstract. We develop a new method for calculating specific values of Daubechies wavelets in one dimension.

The novelty of this approach is its ability to calculate exact values of the Daubechies scaling functions and, by

extension, wavelets, without calculating values of the scaling function at other unnecessary dyadic rationals. We
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analysis of the wavelet transform for functions of various smoothness.
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1. Introduction

Since the introduction of Daubechies wavelets in [4], [5], mathematicians, physicists, and

engineers alike have employed them to study various problems in their respective fields. Some

applications include numerically solving partial differential equations [3], [17], recognition and
∗Corresponding author

E-mail address: estachura@haverford.edu

Received February 15, 2018

1



2 E. STACHURA, A. HUNTER

visualization of various signals [10], [18], and regularization of inverse problems [6]. These are

just a handful of results in the vast wavelet literature.

Frequently in these applications one needs to know the exact value of the wavelet at certain

points. This tends to be difficult though since wavelets generally don’t have a closed form,

but rather satisfy some recursion relation. In the first part of this note we provide a new way

to calculate the exact value of Daubechies wavelets that does not require calculating values of

the scaling function at unnecessary dyadic rationals. The second part of this note is devoted to

analyzing the convergence of the wavelet transform for functions of various smoothness. This

analysis gives a quantitative method for choosing the best suited wavelet for the application at

hand, see Theorem 5.3 which gives error estimates (10) and (12). See also the estimate (14) for

Cm smooth functions.

The layout of this article is as follows. In Section 2 we provide the necessary background

on Daubechies wavelets. Then in Section 3 we review current methods on finding numerical

values for Daubechies wavelets, including the Cascade Algorithm. In Section 4 we discuss the

new method and provide specific examples. Then in Section 5 we discuss the discrete wavelet

transform and compute the error for Lipschitz and Hölder functions. Finally we discuss the

convergence of the wavelet transform for smoother functions, and obtain the error bound (14).

2. Daubechies Wavelets

Wavelets are essentially functions that can generate an orthonormal basis for L2(R) by dilat-

ing and translating the wavelet function. Thus, wavelets are useful for approximating functions

in L2(R). In order to dilate and translate a function, we define the subscript notation

fk, j(x) := 2k/2 f (2kx− j)

for an arbitrary f ∈ L2(R). As we will see in the forthcoming sections, a firm understanding of

Multiresolution Analysis (MRA) is needed for the derivation of wavelets.
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Definition 2.1 ([5]). A multiresolution of L2(R) with scaling function ϕ ∈ L2(R) is a sequence

of subspaces {Vk}k∈Z that satisfy the following properties:

(1) orthogonality: {ϕ(x− j) : j ∈ Z} is an orthonormal basis for V0

(2) nesting: Vk ⊂Vk+1 for all k ∈ Z

(3) scaling: f (x) ∈Vk if and only if f (2x) ∈Vk+1

(4) density:
⋃

k∈ZVk = L2(R)

(5) separation:
⋂

k∈ZVk = {0}

A simple example of a scaling function that generates a multiresolution of L2(R) is the indi-

cator function of the interval [0,1): ϕ(x) = χ
[0,1)(x). As we will see later, the scaling function

ϕ plays a crucial rule in constructing a wavelet. Hence, ϕ is sometimes referred to as a father

wavelet.

Ingrid Daubechies invented an entire family of wavelets [5] which are referred to as Daubechies

wavelets. Her discovery was a major breakthrough in wavelet analysis because Daubechies

wavelets have compact support and some sort of smoothness. This compromise makes them

ideal for applications, which usually exploit their ability to efficiently approximate functions.

The importance of certain properties depend on the nature of the application and some of these

properties cannot coexist.

The naming scheme we use to describe a specific wavelet in the Daubechies wavelet family

is DaubJ, where J is the number of constant filter coefficients, denoted as a j, in the wavelet

expansion.

Definition 2.2. For any N ∈N, a Daubechies wavelet of class Daub2N is a function ψ ∈ L2(R)

of the form

ψ =
2N−1

∑
j=0

(−1) ja2N−1− jϕ1, j

where a j = 〈ϕ,ϕ1, j〉 and its associated scaling function ϕ ∈ L2(R) of the form

ϕ =
2N−1

∑
j=0

a jϕ1, j

that generates a multiresolution of L2(R) which satisfies the following four properties:

Vk is sometimes defined as Vk = span{2k/2ϕ(2kx− j) : j ∈ Z}.
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(1) ψ and ϕ are compactly supported on the interval [0,2N−1],

(2) ψ has N vanishing moments,

(3) there are only 2N non-zero constant filter coefficients, i.e., a j 6= 0 for j ∈ [0,2N) and

a j = 0 for all other j, and

(4) ϕ satisfies
∫
Rϕdx = 1.

Another useful property of the Daubechies Scaling function is known as a partition of unity.

