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Abstract. In this paper, we present the best possible parameters α1,α2,α3,α4,β1,β2,β3,β4 ∈ [0,1] such that the

double inequalities

(1+α1)G(a,b)+(1−α1)A(a,b)
(1−α1)G(a,b)+(1+α1)A(a,b)

<
X(a,b)
A(a,b)

<
(1+β1)G(a,b)+(1−β1)A(a,b)
(1−β1)G(a,b)+(1+β1)A(a,b)

,

(1+α2)Q(a,b)+(1−α2)A(a,b)
(1−α2)Q(a,b)+(1+α2)A(a,b)

<
RQA(a,b)
A(a,b)

<
(1+β2)Q(a,b)+(1−β2)A(a,b)
(1−β2)Q(a,b)+(1+β2)A(a,b)

,

(1+α3)A(a,b)+(1−α3)G(a,b)
(1−α3)A(a,b)+(1+α3)G(a,b)

<
I(a,b)
G(a,b)

<
(1+β3)A(a,b)+(1−β3)G(a,b)
(1−β3)A(a,b)+(1+β3)G(a,b)

,

(1+α4)A(a,b)+(1−α4)Q(a,b)
(1−α4)A(a,b)+(1+α4)Q(a,b)

<
RAQ(a,b)
Q(a,b)

<
(1+β4)A(a,b)+(1−β4)Q(a,b)
(1−β4)A(a,b)+(1+β4)Q(a,b)

hold for all a,b > 0 with a 6= b. Here G(a,b), A(a,b) and Q(a,b) denote respectively the classical geometric,

arithmetic and quadratic means of a and b, and RGA (a,b) = X (a,b), RAG (a,b) = I (a,b), RQA (a,b) and RAQ (a,b)

are Sándor, identric and two Sándor -Yang means derived from the Schwab-Borchardt mean.
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1. Introduction

For all a,b > 0 with a 6= b, the Schwab-Borchardt mean SB(a,b)[1, 2, 3] is defined by

SB(a,b) =


√

b2−a2

arccos(a/b) , i f a < b ,
√

a2−b2

arccosh(a/b) , i f a > b

where arccos(x) and arccosh(x) = log
(

x+
√

x2−1
)

are the inverse cosine and inverse hy-

perbolic cosine functions, respectively.

Let G(a,b) =
√

ab, A(a,b) = (a+b)/2 and Q(a,b) =
√

(a2 +b2)/2 are respectively the

classical geometric, arithmetic, quadratic and contra-harmonic means of a and b. It is well

known that the Schwab-Borchardt mean is strictly increasing in both a and b, non-symmetric

and homogeneous of degree 1 with respect to a and b. Many symmetric bivariate means are

special cases of the Schwab-Borchardt mean. For example,

P(a,b) = a−b
2arcsin[(a−b)/(a+b)] = SB [G(a,b) ,A(a,b)] is the first Seiffert mean,

T (a,b) = a−b
2arctan[(a−b)/(a+b)] = SB [A(a,b) ,Q(a,b)] is the second Seiffert mean,

M (a,b) = a−b
2arcsinh[(a−b)/(a+b)] = SB [Q(a,b) ,A(a,b)] is the Neuman-Sándor mean,

L(a,b) = a−b
2arctanh[(a−b)/(a+b)] = SB [A(a,b) ,G(a,b)] is the logarithmic mean.

Yang[5] found a new mean (call Sándor-Yang mean) derived from the Schwab-Borchardt

mean as follows:

R(a,b) = bea/SB(a,b)−1

Let RGA (a,b) = R [G(a,b) ,A(a,b)], RAG (a,b) = R [A(a,b) ,G(a,b)], RAQ (a,b) = R [A(a,b) ,Q(a,b)],

RQA (a,b) = R [Q(a,b) , A(a,b)]. Then the following explicit formulas for

RGA (a,b), RAG (a,b), RAQ (a,b) and RQA (a,b) are found by Yang[5]:

RGA (a,b) = A(a,b)eG(a,b)/P(a,b)−1 = X (a,b) ,RAQ (a,b) = Q(a,b)eA(a,b)/T (a,b)−1,

RAG (a,b) = G(a,b)eA(a,b)/L(a,b)−1 = I (a,b) ,RQA (a,b) = A(a,b)eQ(a,b)/M(a,b)−1,

where X (a,b)[6] and I (a,b)[7, 8] are respectively Sándor and identric means. Then it is that

the inequalities (See [4], Theorem 4.1)

G(a,b)< X (a,b)< I (a,b)< A(a,b)< RAQ (a,b)< RQA (a,b)< Q(a,b)
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holds for all a,b > 0 with a 6= b.

