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1. INTRODUCTION  

The notion of dislocated metric space introduced by P. Hitzler and A.K Seda in 2000.Since then 

many others proved some useful fixed point results for dislocated metric space. G. Jungck and 

B.E.Rhoads initiated the concept of weakly compatible .The purpose of this paper is to prove a 

common fixed point for four self maps with the concept of weakly compatible maps and         

E.A  property.  
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2. DEFINITIONS AND PRELIMINARIES 

Definition 2.1: Let X  be a nonempty set. A function satisfying the following 

properties 

(A1)  ( , ) ( , )d x y d y x=  

(A2)   then . 

(A3)  for all . 

Then  is called dislocated or -metric on . 

Definition 2.2: Let ( )GX ,  is a -metric space. A sequence  nx  in X is said be convergent if 

there is Xx 0 such that for each 0 there is a natural number m such that   for 

all mn  . 

Definition 2.3: Let ( )GX ,  is a -metric space. A sequence  nx  in X is said be Cauchy 

sequence for each 0 there is a natural number such that   for all . 

Definition 2.4: A -metric space  is said to be complete if every Cauchy sequence in it is 

convergent in  with respect to .    

Definition 2.5: Suppose A  and S are self maps of a -metric space . The pair ( )SA,  is 

said to be commute if SAxASx =  for all Xx . 

Definition 2.6: Suppose A  and S are self maps of a -metric space . The pair ( )SA,  is 

said to be weakly compatible pair if  A  and S  are commute at their coincidence point. That is 

SAxASx =  whenever  SxAx =  for all Xx . 
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Definition 2.7: Two self maps A  and S  of a -metric space ( )dX , we say that A  and S  satisfy 

the property (E.A) if there exists a sequencer nx    in  such that  zAxSx n
n

n
n

==
→→

limlim
         

for some Xz .  

In [5], Panthi proved the following Theorem. 

2.8. Theorem: Let (X, d) be complete dislocated metric space. Let  and  be maps from  

into itself satisfying following conditions 

(2.8.1)    and  

(2.8.2)  

where for all  and   and  

(2.8.3)  and are compatible 

(2.8.4)  one of  and  are continuous. 

Then  and  have a unique common fixed point. 

We now generalize Theorem 2.8 as follows 

 

3. MAIN RESULT 

3.1Theorem: Let (X, d) be dislocated metric space. Let and  be maps from into itself 

satisfying following conditions 

(3.1.1)  and    

(3.1.2)  the pair (or)  satisfy E.A property  

(3.1.3)  

where   and  

(3.1.4) the pairs and are weakly compatible 
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(3.1.5)  or  is closed  

then  and  have a unique common fixed point . 

Proof: Suppose the pair  is satisfy E.A property then there exists a sequence   in 

such that   zAxSx n
n

n
n

==
→→

limlim  for some . 

Since  so there exists a sequence {yn} in X such that  

Now we shall show that zTyn
n

==
→

lim
 

Put  and  in the inequality (3.1.3), we get 

 

 

 

 

implies  zTyn
n

==
→

lim
 

Let zTyn
n

==
→

lim
 
 then the sequences and   are converges to  as   

Suppose B(X) is closed subspace of   then   for some  

Now we show that  

Put  and  in the equality (3.1.3), we get 

  

 

 implies  this implies  

Since  so there exists a point in  such that  

Now we claim that . 
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Put   in the inequality (3.1.3), we get 

 

 

  implies   

Therefore  

Since the pair  is weakly compatible therefore  implies  

Now we show that  

Put  

Put  and  in the inequality (3.1.3), we get 

 

 

 implies  therefore  

The weakly compatibility of  implies implies  

Now we shell show that  

Put  in inequality (3.1.3), we get 

 

this implies 

 

this gives 

 implies  

Therefore   hence  is common fixed point of mappings  and . 

Now we prove the Uniqueness. 
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Let   be another common fixed point of mappings A,B,S and T then  

Put  and in the inequality (3.1.3), we get 

 

implies 

 

and this gives 

 implies   

Hence z is unique common fixed point of mappings  and  

Our main Theorem 3.1 can be validating by using following example. 

3.2 Example: Let [ 1,1]X = −  be dislocated metric space ( , )d x y x y= − . Define self maps A,B,S 

and T of X defined as 

 

 

Clearly    so that ( ) ( )XTXA  ,and ( ) ( )XSXB  ,  

Now consider the sequence { }nx where 








=
n

xn

1
 for 1n . 

    
 

01
11

lim
1

limlim =







−=








=

→

→→ nnn
AAx

n

n
n

n
  , 0

1
limlim =








=

→→ n
SSx

n
n

n
 

0
1

lim
1

limlim
2

=







=








=

→→→ nn
BBx

nn
n

n
  and 0

1
limlim =








=

→→ n
TTx

n
n

n
 

Therefore lim lim 0n n
n n

Ax Sx
→ →

= = and this implies that the pair (S,A) satisfies E.A property. 
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and also we observe that  when  and  when 

A . 

Hence the pairs (A,S) and (B,T) are weakly compatible. 

3.3 Conclusion: From the example 3.2, Clearly the pairs  and  are weakly 

compatible and the pair (S,A) satisfy E.A. Property. Also none of the mappings are continuous 

and the rational inequality holds for the values  ,12220 +++  0,,,  .Clearly  

is the unique common fixed point of SBA ,,  and T . 
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