Lemma 2.3. If ϕ is a scaling function of a Daub2N wavelet, then the equality

∑
n∈Z

ϕ(2−kn) = 2k
∑
n∈Z

ϕ(n)

is satisfied for all k ∈ N.

Proof. We will prove by induction. Using ϕ’s scaling relation when k = 1, the chain of equali-

ties

∑
n∈Z

ϕ

(n
2

)
= ∑

n∈Z
∑
j∈Z

a jϕ1, j

(n
2

)
=
√

2 ∑
j∈Z

a j ∑
n∈Z

ϕ(n− j) =
√

2 ∑
j∈Z

a j ∑
n∈Z

ϕ(n) = 2 ∑
n∈Z

ϕ(n)

hold by (1) below. Now we will prove the equality for kth case assuming that it holds for (k−1)st

case:

∑
n∈Z

ϕ

( n
2k

)
= ∑

n∈Z
∑
j∈Z

a jϕ1, j

( n
2k

)
=
√

2 ∑
j∈Z

a j ∑
n∈Z

ϕ

( n
2k−1 − j

)
= 2 ∑

n∈Z
ϕ

( n
2k−1

)
=2k

∑
n∈Z

ϕ(n)

as desired.

We also need the following:

Proposition 2.4. If ϕ is a scaling function of a Daub2N wavelet, then the following equality

holds.

∑
n∈Z

ϕ(n) = 1

Proof. We will show that
∫

ϕ(x)dx=∑n ϕ(n); the desired equality follows then as a direct result

of Property 4 from Definition 2.2. We can expand the integral of ϕ as a Riemann sum. We will
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partition the support of ϕ with the intervals [2−k( j− 1),2−k j] for j = 1,2 . . . ,2k(2N− 1). We

can then express the integral as limit of Riemann sums with increasing partitions:

∫
R

ϕ(x)dx = lim
k→∞

2k(2N−1)

∑
j=1

2−k
ϕ(xk, j) , xk, j ∈

[
2−k( j−1),2−k j

]
.

If we choose xk, j = 2−k( j−1) and utilize Lemma 2.3, we can see that

lim
k→∞

2k(2N−1)

∑
j=1

2−k
ϕ(xk, j) = lim

k→∞

2k(2N−1)

∑
j=1

2−k
ϕ(2−k( j−1)) = lim

k→∞

2k(2N−1)

∑
j=1

ϕ( j−1) = ∑
j∈Z

ϕ( j)

because 2k(2N− 1) tends to infinity as k increases and ϕ(x) = 0 for all x < 0. Therefore the

equality

1 =
∫
R

ϕ(x)dx = ∑
j∈Z

ϕ( j)

holds, as desired.

By combining various properties of Daubechies wavelets, we find a system of equations that

the filter coefficients must satisfy:

√
2 = ∑

j∈Z
a j(1)

δ0,n = ∑
j∈Z

a2n+ ja j for n ∈ Z(2)

0 = ∑
j∈Z

(−1) j jma j for m = 0,1, . . . ,N−1(3)

0 = a j for j ∈ Z\ [0,2N)(4)

This system of equations does not necessarily give a unique solution, however, the number

solutions is finite. One of the solutions does indeed produce a Daubechies wavelet. There is

a method for finding the exact values of the constant filter coefficients that utilizes the Fourier

transform, see [5] and [13]. The constant filter coefficients of a Daub2N wavelet for N =

1,2,3,4 are listed in Table 1.

We only get a unique solution when N = 1, forming the Daub2 (Haar) wavelet.
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N = 1 N = 2 N = 3 N = 4

a0
1√
2

1+
√

3
4
√

2

√
2+2
√

5+
√

10+4
√

10
32 ≈ 0.23037781330889673

a1
1√
2

3+
√

3
4
√

2
5
√

2+2
√

5+3
√

10+4
√

10
32 ≈ 0.7148465705529157

a2
3−
√

3
4
√

2
5
√

2−2
√

5+
√

10+4
√

10
16 ≈ 0.6308807679298589

a3
1−
√

3
4
√

2
5
√

2−2
√

5−
√

10+4
√

10
16 ≈−0.027983769416859854

a4
5
√

2+2
√

5−3
√

10+4
√

10
32 ≈−0.18703481171909309

a5

√
2+2
√

5−
√

10+4
√

10
32 ≈ 0.030841381835560764

a6 ≈ 0.0328830116668852

a7 ≈−0.010597401785069032

TABLE 1. Constant filter coefficients (a j) of Daub2N wavelets.

3. Numerical Values of Wavelets

Wavelet collocation methods [3] are frequently used to solve various integral and differential

equations, but these methods often require knowledge of the values of the wavelet basis at

specific points.

In order to find numerical values of Daubechies wavelets, we first need to find numerical

values of their scaling functions. This task is not trivial due to the recursive definition of

Daubechies scaling functions. This section explores methods that give good approximations

to scaling function values and, by extension, their respective wavelets.
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3.1. Cascade Algorithm

The cascade algorithm (developed by Daubechies [5]) is a fixed point method that generates a

sequence of functions that converge to the Daub2N wavelet scaling function, Φ.