In recent years,the Sándor-Yang type means have been the subject on intensive research. In

particular, many remarkable inequalities for the Sándor-Yang type means can be found in the

literature [9, 10, 13, 14, 15, 16, 17, 19, 20].

Alzer and Qiu[11] prove that the inequality

αA(a,b)+(1−α)G(a,b)< I (a,b)< βA(a,b)+(1−β )G(a,b)

holds for all a,b > 0 with a 6= b if and only if α ≤ 2/3,β ≥ 2/e = 0.7357 · · · .

In[12], Qian et al. present the best possible parameters α1,α2,α3,α4,β1,β2,β3,β4 ∈ (0,1)

such that the double inequalities

α1A(a,b)+(1−α1)H (a,b)< X (a,b)< β1A(a,b)+(1−β1)H (a,b) ,

α2A(a,b)+(1−α2)G(a,b)< X (a,b)< β2A(a,b)+(1−β2)G(a,b) ,

H [α3a+(1−α3)b,α3b+(1−α3)a]< X (a,b)< H [β3a+(1−β3)b,β3b+(1−β3)a] ,

G [α4a+(1−α4)b,α4b+(1−α4)a]< X (a,b)< G [β4a+(1−β4)b,β4b+(1−β4)a]

hold for all a,b > 0 with a 6= b,where H (a,b) = 2ab/(a+b) is harmonic mean of a and b.

In[18, 19], the authors established the following sharp inequalities

Mα (a,b)< RQA (a,b)< Mβ (a,b) ,

Mλ (a,b)< RAQ (a,b)< Mµ (a,b)

hold for all a,b > 0 with a 6= b if and only if α ≤ log2/
[
1+ log2−

√
2log

(
1+
√

2
)]

=

1.5517 · · · ,β ≥ 5/3,λ ≤ 4log2/ [4+2log2−π] = 1.2351 · · · and µ ≥ 4/3.Where Mp (a,b) =

[(ap +bp)/2]1/p and M0 (a,b) =
√

ab is the pth power mean of a and b.

The main purpose of this paper is to present the best possible parameters

α1,α2,α3,α4,β1,β2,β3,β4 ∈ [0,1] such that the double inequalities

(1+α1)G(a,b)+(1−α1)A(a,b)
(1−α1)G(a,b)+(1+α1)A(a,b)

<
X(a,b)
A(a,b)

<
(1+β1)G(a,b)+(1−β1)A(a,b)
(1−β1)G(a,b)+(1+β1)A(a,b)

,

(1+α2)Q(a,b)+(1−α2)A(a,b)
(1−α2)Q(a,b)+(1+α2)A(a,b)

<
RQA(a,b)
A(a,b)

<
(1+β2)Q(a,b)+(1−β2)A(a,b)
(1−β2)Q(a,b)+(1+β2)A(a,b)

,

(1+α3)A(a,b)+(1−α3)G(a,b)
(1−α3)A(a,b)+(1+α3)G(a,b)

<
I(a,b)
G(a,b)

<
(1+β3)A(a,b)+(1−β3)G(a,b)
(1−β3)A(a,b)+(1+β3)G(a,b)

,
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(1+α4)A(a,b)+(1−α4)Q(a,b)
(1−α4)A(a,b)+(1+α4)Q(a,b)

<
RAQ(a,b)
Q(a,b)

<
(1+β4)A(a,b)+(1−β4)Q(a,b)
(1−β4)A(a,b)+(1+β4)Q(a,b)

hold for all a,b > 0 with a 6= b.

2. Lemmas

In order to prove our main results we need two lemmas, which we present in this section.

