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Abstract. For a polynomial P(z) of degree n having no zero in |z| < 1, it was recently asserted by Shah

and Liman [17] that for every R > 1, p > 1,

< B"An]+ o

IBLP o al(a)l, < pa P )

||p7

where B is a Bj,-operator with parameters Ag, A1, A2 in the sense of Rahman and Schmeisser [15], A =
3

Ao + A1%2 + )\2$ and o(z) = Rz, R > 1. The proof of this result is incorrect. In this paper, we

present certain new L, inequlities for B,,-operators which not only provide a correct proof of the above

inequality and other related results but also extend these inequalities for 0 < p < 1 as well.
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1. Introduction

Let P, denote the space of all complex polynomials P(2) = 37", a;2’ of degree n. For

P € P,, define

1 2 )
PGl = exp { o [ og P asf
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1 27 ] » l/p
1P, = {—/ P } l<p<oo

21

1P(2)] o 1= max | P(z)]

|z|=1
and denote for any complex function ¢ : C — C the composite function of P and 1,

defined by (P o) (2) := P (¢(2)) (2 € C), as Po1.

If P € P,, then

(1) 1P (), <nllP(),, p>1
and
(2) PR, < R"[|P(2)l,, R>1, p>0,

Inequality (1) was found out by Zygmund [18] whereas inequality (2) is a simple conse-
quence of a result of Hardy [8]. Arestov [2] proved that (3) remains true for 0 < p <1
as well. For p = oo, the inequality (1) is due to Bernstein (for reference, see [11,15,16])
whereas the case p = 0o of inequality (2) is a simple consequence of the maximum mod-
ulus principle ( see [11,12,15]). Both the inequalities (1) and (2) can be sharpened if we
restrict ourselves to the class of polynomials having no zero in |z| < 1. In fact, if P € P,

and P(z) # 0 in |z| < 1, then inequalities (1) and (2) can be respectively replaced by

1P()]

3) PO, vt p20

and

(1) e, < by R s
e g

Inequality (3) is due to De-Bruijn [6](see also [3]) for p > 1. Rahman and Schmeisser [14]

extended it for 0 < p < 1 whereas the inequality (4) was proved by Boas and Rahman [5]



NEW OPERATOR PRESERVING L, INEQUALITIES BETWEEN POLYNOMIALS 33

for p > 1 and later it was extended for 0 < p < 1 by Rahman and Schmeisser [14]. For
p = 00, the inequality (3) was conjectured by Erdos and later verified by Lax [9] whereas
inequality (4) was proved by Ankeny and Rivlin [1].

As a compact generalization of inequalities (1) and (2), Aziz and Rather [4] proved that

if P € P,, then for every real or complex number a with |a| <1, R > 1, and p > 0,
(5) [P(Rz) — aP(2)], < [R" —al [P(2)], -
and if P € P, and P(z) # 0 in |z| < 1, then for every real or complex number a with

la] <1, R>1, and p > 0,

[(R" —a)z+ (1 —a)
[

(6) |1P(Rz) —aP(z)]|, < =PI, -

Inequality (6) is the corresponding compact generalization of inequalities (3) and (4).

Rahman [13] (see also Rahman and Schmeisser [15, p. 538]) introduced a class B,, of

operators B that maps P € P, into itself. That is, the operator B carries P € P,, into

(7) B[P|(2) = AP(2) + A (%) P '1<!Z) o <%>2 P’;(!z)

where A\g, \; and Ay are such that all the zeros of

(8) u(2) == Ao+ C(n, A1z + C(n,2)\22%, C(n,r) =n!/rl(n — 1),
lie in the half plane

(9) 2| < |z —n/2|

and proved that if P € P,, then

(10) |B[Poo](2)] < R* [An] [P(2)llo for [2] =1.

and if P € P, and P(z) does not vanish in |z| < 1, then

(11) [B[Poo](2)] < %{R" Al + Ao} IP(2) o for [z =1,
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(see [13, Inequality (5.2) and (5.3)]) where o(z) = Rz, R > 1 and

2 3
1
(12) A, = >\0+)\1%+>\2%.