We begin by discussing the scaling relation Φ will satisfy. If {Vk} is a sequence of subspaces

that form a multiresolution of L2(R) with scaling function ϕ , then it is clear that ϕ ∈ V0 ⊂ V1.

Thus, ϕ has the scaling relation

(5) ϕ = ∑
j∈Z

a jϕ1, j

where a j := 〈ϕ,ϕ1, j〉.

Suppose now that F assigns the expression

F [Λ](x) =
√

2 ∑
j∈Z

a jΛ(2x− j)(6)

to the function Λ. Existence and uniqueness of integrable solutions to the general fixed point

equation (6) was shown in [7]. In particular, using (5), we can see that Φ is a fixed point of F .

One can use F to generate a sequence of functions {νi} that converge to Φ.

To begin generating the sequence of functions, we need to choose a starting function ν0 that

is our “initial guess” for the fixed point of F . It is known that Φ is supported on [0,2N−1] and

obtains a maximum on this interval. So a reasonable first guess is a function that is zero at all

integers except ν0(0) = 1 (see [1]). If we connect the integer values of ν0 with lines we get

ν0(x) =


1+ x if −1≤ x < 0

1− x if 0≤ x < 1

0 otherwise

.

We can generate the first iteration of the cascade algorithm using ν1(x) = F(ν0)(x). Once we

have ν1, we can generate the second iteration using ν2(x) = F(ν1)(x). This process continues

until the desired preciseness of the approximation is obtained. Figure 1 demonstrates the fast

convergence of νi→ 2Φ as i→ ∞. In particular, the following rate of convergence is obtained

Another reasonable first guess is ν0(x) = χ
[0,1)(x), see [2].
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(A) 1st iteration: ν1
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(B) 4th iteration: ν4
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(C) 8th iteration: ν8

FIGURE 1. Selected iterations of the cascade algorithm (blue) approximating

the Daub4 scaling function (red)

in [5, Chapter 7, Equation (7.2.17)]:

||Φ2−ν j||L∞ ≤C ·2−α j

where α = | log((1+
√

3)/4)|/ log(2) = 0.550.

3.2. Eigensystem Method

The eigensystem method is an alternative approach to finding numerical values of a Daub2N

scaling function for N > 1 and is inspired by [5] and [19].

To begin, we will find all integers values that fall within the support of the Daub2N scaling

function, i.e., ϕ(0),ϕ(1), . . . ,ϕ(2N− 1). Recall that ϕ has the scaling relation in (5), so the

integer values of ϕ must satisfy

1√
2

ϕ(i) = ∑
j∈Z

a jϕ(2i− j) =
2N−1

∑
j=0

a2i− jϕ( j), for i = 0,1, . . . ,2N−1.

We can express this system of equations in matrix from as

(7) 1√
2
v = Av

where A is 2N×2N and the i, jth entry is Ai, j = a2i− j for i, j = 0,1, . . . ,2N−1 and 0 else, and

v = [ϕ(0) ϕ(1) · · · ϕ(2N−1)]T is an eigenvector of A with eigenvalue 1√
2
. Once v is found, it

must be scaled so that the sum of its entries satisfies ∑i ϕ(i) = 1, agreeing with Proposition 2.4.

Solving for these eigenvectors can be done by hand or using an algorithm (e.g. the QR algorithm

[20]; note also that the matrix A is sparse). However, it is usually more efficient for the integer
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values to be calculated beforehand and stored. Solving for eigenvectors is very computationally

expensive when compared to the recursive style branching and should be avoided when possible.

Now that we have the values of ϕ(i) for i = 0,1, . . . ,2N − 1, we can use them to find the

values of ϕ
( i

2

)
for i = 0,1, . . . ,4N−2 with

ϕ
( i

2

)
=
√

2
2N−1

∑
j=0

a jϕ(i− j)

because (i− j) is clearly an integer. We can extend this to solve for ϕ

(
i

2k

)
for any i,k ∈ Z

using

ϕ

(
i

2k

)
=
√

2
2N−1

∑
j=0

a jϕ

(
i− j2k−1

2k−1

)
(8)

given that the value of ϕ

(
i

2k−1

)
is known for i = 0,1, . . . ,2k−1(2N−1).

Remark 3.1. This method does not work for the Daub2 (Haar) wavelet because matrix
√

2A

becomes the identity matrix so that we cannot solve for the eigenvector v in (7). However, it

is not hard to see that ϕ(x) = 1Φ(x) = χ
[0,1)(x) satisfies the scaling relation ϕ(x) = ϕ(2x)+

ϕ(2x−1) and that the wavelet formed, 1Ψ(x) = χ
[0, 1

2)
(x)−χ

[ 1
2 ,1)

(x), satisfies all the properties

of a Daub2 wavelet.