Lemmas 2.1. Let p ∈ (0,1) and

φ (x) =
(
1− p2)2

x4 +2
(
−2p4 + p3− p+2

)
x3 +2(1− p)2 (3p2 +2p+3

)
x2

+2
(
−2p4 +5p3−5p+2

)
x+ p4−4p3−2p2−4p+1. (2.1)

Then the following statements are true:

(1) If p = 2/3, then φ (x)< 0 for all x ∈ (0,1) and φ (x)> 0 for all x ∈
(

1,
√

2
)

;

(2) If p= (e−1)/(e+1) = 0.4621 · · · , then there exists λ1 (= 0.5736 · · ·)∈ (0,1) such that

φ (x)< 0 for x ∈ (0,λ1) and φ (x)> 0 for x ∈ (λ1,1);

(3) If p =
(

3+2
√

2
)[(

1+
√

2
)√2
− e
]
/

[(
1+
√

2
)√2

+ e
]
= 0.7145 · · · , then there ex-

ists λ2 (= 1.1126 · · ·) ∈
(

1,
√

2
)

such that φ (x) < 0 for x ∈ (1,λ2) and φ (x) > 0 for

x ∈
(

λ2,
√

2
)

.

Proof For part (1), if p = 2/3, then (2.1) becomes

φ (x) =
1

81
(x−1)

(
25x3 +225x2 +327x+287

)
(2.2)

Therefore, part (1) follows easily from (2.2).

For part (2), if p = (e−1)/(e+1) = 0.4621 · · · , then simple computations lead to

−2p4 + p3− p+2 = 1.5453... > 0, (2.3)

−2p4 +5p3−5p+2 = 0.0916... > 0, (2.4)

φ (0) = p4−4p3−2p2−4p+1 =−1.6247 · · ·< 0, (2.5)

φ (1) = 8(2−3p) = 4.9091 · · ·> 0. (2.6)
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It follows from (2.3) and (2.4) that

φ
′ (x) = 4

(
1− p2)2

x3 +6
(
−2p4 + p3− p+2

)
x2 +4(1− p)2 (3p2 +2p+3

)
x

+2
(
−2p4 +5p3−5p+2

)
> 0 (2.7)

for x ∈ (0,1).

Therefore, part (2) follows easily from (2.5) and (2.6) together with (2.7).

For part (3), if p =
(

3+2
√

2
)[(

1+
√

2
)√2
− e
]
/

[(
1+
√

2
)√2

+ e
]
= 0.7145 · · · , then

numerical computations lead to

−2p4 + p3− p+2 = 1.1287 · · ·> 0, (2.8)

−2p4 +5p3−5p+2 =−0.2699 · · ·< 0, (2.9)

φ (0) = p4−4p3−2p2−4p+1 =−4.0785 · · ·< 0, (2.10)

φ

(√
2
)
= (−12

√
2+17)p4 +(14

√
2−20)p3−2p2

+(−14
√

2−20)p+17+12
√

2 = 4.4433 · · ·> 0 (2.11)

and

φ
′ (x) = 4

(
1− p2)2

x3 +6
(
−2p4 + p3− p+2

)
x2 +4(1− p)2 (3p2 +2p+3

)
x

+2
(
−2p4 +5p3−5p+2

)
. (2.12)

It follows from (2.12)

φ
′ (x)> 4

(
1− p2)2

+6
(
−2p4 + p3− p+2

)
+4(1− p)2 (3p2 +2p+3

)
+2
(
−2p4 +5p3−5p+2

)
= 32(1− p)> 0 (2.13)

Therefore, part (3) follows from (2.10), (2.11) and (2.13).

Lemmas 2.2. Let p ∈ (0,1) and

ϕ (x) =
(

p4−4p3−2p2−4p+1
)

x4 +2
(
−2p4 +5p3−5p+2

)
x3

+2(1− p)2 (3p2 +2p+3
)

x2 +2
(
−2p4 + p3− p+2

)
x+
(
1− p2)2

. (2.14)

Then the following statements are true:
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(1) If p = 2/3, then φ (x)> 0 for all x ∈ (0,1) and φ (x)< 0 for all x ∈
(

1,
√

2
)

;

(2) If p = 1, then φ (x)< 0 for all x ∈
(

1,
√

2
)

;

(3) If p =
(

3+2
√

2
)(

1− e
π

4−1
)
/
(

1+ e
π

4−1
)
= 0.6230 · · · , then there exists

λ3 (= 1.1054 · · ·) ∈
(

1,
√

2
)

such that φ (x) > 0 for x ∈ (1,λ3) and φ (x) < 0 for x ∈(
λ3,
√

2
)

.