As an extension of inequality (10) to L,-norm, recently W.M.Shah and A.Liman [17,
Theorem 1] proved that if P € P, then for every R > 1 and p > 1,

(13) IBIP o al(2)]l, < B" [Anl [|P(2)]],

where B € B, and o(z) = Rz and A,, is defined by (12).
While seeking the desired extension of inequality (11) to L,-norm, they [17, Theorem
2] have made an incomplete attempt by claiming to have proved that if P € P, and P(z)

does not vanish in |z| < 1, then for each R > 1 and p > 1,

RAn] + Ao

|
(14) IBIP o o](2)], < 1+, 1P, -

where B € B, and o(z) = Rz and A,, is defined by (12).
Further, it has been claimed to have proved the inequality (14) for self-inversive poly-

nomials as well.

The proof of inequality (14) and other related results including the Lemma 4 in [17]
given by Shah and Liman is not correct. The reason being that the authors in [17] deduce

line 10 from line 7 on page 84, line 19 on page 85 from Lemma 3 [17] and line 16 from

line 14 on page 86 by using the fact that if P*(z) := 2" P(1/Z), then for 0(z) = Rz, R > 1

and |z] =1,
|B[P* 0 0l(z)] = [B[(P* 0 0)"](2)],
which is not true, in general, for every R > 1 and |z| = 1. To see this, let
P(z)=a,2"+ - +ap2" +- + a1z +a
be an arbitrary polynomial of degree n, then

P*(2) = 2"P(1/Z) = ap2" + a1 2" '+ 4 @ 4 4 .
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Now with u; := An/2 and uy := A\an?/8, we have

n

B[P* o p](Z) = Z ()\0 + ul(n — k?) + /1/2(77/ — k;)(n —k— 1)) CL_an_kRn_k,

and in particular for |z| = 1, we get

B[P* o pl(z) = R"z" kio (Mo + pa(n— k) + pa(n —k)(n—k — 1))@,
whence _
B[P 0 pl(2)| = R : Ot~ R+ il — 0~k — s (5.
But :
BI(P* 01N = |3 Ok k= D)o ()|

so the asserted identity does not hold in general for every R > 1 and |z| = 1 as e.g. the
immediate counterexample of P(z) := 2" demonstrates in view of P*(z) = 1, |B[P* o

pl(2)| = o] and
IBI(P* 0 p)*]()] = Ao + M(n?/2) + Aan®(n — 1)/8], |2 = 1.

The main aim of this paper is to present correct proofs of the results mentioned in [17]

by investigating the dependence of
B[P 0 0](2) + ¢n (R, 7, v, B) B[P o p](2)]l,

on [[P(z)l|, for arbitrary real or complex numbers «, 8 with || <1, [8] <1, R>r > 1,
0<p<oo,o(z):= Rz p(z) :=rz and

(15) onirra sy = s { (EE1) ~lat} -a.

r+1

and establish certain generalized L,-mean extensions of the inequalities (10) and (11) for

0<p<o0.

2. Lemmas
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For the proofs of our results, we need the following lemmas. The first Lemma is easy

to prove.

Lemma 2.1. If P € P, and P(z) has all its zeros in |z| < 1, then for every R >1r > 1

and |z| =1,

P = (1) 1P

r+1
The following Lemma follows from Corollary 18.3 of [7, p.65].

Lemma 2.2. If all the zeros of polynomial P € P, lie in |z| < 1, then all the zeros
of the polynomial B[P|(z) also lie in |z| < 1.