We end this section by discussing a recent algorithm [12] which has been developed for

calculating exact values of Daubechies wavelets, which can be viewed as an improvement of

the Cascade algorithm discussed in the previous section. This algorithm is based on calculating

exact integer values of the scaling function, as in the previous section. Once these values are

found then Ma uses a convolution operation to compute the value of the scaling function at

odd-dyadics. The convolution operation is equivalent to (8) and yields the vector[
ϕ

(
1
2k

)
ϕ

(
3
2k

)
· · · ϕ

(
2k(2N−1)−1

2k

)]

when give the value of ϕ

(
i

2k−1

)
at i = 0,1, . . . ,2k−1(2N−1). In the next section we introduce

the new method for calculating values of the scaling function ϕ .
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4. The Branch Method

Sometimes the value of the Daub2N scaling function ϕ is needed only at a single point. Both

the cascade algorithm and the eigensystem method require values of ϕ at many points to find the

value of ϕ at a specific point. The branch method finds ϕ

(
i

2k

)
for any i,k ∈ Z using recursion

and can be thought of as the eigensystem method in reverse. All integer values of ϕ must be

known to use the branch method. The values of ϕ(n) for n = 0,1, . . . ,2N−1 can be calculated

using the method discussed in Section 3.2.

Recall the modified scaling relation in (8). In order to find the value of ϕ

(
i

2k

)
, we must

find the values of ϕ

(
i− j2k−1

2k−1

)
for j = 0,1, . . . ,2N − 1. If we apply the scaling relation to

each ϕ

(
i− j2k−1

2k−1

)
, then we would need to find the values of ϕ

(
nu

2k−2

)
for some numerators

n0,n1, . . . ,n2N−1 ∈ Z. Applying the scaling relation can be thought of creating at most 2N

branches that need to be summed together in order to calculate the parent node as shown in Fig-

ure 2 where h j :=
√

2a j. Note that exactly 2N branches are not always created because of the

cases when the argument of ϕ(x) falls outside the interval [0,2N−1]. In these cases, ϕ(x) = 0

due to the compact support of ϕ and that branch need not be considered.

ϕ

(
i

2k

)

h0ϕ

(
i

2k−1

)
h1ϕ

(
i

2k−1 −1
)

h2ϕ

(
i

2k−1 −2
)

· · · h2N−1ϕ

(
i

2k−1 − (2N−1)
)

FIGURE 2. Visualization of the branch method

The modified scaling relation in (8) can be applied k times so that all the lowest branches are

of the form ϕ(n) for some n ∈ Z. Then we only need to add together the many integer values of

ϕ with their respective filter coefficients to find ϕ

(
i

2k

)
; see Algorithm 1 below.
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Algorithm 1 Branch Method
// Assume the values of constant filter coefficients a0,a1, . . . ,a2N−1 and the integer values of
// the scaling function ϕ(0),ϕ(1) . . . ,ϕ(2N−1) for a Daub2N wavelet are known
function BM(i,k,N)

// Returns value of Daub2N scaling function ϕ(x) at x = i ·2−k

x← i ·2−k

if 0≤ x≤ 2N−1 then
if x ∈ Z then

return ϕ(x)
else

y← 0
for j = 0,1, . . . ,2N−1 do

y← y+a j ·BM(i− j ·2k−1,k−1,N)
return

√
2 · y

else
return 0

The plot in Figure 3 shows calculations made by the Branch Method of exact values of the

Daub4 scaling function at dyadic rationals. The dyadic rationals i ·2−k are categorized by their

k value to make the dyadic rational ‘levels’ more visible.

FIGURE 3. Daub4 scaling function approximations using branch method at x =

i ·2−k at k = 0,1,2,3,4 and all relevant i
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Remark 4.1. If it is desired to find the value of ϕ(x) for some x 6= i
2k for all i,k ∈ Z, one can

approximate x with x ≈ i′

2k′ for some i′,k′ ∈ Z (dyadic rationals are dense in R). Since ϕ is

continuous, ϕ(x) ≈ ϕ

(
i′

2k′

)
. Note that the Daub2 scaling function is not continuous but it has

a closed form expression. Thus, this method is not necessary to find numerical values of the

Daub2 scaling function.

Example 1. We will find the value of the Daub4 scaling function ϕ
(13

8

)
using the branch

method. Using the filter coefficients from Table 1, if we solve for the eigenvector in

1√
2


ϕ(0)

ϕ(1)

ϕ(2)

ϕ(3)

=


a0 0 0 0

a2 a1 a0 0

0 a3 a2 a1

0 0 0 a3




ϕ(0)

ϕ(1)

ϕ(2)

ϕ(3)



and scale the eigenvector such that ∑n ϕ(n) = 1, we obtain:

ϕ(0) = 0 ϕ(1) =
1+
√

3
2

ϕ(2) =
1−
√

3
2

ϕ(3) = 0.