Proof For part (1), if p = 2/3, then (2.14) lead to

ϕ (x) =− 1
81

(x−1)
(
287x3 +327x2 +225x+25

)
. (2.15)

Therefore, part (1) follows easily from (2.15).

For part (2), if p = 1, then (2.14) lead to

ϕ (x) =−8x4 < 0. (2.16)

Therefore, part (2) follows easily from (2.16).

For part (3), If p =
(

3+2
√

2
)(

1− e
π

4−1
)
/
(

1+ e
π

4−1
)
= 0.6230 · · · , then numerical com-

putations lead to

p4−4p3−2p2−4p+1 =−3.0848 · · ·< 0, (2.17)

−2p4 +5p3−5p+2 =−0.2072 · · ·< 0, (2.18)

−2p4 + p3− p+2 = 1.3175 · · ·> 0, (2.19)

ϕ (1) = 8(2−3p) = 1.0478 · · ·> 0, (2.20)

ϕ

(√
2
)
=−6.3354 · · ·< 0, (2.21)

and

ϕ
′ (x) = 4

(
p4−4p3−2p2−4p+1

)
x3 +6

(
−2p4 +5p3−5p+2

)
x2

+4(1− p)2 (3p2 +2p+3
)

x+2
(
−2p4 + p3− p+2

)
. (2.22)
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It follows from (2.17)-(2.19) and (2.22) that

ϕ
′ (x)< 4

(
p4−4p3−2p2−4p+1

)
x+6

(
−2p4 +5p3−5p+2

)
x

+4(1− p)2 (3p2 +2p+3
)

x+2
(
−2p4 + p3− p+2

)
x

= 32(1−2p)x < 0 (2.23)

for x ∈
(

1,
√

2
)

.

Therefore, part (3) follows from (2.20), (2.21) and (2.23).

3. Main results

Theorem 3.1. The double inequality

A
(1+α1)G+(1−α1)A
(1−α1)G+(1+α1)A

< X(a,b)< A
(1+β1)G+(1−β1)A
(1−β1)G+(1+β1)A

(3.1)

holds for all a,b > 0 with a 6= b if and only if α1 ≥ 2/3, β1 ≤ (e−1)/(e+1) = 0.4621 · · · .

Proof Since X (a,b), G(a,b) and A(a,b) are symmetric and homogenous of degree 1, we

assume that a > b. Let v = (a−b)/(a+b) ∈ (0,1),x =
√

1− v2 ∈ (0,1) and p ∈ [0,1]. Then

(3.1) can be rewritten as

β1 <
(A+G) [A−X (a,b)]
(A−G) [A+X (a,b)]

< α1 (3.2)

(A+G) [A−X (a,b)]
(A−G) [A+X (a,b)]

=

(
1+
√

1− v2
)(

1− e
√

1−v2 arcsin(v)/v−1
)

(
1−
√

1− v2
)(

1+ e
√

1−v2 arcsin(v)/v−1
) (3.3)

logX (a,b)− logA
(1+ p)G+(1− p)A
(1− p)G+(1+ p)A

=

√
1− v2 arcsin(v)

v
− log

(1+ p)
√

1− v2 +1− p

(1− p)
√

1− v2 +1+ p
−1

=
xarcsin

(√
1− x2

)
√

1− x2
− log

(1+ p)x+1− p
(1− p)x+1+ p

−1. (3.4)

Let

F (x) =
xarcsin

(√
1− x2

)
√

1− x2
− log

(1+ p)x+1− p
(1− p)x+1+ p

−1 (3.5)
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Then simple computations lead to

F
(
0+
)
= log

(
1+ p
1− p

)
−1,F

(
1−
)
= 0, (3.6)

F ′ (x) =
1

(1− x2)
3/2 f (x) , (3.7)

where

f (x) = arcsin
(√

1− x2
)
−

√
1− x2

[(
1− p2)x3 +2(1− p)2x2 +

(
1− p2)x+4p

]
[(1− p)x+1+ p] [(1+ p)x+1− p]

(3.8)

f
(
0+
)
=

π

2
− 4p

1− p2 , f
(
1−
)
= 0 (3.9)

f ′ (x) =− 2
√

1− x2

[(1− p)x+1+ p]2[(1+ p)x+1− p]2
φ (x) (3.10)

where φ (x) is defined Lemma 2.1.