Lemma 2.3. If F' € P, has all its zeros in |z| <1 and P(z) is a polynomial of degree

at most n such that
|P(2)| < [F(2)] for |z] =1,
then for arbitrary real or complex numbers o, 5 with |a] < 1, |5 <1, R >r > 1, and

2] 2 1,

(16) |B[P o a)(z) + ¢(R, 1 o, B) B[P o p|(2)| < [B[P* 0 0](2) + ¢(R, 7, cx, B) B[P" 0 p|(2)]|

where P*(z) := 2"P(1/Z), B € B,, 0(z) := Rz, p(z) :=rz, A, and ¢, (R,r,a, ) are
defined by (12) and (15) respectively.

Proof. Since the polynomial F'(2) of degree n has all its zeros in |z| < 1 and P(z) is a

polynomial of degree at most n such that
(17) [P(z)| < [F(2)] for [z] =1,

therefore, if F'(z) has a zero of multiplicity s at z = €%, then P(z) has a zero of multiplicity

at least s at z = . If P(2)/F(2) is a constant, then the inequality (16) is obvious.
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We now assume that P(z)/F(z) is not a constant, so that by the maximum modulus
principle, it follows that
|P(2)| < |F(2)| for |z] > 1.

Suppose F'(z) has m zeros on |z| = 1 where 0 < m < n, so that we can write

where F(z) is a polynomial of degree m whose all zeros lie on |z| = 1 and Fy(z) is a
polynomial of degree exactly n —m having all its zeros in |z| < 1. This implies with the
help of inequality (17) that

P(z) = Pi(2)Fi(2)

where Pj(z) is a polynomial of degree at most n — m. Now, from inequality (17), we get
[P1(2)| < [Fa(2)] for [2] =1

where F5(2) # 0 for |z| = 1. Therefore for every real or complex number A with |A| > 1,
a direct application of Rouche’s theorem shows that the zeros of the polynomial Py(z) —

AFy(z) of degree n —m > 1 lie in |z] < 1. Hence the polynomial
f(z) = Fi(2) (Pi(2) = AF3(2)) = P(2) = AF(2)
has all its zeros in |z| < 1 with at least one zero in |z] < 1, so that we can write
f(2) = (2 — te®)H(z)

where t < 1 and H(z) is a polynomial of degree n — 1 having all its zeros in |z| < 1.
Applying Lemma 1.1 to the polynomial f(z) with & = 1, we obtain for every R > r > 1

and 0 < 0 < 2,

[f(Re)| = |Re” — te”||H(Re")]
: s (R+1\"" :
> 0 ¢ i H 6
G == I
_ (R+1\""|Re? — te]
o \r+1 |ret? — teid]

R+1\"" (R+t "
(r+1) (r+t)’f<re )I

|(rei9 — te“s)H(Tewﬂ
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This implies for R >r > 1 and 0 < 0 < 2,

(18) (T+t)ua%%\z(3*i)miuwa%L

R+t r+1

Since R >r > 1 >t so that f(Re?) # 0 for 0 < § < 27 and 11%’% > £t from inequality

(18), we obtain R >r > 1 and 0 < 6§ < 2,

(19 e > (T 1)
Equivalently,
R+1\"
e > (1) 1)

for || =1 and R > r > 1. Hence for every real or complex number a with |o| < 1 and

R >r>1, we have

[f(Rz) — af (rz)] = [f(R2)| = |al[f(r2)]

20 > {2 —tatb s el-1

Also, inequality (19) can be written in the form

r+1
R+1

(21) u&ww<( )|ﬂRWM

for every R >r > 1 and 0 < § < 2. Since f(Re?) # 0 and (;fl)n < 1, from inequality

(21), we obtain for 0 < 6 < 27 and R > r > 1,
|[f(re”| < |f(Re”).

Equivalently,

[f(rz)] < [f(Rz)| for |z =1.