ϕ
(13

8

)

h1ϕ
(9

4

)

h2ϕ
(5

2

)

h3ϕ (2)

h3ϕ
(3

2

)

h1ϕ (2) h2ϕ (1)

h2ϕ
(5

4

)

h0ϕ
(5

2

)

h3ϕ (2)

h1ϕ
(3

2

)

h1ϕ (2) h2ϕ (1)

h2ϕ
(1

2

)

h0ϕ (1)

h3ϕ
(1

4

)

h0ϕ
(1

2

)

h0ϕ (1)

FIGURE 4. Non-zero branches for Daub4 scaling function ϕ
(13

8

)
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The modified scaling relation in (8) is applied three times to obtain integer arguments, as

shown in Figure 4. We get an expression for ϕ
(13

8

)
from the tree:

ϕ
(13

8

)
= h1

(
h2h3ϕ(2)+h3(h1ϕ(2)+h2ϕ(1))

)
+h2

(
h0h3ϕ(2)+h1(h1ϕ(2)+h2ϕ(1))+h2h0ϕ(1)

)
+h3h0h0ϕ(1)

=
2−
√

3
16

≈ 0.0167468.

Remark 4.2. When implementing the Branch Method, all calculated values of the scaling func-

tion, i.e., ϕ

(
j

2k

)
, at each branch node should be stored. The stored values can be used when

calculating future branches. This will dramatically increase efficiency as scaling fuction values

at each dyadic rational will only be calculated once.

We end this section by discussing the computational issues arising in the Branch method.

The most computationally expensive part of the process is the eigenvector calculation for the

2N × 2N matrix A. Typically in direct dense methods [9], O((2N)3) time is required and

O((2N)2) space is required to compute the eigenvectors of A. However, in our case we have

three advantages: namely, the matrix is sparse, the associated eigenvalue is known, and we do

not need to calculate all eigenvectors of A. Thus a more efficient calculation (via e.g. inverse

iteration) can be done.

5. Daubechies Wavelet Transform

Many of the practical applications of wavelets revolve around the wavelet transform. The

transform is a method for approximating functions in L2(R) with a finite number of wavelets in

a smart and efficient manner. We start by recalling the definition of the wavelet transform:

Definition 5.1. Suppose ψ = NΨ is a Daub2N wavelet and ϕ = NΦ is its associated scaling

function. The Daubechies wavelet transform of a function f ∈ L2(R) is defined as

Dn f (x) := ∑
j∈Z
〈 f ,ϕ0, j〉ϕ0, j(x)+

n−1

∑
k=0

∑
j∈Z
〈 f ,ψk, j〉ψk, j(x).
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In practice, the wavelet transform is used to approximate functions over a finite domain. The

function to be approximated can be considered to equal zero outside of this finite domain so

that only a finite number of the inner products 〈 f ,ψk, j〉, referred to as wavelet coefficients, need

to be computed in Dn f . We will find that these wavelet coefficients play a large role in the

maximum error of Dn f and the overall accuracy of the wavelet approximation.

Lemma 5.2. If f ∈ L2(R) is globally Lipschitz continuous with Lipschitz constant C, then

|〈 f ,ψk, j〉| ≤C
(

2N−1
2k

)3/2

.

Proof. The function ψk, j is supported on the set

Ik, j :=
[

j
2k ,

2N−1+ j
2k

]
due to the compact support of ψ over [0,2N− 1]. Let Mk, j = inf{ f (x) : x ∈ Ik, j}. Recall from

Definition 2.2 that the zeroth moment of ψ vanishes meaning that the equality

0 =
∫
R

ψ(x)dx = 2k/2
∫

Ik, j

ψ(2kx− j)dx =
∫

Ik, j

ψk, j(x)dx

holds. We then obtain:

|〈 f ,ψk, j〉|=
∣∣∣∣∫Ik, j

f (x)ψk, j(x)dx−Mk, j

∫
Ik, j

ψk, j(x)dx
∣∣∣∣

=

∣∣∣∣∫Ik, j

(
f (x)−Mk, j

)
ψk, j(x)dx

∣∣∣∣
≤
∫

Ik, j

∣∣∣ f (x)−Mk, j

∣∣∣ ∣∣ψk, j(x)
∣∣dx.