We divide the proof into two cases.

• Case 1 If p = 2/3. Then (3.4)-(3.7), (3.9) and (3.10) together with Lemma 2.1(1) lead

to the conclusion that

X(a,b)> A
5G+A
G+5A

(3.11)

• Case 2 If p = (e−1)/(e+1).Then from (3.6) and (3.9) together with numerical com-

putations we get

F
(
0+
)
= 0, f

(
0+
)
=

π

2
− e2−1

e
=−0.7796 · · ·< 0. (3.12)

Let λ1 = 0.5736 · · · be the number given in Lemma 2.1(2).

We divide the discussion into two subcases.

• subcase 1 x ∈ (0,λ1].Then Lemma 2.1(2) and (3.10) lead to the conclusion that f (x) is

Strictly increasing on the interval (0,λ1].

• subcase 2 x ∈ [λ1,1).Then Lemma 2.1(2) and (3.10) lead to the conclusion that f (x) is

Strictly decreasing on the interval x ∈ [λ1,1), with (3.9) imply that f (x)> 0.

Then from (3.12) and Subcase1 we know that there exists x0 ∈ (0,λ1) such that f (x) < 0 for

x ∈ (0,x0] and f (x)> 0 for [x0,λ1].

Thus, f (x)< 0 for x ∈ (0,x0] and f (x)> 0 for x ∈ [x0,1).

With (3.7) we know that F (x) is strictly decreasing on (0,x0] and strictly increasing on [x0,1).
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Therefore,

X(a,b)< A
eG+A
G+ eA

(3.13)

follows from (3.4)-(3.6) and (3.12) together with the piecewise monotonicity of F (x).

Note that

lim
v→0+

(
1+
√

1− v2
)(

1− e
√

1−v2 arcsin(v)/v−1
)

(
1−
√

1− v2
)(

1+ e
√

1−v2 arcsin(v)/v−1
) =

2
3
, (3.14)

lim
v→1−

(
1+
√

1− v2
)(

1− e
√

1−v2 arcsin(v)/v−1
)

(
1−
√

1− v2
)(

1+ e
√

1−v2 arcsin(v)/v−1
) =

e−1
e+1

= 0.4621 · · · . (3.15)

In conclusion, Theorem 2.1 follows form (3.3), (3.11) and (3.13)-(3.15) together with that fact

that inequality (3.1) is equivalent to (3.2).

Theorem 3.2. The double inequality

A
(1+α2)Q+(1−α2)A
(1−α2)Q+(1+α2)A

< RQA(a,b)< A
(1+β2)Q+(1−β2)A
(1−β2)Q+(1+β2)A

(3.16)

holds for all a,b > 0 with a 6= b if and only if α2 ≤ 2/3, β2 ≥
(

3+2
√

2
)[(

1+
√

2
)√2
− e
]
/[(

1+
√

2
)√2

+ e
]
= 0.7145 · · · .

Proof Since RQA(a,b),A(a,b) and Q(a,b) are symmetric and homogenous of degree 1, we

assume that a > b. Let v = (a−b)/(a+b)∈ (0,1),x =
√

1+ v2 ∈
(

1,
√

2
)

and p∈ [0,1]. Then

(3.16) can be rewritten as

α2 <
(Q+A)(RQA(a,b)−A)
(Q−A)(RQA(a,b)+A)

< β2 (3.17)

(Q+A)(RQA(a,b)−A)
(Q−A)(RQA(a,b)+A)

=

(√
1+ v2 +1

)(
e
√

1+v2 arcsinh(v)/v−1−1
)