Since all the zeros of f(Rz) lie in |z2| < (1/R) < 1, a direct application of Rouche’s
theorem shows that the polynomial f(Rz) — af(rz) has all its zeros in |z| < 1 for every
real or complex number « with |a| < 1. Applying Rouche’s theorem again, it follows from
(20) that for arbitrary real or complex numbers «, 5 with || < 1,|8] < 1and R > r > 1,

all the zeros of the polynomial
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1) =) - agr2) + 6 { (211 =t} s

r+1

= f(Rz) + ¢(R,7,a,3) f(rz)

= (P( — AF(R2)) + ¢(R, 7,00, B)(P(rz) — AF(rz))

= (P(R2) + (R, 7,0, B)P(rz)) — A(F(Rz) + ¢(R. 7,0, ) F(rz))
lie in |z| < 1 for every A with |[A\| > 1. Using Lemma 2.2 and the fact that B is a linear
operator, we conclude that all the zeros of polynomial

W(z) = B[T|(z)

= (B[Poo](z) + ¢(R,1,a, B) B[P o p](z))

—A(B[F o 0](z) + ¢(R, 7, a, B) B[F o p|(2))
also lie in |z| < 1 for every A with |A| > 1. This implies
(22) |B[Poo](2) + o(R, 1o, B)BIP o pl(2)| < [B[F 0 0](2) + ¢(R, 7, a, B) B[F o p](2)|

for [z| > 1 and R > r > 1. If inequality (22) is not true, then exist a point z = 2y with

|z0| > 1 such that
|BIP o 0](z0) + ¢(R, 7, c, B) B[P 0 p|(20)| > [B[F 0 0](20) + ¢(R, 7, c, ) B[F 0 p](20)].

But all the zeros of F/(Rz) lie in |z| < 1, therefore, it follows (as in case of f(z)) that all
the zeros of F(Rz) + ¢(R,r,a, f)F(rz) lie in |z| < 1. Hence by Lemma 2.2, all the zeros
of B[F o0](z) + ¢(R,r,a, 5)B[F o p|(z) also lie in |z| < 1, which shows that

B[F o 0](z0) + ¢(R, 7, v, B) B[F 0 p](2) # 0.

We take
B[P o cl(z9) + ¢(R,r,c, B)B[P o p|(20)
B[F o 0](z0) + ¢(R, 7,0, B)B[F o p|(z0)’

then A is a well defined real or complex number with |A\| > 1 and with this choice of A,

A:

we obtain W(zy) = 0. This contradicts the fact that all the zeros of W (z) lie in |2| < 1.
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Thus (22) holds and this completes the proof of Lemma 2.3.

Lemma 2.4. If P € P, and P(z) does not vanish in |z| < 1, then for arbitrary real or

complex numbers a, § with |o| < 1,8 < 1,R>r>1and |z| > 1,

|B[P o 0](2)+¢ (R,r,a, 5) B[P o pl(2)|
(23) < [B[P*o0](2) + ¢ (R, r,a, §) B[P" o p](2)|

where P*(z) := z"P(1/Z), B € B, 0(z) := Rz, p(z) := rz, and ¢ (R,r,a, ) is defined
by (15).

Proof. By hpyothesis the polynomial P(z) of degree n does not vanish in |z| < 1,

therefore, all the zeros of the polynomial P*(z) = 2"P(1/Z) of degree n lie in |z| < 1.
Applying Lemma 2.3 with F(z) replaced by P*(z), it follows that

|B[P o0o](z) + ¢ (R, 7, 8) B[P o p](2)]
< [B[P"o0](2) + ¢ (R, r,a, 5) B[P" o p](2)|

for |z| > 1,]a| < 1,|8] <1 and R > r > 1. This proves the Lemma 2.4.
Next we describe a result of Arestov|[2].
For v = (0,71, -+, 1) € C**1 and P(2) = Y 7 a;27, we define

C,P(z) = Z vz
=0

The operator C, is said to be admissible if it preserves one of the following properties:
(i) P(2) has all its zeros in {z € C : |z| < 1},
(i) P(z) has all its zeros in {z € C: |z| > 1}.