Applying Hölder’s inequality yields

|〈 f ,ψk, j〉| ≤
(∫

Ik, j

∣∣ f (x)−Mk, j
∣∣2 dx

) 1
2
(∫

Ik, j

∣∣ψk, j(x)
∣∣2dx

) 1
2

=

(∫
Ik, j

(
f (x)−Mk, j

)2 dx
) 1

2

because ψk, j is part of an orthonormal basis, hence ‖ψk, j‖2 = 1. This follows from the fact that

one can decompose L2(R) as

L2(R) =
⊕
k∈Z

Wk

where Wk = { f ∈Vk+1 : f ⊥Vk}, see e.g. [5].
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Next, define the coefficient

ωk, j = sup
{
| f (x1)− f (x2)| : x1,x2 ∈ Ik, j

}
,

We see that the inequality

0≤ f (x)−Mk, j ≤ ωk, j

holds for all x ∈ Ik, j. This inequality assures us that the integral in the previous calculations is

less than or equal to the area of a rectangle with dimensions of ω2
k, j and the width of the domain

Ik, j, so that

|〈 f ,ψk, j〉| ≤
(

ω
2
k, j

(
2N−1+ j

2k − j
2k

)) 1
2

=
ωk, j
√

2N−1
2k/2 .

Since f is globally Lipschitz continuous, we can see that the inequality ωk, j ≤C(2N−1)2−k is

satisfied. By using this upper bound of ωk, j, we are left with the inequality

|〈 f ,ψk, j〉| ≤
(
C(2N−1)2−k)√2N−1

2k/2 =C
(

2N−1
2k

)3/2

as desired.

Wavelets are well suited to approximate piecewise smooth signals [21]. In these types of

cases where the signal function f is globally Lipschitz continuous, we can establish uniform

convergence of the Daubechies wavelet transform.

Theorem 5.3. If f ∈ L2(R) is globally Lipschitz continuous with Lipschitz constant C, then Dn f

converges uniformly to f .

Proof. Since the set {φ0, j,ψk, j : j,k ∈ Z, k≥ 0} is an orthonormal basis of L2(R), we have that

f may be expressed as

f = ∑
j∈Z
〈 f ,ϕ0, j〉ϕ0, j +

∞

∑
k=0

∑
j∈Z
〈 f ,ψk, j〉ψk, j

and the difference between the original function and the transform is

f −Dn f =
∞

∑
k=n

∑
j∈Z
〈 f ,ψk, j〉ψk, j.

ωk, j has a similar role to the modulus of continuity of f .
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To prove uniform convergence, it suffices to show that ‖ f −Dn f‖∞→ 0 as n→ ∞. The follow-

ing calculations use the results of Lemma 5.2 further simplify the difference:

| f (x)−Dn f (x)| ≤
∞

∑
k=n

∑
j∈Z
|〈 f ,ψk, j〉||ψk, j(x)|

≤
∞

∑
k=n

∑
j∈Z

2k/2C
(

2N−1
2k

)3/2

|ψ(2kx− j)|

=C(2N−1)3/2
∞

∑
k=n

2−k
∑
j∈Z
|ψ(2kx− j)|.

(9)

Due to the compact support of ψ there are at most 2N− 1 different integer values of j where

|ψ(2kx− j)| 6= 0 for any given x. Thus, the inequality

∑
j∈Z
|ψ(2kx− j)| ≤ (2N−1)‖ψ‖∞

holds. This inequality allows to continue our calculations in (9) yielding:

| f (x)−Dn f (x)| ≤C(2N−1)3/2
∞

∑
k=n

2−k(2N−1)‖ψ‖∞

≤C(2N−1)5/2‖ψ‖∞

∞

∑
k=n

2−k

≤C(2N−1)5/2‖ψ‖∞21−n.

The result of these calculations allow us to conclude that the inequality

‖ f −Dn f‖∞ ≤C(2N−1)5/2‖ψ‖∞21−n

also holds. Therefore lim
n→∞
‖ f −Dn f‖∞ = 0.

Remark 5.4. Uniform convergence of Dn f to f is still obtained even if f is only uniformly

continuous on R as well as convergence in L2 for any f ∈ L2(R) [8].

5.1. Error Analysis

If En is the error of Dn f using wavelets of the class Daub2N where Dn f (x) = f (x)+En(x), the

result of the proof of Theorem 5.3 assure us that the error of the transform is at most

(10) ‖En‖∞ ≤C(2N−1)5/2‖NΨ‖∞21−n
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N 1 2 3 4 5 6 7 8 9 10

‖NΨ‖∞ 1 1.73205 1.70112 1.35907 1.19308 1.12634 1.12161 1.10919 1.06982 1.02596

TABLE 2. Approximate values of ‖NΨ‖∞ for different values of N

if f is globally Lipschitz continuous with Lipschitz constant C.

We also mention that the L2 error was first analyzed rigorously in [14], which resulted in a

characterization of Sobolev spaces in terms of error decay rates of wavelet expansions.