(√
1+ v2−1

)(
e
√

1+v2 arcsinh(v)/v−1 +1
) (3.18)

logRQA (a,b)− logA
(1+ p)Q+(1− p)A
(1− p)Q+(1+ p)A

=

√
1+ v2 arcsinh(v)

v
− log

(1+ p)
√

1+ v2 +1− p

(1− p)
√

1+ v2 +1+ p
−1

=
xarcsinh

(√
x2−1

)
√

x2−1
− log

(1+ p)x+1− p
(1− p)x+1+ p

−1. (3.19)
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Let

G(x) =
xarcsinh

(√
x2−1

)
√

x2−1
− log

(1+ p)x+1− p
(1− p)x+1+ p

−1. (3.20)

Then simple computations lead to

G
(
1+
)
= 0,G

(√
2
−)

=
√

2log
(

1+
√

2
)
− log

(1+ p)
√

2+1− p
(1− p)

√
2+1+ p

−1, (3.21)

G′ (x) =
1

(x2−1)3/2 g(x) , (3.22)

where

g(x) =

√
x2−1

[(
1− p2)x3 +2(1− p)2x2 +

(
1− p2)x+4p

]
[(1− p)x+1+ p] [(1+ p)x+1− p]

− arcsinh
(√

x2−1
)

(3.23)

g
(
1+
)
= 0,g

(√
2
−)

=

(
4−3

√
2
)

p2−4p+4+3
√

2(
2
√

2−3
)

p2 +3+2
√

2
− log

(
1+
√

2
)
, (3.24)

g′ (x) =
2
√

x2−1

[(1− p)x+1+ p]2[(1+ p)x+1− p]2
φ (x) (3.25)

where φ (x) is defined Lemma 2.1.

We divide the proof into two cases.

• Case 1 If p = 2/3. Then (3.19)-(3.22), (3.24) and (3.25) together with Lemma 2.1(1)

lead to the conclusion that

RQA(a,b)> A
5Q+A
Q+5A

(3.26)

• Case 2 If p =
(

3+2
√

2
)[(

1+
√

2
)√2
− e
]
/

[(
1+
√

2
)√2

+ e
]
= 0.7145 · · · .Then

from (3.21) and (3.24) together with numerical computations we get

G
(√

2
−)

= 0,g
(√

2
−)

= 0.0349 · · · . (3.27)

Let λ2 = 1.1126 · · · be the number given in Lemma 2.1(3). We divide the discussion into two

subcases.

We divide the discussion into two subcases.

• subcase 1 x ∈ (1,λ2].Then Lemma 2.1(3) and (3.24) and (3.25) imply that

g(x)< 0.
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• subcase 2 x ∈
[
λ2,
√

2
)

.Then Lemma 2.1(3) and (3.25) lead to the conclusion that

g(x) is strictly increasing on the interval
[
λ2,
√

2
)

. Then from (3.27) and Subcase 1 we

know that there exists x1 ∈
[
λ2,
√

2
)

such that g(x) < 0 for x ∈ [λ2,x1) and g(x) > 0

for
(

x1,
√

2
)

.

It follows from Subcase 1 and 2 together with (3.22) that G(x) is strictly decreasing on (1,x1]

and strictly increasing on
[
x1,
√

2
)

. Therefore,

RQA(a,b)< A
(1+ p)Q+(1− p)A
(1− p)Q+(1+ p)A

(3.28)

follows from (3.19)-(3.21) and (3.27) together with the piecewise monotonicity of G(x).

Note that

lim
v→0+

(√
1+ v2 +1

)(
e
√

1+v2 arcsinh(v)/v−1−1
)

(√
1+ v2−1

)(
e
√

1+v2 arcsinh(v)/v−1 +1
) =

2
3
, (3.29)

lim
v→1−

(√
1+ v2 +1

)(
e
√

1+v2 arcsinh(v)/v−1−1
)

(√
1+ v2−1

)(
e
√

1+v2 arcsinh(v)/v−1 +1
)

=

(
3+2

√
2
)[(

1+
√

2
)√2
− e
]

(
1+
√

2
)√2

+ e
= 0.7145 · · · . (3.30)

Therefore, Theorem 2.2 follows form (3.18), (3.26) and (3.28)-(3.30) together with that fact

that inequality (3.16) is equivalent to (3.17).

Theorem 3.3. The double inequality

G
(1+α3)A+(1−α3)G
(1−α3)A+(1+α3)G

< I(a,b)< G
(1+β3)A+(1−β3)G
(1−β3)A+(1+β3)G

(3.31)

holds for all a,b > 0 with a 6= b if and only if α3 ≤ 2/3, β3 ≥ 1.