The result of Arestov may now be stated as follows.
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Lemma 2.5. [2/Th.2] Let ¢(x) = ¢(logx) where 1) is a convex nondecreasing function
on R. Then for all P € P,, and each admissible operator A,

| etepena< [ o ctmipen) o
where ¢(v,n) = maz (|7, [vn|)-

In particular Lemma 2.5 applies with ¢ : © — 2P for every p € (0,00) and ¢ : x — logz

as well. Therefore, we have for 0 < p < oo,

ey {[sterennml saon{[Mpenpa)

From Lemma 2.5, we deduce the following result.

Lemma 2.6. If P € P, and P(z) does not vanish in |z| < 1, then for each p > 0,
R > 1 and nreal, 0 <n < 2,

| BP ol + bu(ra, ) BP o () e
+ (B[P* o o]* (") + ¢u(R, 1, &, B)B[P* 0 p*(e")) [Pdf
< |(R" + ¢ (R, 7y, B)r™)Ane™ + (1 + ¢n(R, 7, @2, B))Xo|p/0 ' |P(e”)|" do

where B € B, o(z) := Rz, p(z) := rz, B[P* o d]*(z) := (B[P* o 0|(2))*, A, and
on (R, 7,0, B) are defined by (12) and (15) respectively.

Proof. Since P(z) does not vanish in |z| < 1 and P*(z) = 2"P(1/z), by Lemma 3, we

have for R > r > 1,

|B[P o0](z) + ¢ (R, 7, o, B) B[P o p](2)

(25) < [B[P"o0](z) + ¢ (R, a, f) B[P" o p|(2)|
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Also, since
P*(Rz)+ ¢ (R,r, 0, B) P*(rz) = R"2"P(1/Rz) + ¢ (R, 7,0, B) r"z" P(1/7Z), therefore,
B[P* o 0](2) + ¢n(R,r, o, B) B[P* 0 p|(2)
=N (R”z"P(l/RE) +o(R,r,a, ) T"Z”P(l/ri)) + A\ (%
— R"'2"?P'(1/Rz) + ¢ (R, r, o, B) (ne"2" ' P(1/rz) — r"ilz"*QP’(l/rZ)))

) (nier== P/

+22 (12 ((n — )R 2PUITRE) — 2(n — 1B 2 P(1]RS)
+ R"22"*P"(1/RZ) + ¢ (R, 7,0, B) (n(n — 1)r"2" > P(1/rz)

— 2n = VTP 4 2P rE)) )
and hence,

B[P" o 0]"(2) + ¢ (R,r,, B) B[P o p]"(2)

— (B[P 0 0](2) + ¢ (R, 7, a, B) B[P* 0 p](2))"
= (Rt A RS (8P R) 46 (R, B) PG )
_ ( ]g + XQW) (R"flzP’(z/R) + ¢ (R, ) IZP/(Z/T)>

a,
(26) 2% R"222P"(2/R) + ¢ (R, 7,a, B) r" 22" P’ z/r)

/\

Also, for |z| =1
|B[P" 0 0](2)+¢ (R,r,c, 3) B[P" 0 p](2)]
= |B[P* o o]"(z) + ¢ (R, 7, &, B) B[P* o p]*(2)|.
Using this in (25), we get for [2| =1 and R > 7 > 1,
| B[P o 0](2)+¢ (R,r,a, 5) B[P o p]()|
< |B[P* ool (2) + ¢ (R,r,&,B) B[P o p]*(2)].