5.1.1. Hölder Continuous Functions

In the case that f is Hölder continuous with the additional constant 0 < α ≤ 1, by performing

the same steps as we did in the proof of Theorem 5.3, we find that

ωk, j ≤C
(

2N−1
2k

)α

which implies that

|〈 f ,ψk, j〉| ≤
ωk, j(2N−1)1/2

2k/2 ≤C(2N−1)α+ 1
2 ·2−k(α+ 1

2 ).(11)

Notice that this estimate agrees with [16, Equation 5.4], but we have explicitly written the con-

stant depending on N. In particular, (11) is equivalent to f ∈C0,α(R). This stricter restriction

on ωk, j leads us to the following estimate:

(12) ‖En‖∞ ≤ ‖ f −Dn f‖∞ ≤C(2N−1)α+ 3
2‖NΨ‖∞

2α(1−n)

2α −1

The Daub2 wavelet has the smallest error bound for all α , making it the ideal choice of

wavelet to use to approximate a Hölder continuous function (assuming that the function is not

twice differentiable).

5.1.2. Differentiable Functions

How will the transform error be affected if the function f is more smooth and has multiple

derivatives? To answer this question we will need to find a more strict condition on 〈 f ,ψk, j〉 for

cases when f has m derivatives.
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Proposition 5.5. If f is m times continuously differentiable where the ith derivative of f is

bounded by Bi over Ik, j and ψ is a Daub2N wavelet, then the inequality

∣∣〈 f ,ψk, j〉
∣∣≤ 2

(1−k
2

)
m

∑
i=τ

Bi
(
N− 1

2

)i+ 1
2

2kii!
√

2i+1
(13)

is satisfied where τ = min{m,N}.

Proof. We first expand the inner product 〈 f ,ψk, j〉. Starting with its integral form

〈 f ,ψk, j〉=
∫
R

f (x)2k/2
ψ(2kx− j)dx,

substitute t = 2kx− j, yielding

〈 f ,ψk, j〉= 2−k/2
∫

I0,0

f
(

t + j
2k

)
ψ(t)dt

since the support of ψ is I0,0. The Taylor polynomial of f on the interval ηb = Ik, j centered at

the midpoint b = 2N−1+2 j
2k+1 can be substituted for the function f since it is a Cm function:

f (x) = pb(x)+ εb(x) =
m−1

∑
i=0

f (i)(b)
i!

(x−b)i + εb(x)

where the error εb(x) satisfies

|εb(x)| ≤
|x−b|m

m!
sup
u∈ηb

| f (m)(u)|

The following simplifies the integral form of 〈 f ,ψk, j〉 by utilizing the Taylor polynomial:

〈 f ,ψk, j〉= 2−k/2
∫

I0,0

(
m−1

∑
i=0

f (i)(b)
i!

(
t + j
2k −b

)i

+ εb

(
t + j
2k

))
ψ(t)dt

= 2−k/2

(
m−1

∑
i=0

f (i)(b)
2kii!

∫
I0,0

(
t−N + 1

2

)i
ψ(t)dt +

∫
I0,0

εb

(
t + j
2k

)
ψ(t)dt

)

For i < N, the expansion of
(
t−N + 1

2

)i
is a polynomial of degree less than N. Since ψ has

N vanishing moments, ψ is orthogonal to any polynomial of degree less than N. Therefore the

equality ∫
I0,0

(
t−N + 1

2

)i
ψ(t)dt = 0
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holds for all i = 0,1, . . . ,N−1. We are left with the following expansion:

〈 f ,ψk, j〉= 2−k/2

(
m−1

∑
i=N

f (i)(b)
2kii!

∫
I0,0

(
t−N + 1

2

)i
ψ(t)dt +

∫
I0,0

εb

(
t + j
2k

)
ψ(t)dt

)

We then obtain

∣∣〈 f ,ψk, j〉
∣∣≤ 2−

k
2

(
m−1

∑
i=N

| f (i)(b)|
2kii!

∫
I0,0

∣∣∣(t−N + 1
2

)i
∣∣∣ |ψ(t)|dt +

∫
I0,0

∣∣∣∣εb

(
t + j
2k

)∣∣∣∣ |ψ(t)|dt

)

≤ 2−
k
2

m−1

∑
i=N

Bi

2kii!

∫
I0,0

∣∣t−N + 1
2

∣∣i |ψ(t)|dt +
∫

I0,0

∣∣∣ t+ j
2k −b

∣∣∣m
m!

sup
u∈ηb

∣∣ f (m)(u)
∣∣|ψ(t)|dt


≤ 2−

k
2

(
m−1

∑
i=N

Bi

2kii!

∫
I0,0

∣∣t−N + 1
2

∣∣i |ψ(t)|dt +
∫

I0,0

∣∣t−N + 1
2

∣∣m
2kmm!

Bm|ψ(t)|dt

)

≤ 2−
k
2

m

∑
i=τ

Bi

2kii!

∫
I0,0

∣∣t−N + 1
2

∣∣i |ψ(t)|dt

because | f (i)(x)| ≤ Bi for every x and the result of Taylor’s Theorem. The index of the sum

starts at τ instead of N because of the possibility that N > m. Next, apply Hölder’s inequality

to the integral. This leaves us with the desired inequality:

∣∣〈 f ,ψk, j〉
∣∣≤ 2−k/2

m

∑
i=τ

Bi

2kii!