Proof Since I (a,b),G(a,b) and A(a,b) are symmetric and homogenous of degree 1, we

assume that a > b. Let v = (a−b)/(a+b) ∈ (0,1),x =
√

1− v2 ∈ (0,1) and p ∈ [0,1]. Then
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(3.31) can be rewritten as

α3 <
[A+G] [I(a,b)−G]

[A−G] [I(a,b)+G]
< β3, (3.32)

[A+G] [I(a,b)−G]

[A−G] [I(a,b)+G]
=

(
1+
√

1− v2
)(

earctanh(v)/v−1−1
)

(
1−
√

1− v2
)(

earctanh(v)/v−1 +1
) . (3.33)

log I (a,b)− logG(a,b)
(1+ p)A(a,b)+(1− p)G(a,b)
(1− p)A(a,b)+(1+ p)G(a,b)

=
arctanh(v)

v
− log

(1− p)
√

1− v2 +1+ p

(1+ p)
√

1− v2 +1− p
−1

=
arctanh

(√
1− x2

)
√

1− x2
− log

(1− p)x+1+ p
(1+ p)x+1− p

−1. (3.34)

Let

H (x) =
arctanh

(√
1− x2

)
√

1− x2
− log

(1− p)x+1+ p
(1+ p)x+1− p

−1 (3.35)

Then simple computations lead to

H
(
1−
)
= 0, (3.36)

H ′ (x) =
x

(1− x2)
3/2 h(x) , (3.37)

where

h(x) = arctanh
(√

1− x2
)
−

√
1− x2

[
4px3 +

(
1− p2)x2 +2(1− p)2x+1− p2

]
x2 [(1− p)x+1+ p] [(1+ p)x+1− p]

(3.38)

h
(
1−
)
= 0, (3.39)

h′ (x) =
2
√

1− x2

x3[(1− p)x+1+ p]2[(1+ p)x+1− p]2
ϕ (x) (3.40)

where ϕ (x) is defined Lemma 2.2.

We divide the proof into two cases.

• Case 1 If p = 2/3. Then (3.34)-(3.37), (3.39) and (3.40) together with Lemma 2.2(1)

lead to the conclusion that

I(a,b)> G
5A+G
A+5G

(3.41)



SHARP BOUNDS INVOLVING THE SÁNDOR-YANG MEANS IN TERMS OF OTHER BIVARIATE MEANS 13

• Case 2 If p= 1. Then from Lemma 2.2(2) and (3.34)-(3.37) together with (3.39)-(3.40)

we know that

I(a,b)< A(a,b). (3.42)

lim
v→0+

(
1+
√

1− v2
)(

earctanh(v)/v−1−1
)

(
1−
√

1− v2
)(

earctanh(v)/v−1 +1
) =

2
3
, (3.43)

lim
v→1−

(
1+
√

1− v2
)(

earctanh(v)/v−1−1
)

(
1−
√

1− v2
)(

earctanh(v)/v−1 +1
) = 1. (3.44)

Therefore, Theorem 2.3 follows for (3.33), (3.41) and (3.42)-(3.44) together with that fact that

inequality (3.31) is equivalent to (3.32).

Theorem 3.4. The double inequality

Q
(1+α4)A+(1−α4)Q
(1−α4)A+(1+α4)Q

< RAQ(a,b)< Q
(1+β4)A+(1−β4)Q
(1−β4)A+(1+β4)Q

(3.45)

holds for all a,b > 0 with a 6= b if and only if α4 ≥ 2/3, β4 ≤
(

3+2
√

2
)(

1− eπ/4−1
)
/(

1+ eπ/4−1
)
= 0.6230 · · · .