Since all the zeros of P*(z) lie in |z| < 1, as before, all the zeros of P*(Rz) +
On(R, 7, B)P*(rz) lie in |z| < 1 for all real or complex numbers «, 5 with |o| < 1, || < 1

and R > r > 1. Hence by Lemma 2.2, all the zeros of B[P* o 0]|(2) + ¢n(R, T, , 3) B[P* o



NEW OPERATOR PRESERVING L, INEQUALITIES BETWEEN POLYNOMIALS 43
pl(2) lie in |z| < 1, therefore, all the zeros of B[P* o o]*(2) + ¢n(R, 7, &, 3)B[P* o p]*(2)

lie in |z| > 1. Hence by the maximum modulus principle,
|B[P o 0](2)+¢ (R,r,a, B) B[P 0 p] ()]
(27) < |B[P*oo]*(2) + ¢ (R,r,& B) B[P* o pl*(z)| for |z|<1.
A direct application of Rouche’s theorem shows that
C,P(2) =(B[P o 0](2) + ¢u(R, 7, c, B) B[P 0 p](2))e"
+ (B[P 0 0]"(2) + du(R, 1, @, B) B[P" 0 p]*(2))
- {(Rn + ¢u(R, 7, 0, B)r")Ane™ + (1 4 éu(R, 1, @, B))XO} n2"
o (B u(Ror, @, B)r™) A, + (L + du(R, 7,0, B)) Ao} ag

does not vanish in |z] < 1. Therefore, C, is an admissible operator. Applying (24) of

Lemma 2.5, the desired result follows immediately for each p > 0.
From Lemma 2.6, we deduce the following more general result.

Lemma 2.7. If P € P,, then for every p >0, R > 1 and n real, 0 <17 < 2,
/ T A(BIP o 0](e?) + 6u(R. 1,0, B)BIP o pl(e)) e
+ (B[P* 0 o]*(e") + ¢u(R, 1, &, B) B[P o p]*(e")) ' df
< |(R™ + ¢u(R, r,x, B)r™)Ape™ + (1 + ¢ (R, 7, &, B)) Xo|” /027r |P(e)|" o

where B € B,, o(z) := Rz, p(z) := rz, B[P* o c]*(z) := (B[P* o g](2))*, A, and
On (R, 1,0, B) are defined by (12) and (15) respectively.

Proof. If all the zeros of P(2) lie in |z| > 1, then the result follows by Lemma 2.6.
Henceforth, we assume that P(z) has at least one zero in |z| < 1 so that we can write

n

P(z)zPl(z)Pg(z):aH(z—zj) H (z—2j), 0<k<n-—1, a#0

i=k+1
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where all the zeros of Pj(z) lie in |z| > 1 and all the zeros of P(2) lie in |z| < 1. First
we assume that P;(z) has no zero on |z| = 1 so that all the zeros of Pi(z) lie in |z| > 1.

Let Pjy(z) = 2" *Py(1/Z), then all the zeros of Py(z) lie in |z| > 1 and |Py(2)| = | Pa(2)|
for |z| = 1. Now consider the polynomial

k n
J(2)=P2)P5(2) = a] (= =) ] (1 —=2%),

j=1 j=k+1

then all the zeros of f(z) lie in |z] > 1 and for |z| = 1,
(28) If @) =[PP (2)] = [P(2)| [Pa(2)] = [P(2)]

Therefore, it follows by Rouche’s theorem that the polynomial g(z) = P(z) 4+ uf(z) does
not vanish in |z| < 1 for every pu with |u| > 1, so that all the zeros of g(z) lie in |z| > 0
for some 0 > 1 and hence all the zeros of T'(z) = ¢g(dz) lie in |z| > 1. Applying (27) and
(26) to the polynomial T'(z), we get for R > 1 and |z| < 1,

|B[T o 0](2) + ¢ (R,r, 0, B) B[T o pl(2)]
< |B[T*o0o]*(z) + ¢ (R,r,a,B) BT o p]*(2)|
= | <)\0 + Xl% + )\2%) (R"T'(z/R) + ¢ (R,r,&,B) r"T(z/r))

n?(n —1)

_ (Alg + o 1 ) (R"_lzT’(z/R) + ¢ (R, T, Q, B) T”_lzT’(z/T)>

2
+XQ% (R”_222T"(Z/R) + ¢ (R, T, Q, B) r”_222T"(z/7“)> |,
that is,

|B[T 0 0](z) + ¢ (R,r, 0, 5) BT o p]()]