(∫
I0,0

∣∣t−N + 1
2

∣∣2i
dt ·

∫
I0,0

|ψ(t)|2dt
) 1

2

= 2−k/2
m

∑
i=τ

Bi

2kii!

(∫
I0,0

(
t−N + 1

2

)2i
dt
) 1

2

= 2−k/2
m

∑
i=τ

Bi

2kii!

(
2
(
N− 1

2

)2i+1

2i+1

) 1
2

= 2
( 1−k

2 ) m

∑
i=τ

Bi
(
N− 1

2

)i+ 1
2

2kii!
√

2i+1

Remark 5.6. In Proposition 5.5, we only need to consider the non-zero derivatives of f . This is

because if f (i) = 0, then Bi = 0 and the ith term of the sum does not affect the value of the upper

bound of |〈 f ,ψk, j〉|. If f has infinitely many non-zero derivatives, then the value m = N should

be chosen to minimize the upper bound of |〈 f ,ψk, j〉|.
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Using this new inequality from Proposition 5.5 in the calculations in (9) from the proof of

Theorem 5.3 yields an error that obeys the inequality

(14) ‖En‖∞ ≤ ‖NΨ‖∞

m

∑
i=τ

Bi
√

2i+1(2N−1)i+ 3
2

2ni (4i−1) i!
≤ B‖NΨ‖∞

m

∑
i=τ

√
2i+1(2N−1)i+ 3

2

2ni (4i−1) i!

where B = max{Bi : i = τ, . . . ,m}. Figure 5 displays a log plot of the right side of the above

inequality for different values of N using m = 4 and B = 1. We can see that the error bound is

smallest when N = m.

A similar analysis can be done on the derivatives of f . Namely, if f ∈ Cm(R) then we can

estimate the difference between the p-th derivative of f , for 0 < p < m, and its approximation

Dn f in the L∞ norm to get ∥∥∥∥dp f
dxp −

dp(Dn f )
dxp

∥∥∥∥
∞

> 2−n(m−p)(15)

where the implicit constant again depends only on Bi,N and ||NΨ||∞; compare with [11, Theo-

rem 2] where a similar result is shown for Coiflets.

N=1
N=2
N=3
N=4
N=5

6 8 10 12 14 16 18 20
n

10-22

10-17

10-12

10-7

10-2
Error Bound

FIGURE 5. Log plot upper of ‖En‖∞ using Daub2N wavelets to approximate a

C4 function.

Remark 5.7. There is also the Zygmund class [5] of “differentiable” functions

Λ
s
∗ =

{
f ∈ L∞(R)∩Cs−1(R) :

ds−1

dxs−1 f ∈ Λ∗

}
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where

Λ∗ =

{
f ∈ L∞(R)∩C0(R) : sup

x,h

| f (x+h)+ f (x−h)−2 f (x)|
h

< ∞

}
In this case a characterization of the space Λs

∗ for integer s (the analog of Cs functions) was

given in [15]:

f ∈ Λ
s
∗ ⇐⇒ |〈 f ,ψ−k, j〉| ≤C ·2−k

(
s+1

2

)
, k ≥ 0, j ∈ Z

5.1.3. Minimizing the Error Bound

The results of sections 5.1.1 and 5.1.2 show a correlation between the error bound of the

transform Dn f and the support of the wavelet NΨ. Indeed, the error bound is smallest for larger

N when N ≥ 2. The special case N = 1, i.e. the Haar wavelet, deserves special attention. Based

on Table 2, it would appear that the Haar wavelet is the optimal choice for approximating a

globally Lipschitz function (as well as for a Hölder function as discussed in Section 5.1.1).

Intuitively this makes sense since Haar wavelets are not differentiable. In particular, since the

Haar wavelet has the smallest possible support and only one vanishing moment, it is not ideal

for approximating smooth functions, as can be seen in our previous analysis.

The error bound calculations performed in this section bring forward an alternative metric for

choosing the best suited Daub2N wavelet. Notice that the maximum value of En hinges on the

values of the wavelet coefficients, 〈 f ,ψk, j〉. Thus, an alternative method for choosing the opti-

mal wavelet is to choose a wavelet that produces the maximum number of wavelet coefficients

〈 f ,ψk, j〉 that are close to zero [13]. This not only minimizes the error of Dn f but it can also

drastically speed up the process of calculating the values of Dn f when the wavelet coefficients

can be approximated by zero, 〈 f ,ψk, j〉 ≈ 0.

6. Conclusion

We have developed a new algorithm for finding exact values of Daubechies wavelets. The

only computationally challenging aspect of this method is the calculation of an eigenvector, but

as the matrix is sparse, this is not an issue. The new method does not require the calculation

of values of the scaling function at dyadic rationals. We have also provided a new quantitative
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method for deciding which wavelet is best for applications. We expect these results to be useful

for numerical methods for various partial differential equations, which will be done in future

work.
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