Proof Since RAQ(a,b),A(a,b) and Q(a,b) are symmetric and homogenous of degree 1, we

assume that a > b. Let v = (a−b)/(a+b)∈ (0,1),x =
√

1+ v2 ∈
(

1,
√

2
)

and p∈ [0,1]. Then

(3.45) can be rewritten as

β4 <
[Q+A] [Q−RAQ(a,b)]
[Q−A] [Q+RAQ(a,b)]

< α4, (3.46)

[Q+A] [Q−RAQ(a,b)]
[Q−A] [Q+RAQ(a,b)]

=

(√
1+ v2 +1

)(
1− earctan(v)/v−1

)
(√

1+ v2−1
)(

1+ earctan(v)/v−1
) . (3.47)

logRAQ (a,b)− logQ
(1+ p)A+(1− p)Q
(1− p)A+(1+ p)Q

=
arctan(v)

v
− log

(1− p)
√

1+ v2 +1+ p

(1+ p)
√

1+ v2 +1− p
−1

=
arctan

(√
x2−1

)
√

x2−1
− log

(1− p)x+1+ p
(1+ p)x+1− p

−1. (3.48)
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Let

J (x) =
arctan

(√
x2−1

)
√

x2−1
− log

(1− p)x+1+ p
(1+ p)x+1− p

−1 (3.49)

Then simple computations lead to

J
(
1+
)
= 0,J

(√
2
−)

=
π

4
− log

(1− p)
√

2+1+ p
(1+ p)

√
2+1− p

−1, (3.50)

J′ (x) =
x

(x2−1)3/2 J1 (x) , (3.51)

where

J1 (x) =

√
x2−1

[
4px3 +

(
1− p2)x2 +2(1− p)2x+

(
1− p2)]

x2 [(1− p)x+1+ p] [(1+ p)x+1− p]
− arctan

(√
x2−1

)
, (3.52)

J1
(
1+
)
= 0,J1

(√
2
−)

=
2
√

2p(
2
√

2−3
)

p2 +2
√

2+3
− π−2

4
, (3.53)

J′1 (x) =−
2
√

x2−1

x3[(1− p)x+1+ p]2[(1+ p)x+1− p]2
ϕ (x) (3.54)

where ϕ (x) is defined Lemma 2.2.

We divide the proof into two cases.

• Case 1 If p = 2/3. Then (3.48)-(3.51) and (3.53) together with Lemma 2.2(1) lead to

the conclusion that

RAQ(a,b)> Q
5A+Q
A+5Q

. (3.55)

• Case 2 If p =
(

3+2
√

2
)(

1− eπ/4−1
)
/
(

1+ eπ/4−1
)
= 0.6230 · · · . Then from (3.50)

and (3.53) together with numerical computations we get

J
(√

2
−)

= 0,J1

(√
2
−)

= 0.0204 · · · . (3.56)

Let λ3 = 1.1054 · · · be the number given in Lemma 2.1(3).

We divide the discussion into two subcases.

• subcase 1 x ∈ (1,λ3]. Then Lemma 2.2(2) and (3.53) and (3.54) imply that

J1 (x)< 0. (3.57)
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• subcase 2 x ∈
[
λ3,
√

2
)

. Then Lemma 2.2(2) and (3.54) lead to the conclusion that

J1 (x) is strictly increasing on the interval
[
λ3,
√

2
)

. Then from (3.56) and Subcase 1 we

know that there exists x2 ∈
[
λ3,
√

2
)

such that J1 (x)< 0 for x ∈ [λ3,x2) and J1 (x)> 0

for
(

x2,
√

2
)

.

It follows from Subcase 1 and 2 together with (3.51) that J (x) is strictly decreasing on (1,x2]

and strictly increasing on
[
x2,
√

2
)

. Therefore,

RAQ(a,b)< Q
(1+ p)A+(1− p)Q
(1− p)A+(1+ p)Q

(3.58)

follows from (3.48)-(3.50) and (3.56) together with the piecewise monotonicity of J (x).

Note that

lim
v→0+

(√
1+ v2 +1

)(
1− earctan(v)/v−1

)
(√

1+ v2−1
)(

1+ earctan(v)/v−1
) =

2
3
, (3.59)

lim
v→1−

(√
1+ v2 +1

)(
1− earctan(v)/v−1

)
(√

1+ v2−1
)(

1+ earctan(v)/v−1
) =

(
3+2

√
2
)(

1− eπ/4−1
)

(
1+ eπ/4−1

) = 0.6230 · · · . (3.60)

Therefore, Theorem 2.2 follows form (3.47), (3.55) and (3.57)-(3.59) together with that fact

that inequality (3.45) is equivalent to (3.46).
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