_ (xo v &@) (R"g(52/R) + 6 (R, @, B) r"g(52/r))

— (Xlg + XQ@) (R”’lézg'(éz/R) +¢ (R, r,a,pB) r"’ldzg’(éz/r))

2
+X2% (R”’252z29”((5z/R) + ¢ (R,r,a,p) r"’25222g"(5z/r)> |



NEW OPERATOR PRESERVING L, INEQUALITIES BETWEEN POLYNOMIALS 45
for |z| < 1. If 2 =¢"/6,0 < 0 < 2, then |z| = (1/6) < 1 as § > 1 and we get
| BIT 0 0](e”/8) + ¢u(R, 1, ., B)BIT 0 pl (e /9))|

_ (xo R XQW) (Rg(e?/R) + 6 (R.7., B) g /1))

_ (Alg + AQ@) (Rn—leieg/(ew/R) +é (R, r,a, B) rnfleieg/(eie/r)>

— 2 . . -_— . .

+)\2% <Rn—262zeg//(6z6/R) + ¢ (R, r, 64, 5) rn—262199//(619/r)>|
= |B|g" o a]*(eie) + on(R, T, @, B)B[g* o p]*(ei9)|.

Equivalently for |z| = 1,

|Blg o 0](2)]+¢ (R, r, a0, ) Blg o p](2)]
<|Blg* o 0]"(2) + ¢ (R,r,a,B) Blg™ o p|"()].

Since all the zeros of g(z) lie in |z] > 1, all the zeros of g*(z) = z"¢(1/2) liein |z| <1
and hence as before, all the zeros of g*(Rz) + ¢(R, 7, o, B)g*(rz) lie in |2| < 1. By Lemma
2.2, all the zeros of Blg* o 0](2) + ¢(R,r, o, B) Blg* o p|(2) lie in |z| < 1 and therefore, all
the zeros of Blg* o 0]*(2) + ¢(R, 7, &, B)B[g* o p]*(2) lie in |z| > 1. Thus

Blg* o o]*(2) + ¢(R,r,a, B)Blg* o p|*(2) # 0 for |z| < 1.
An application of Rouche’s theorem shows that the polynomial
M(z) =(Blg © 0(2) + ¢a(R. 7,1, B) Blg © p)()) e

(29) + Blg* 0 0]*(2) + ¢n(R, 7, @, B)Blg* o p]*(2)

does not vanish in |z| < 1. Replacing g(z) by P(z) + pf(z) and noting that B is a linear

operator, it follows that the polynomial
M(z) = (B[P 0 0](2)+6u(R, 1,0, B) B[P 0 p](2)) "™
+ (B[P o o]*(2) + ¢u(R, 7, &, B)B[P* 0 p]*(2))
+u((B[f o o](2) + du(R, ., B)B[f 0 p](2)) "

(30) + (Bf* ool (2) + ¢u(R,m.&, B)B[f* 0 p]*(2)))
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does not vanish in |z| <1 for every p with |u| > 1.

We claim
|(B[P o 0](2) + ¢u(R, 7, B)B[P o p](2))e”
+B[P* } ( >+¢N( r,Q B)B[P*op]*(zﬂ
< |(B[f 00](2) + ¢n(R, 7,0, B)B[f o p](2)) €™
(31) —|—B[f* ] ( )+¢n( ra B)B[f* Op]*(z)|

for |z| < 1. If inequality (31) is not true, then there a point z = zy with |z9| < 1 such
that

(B[P 0 0](20) + ¢n(R, 7, v, B) B[P o p)(z)) "
+ B[P* 0 0]"(20) + ¢u(R, 7, @, B)B[P* o p]*(20))|
> |(BIf © 0)(20) + ¢n(R, 7,0, B)BLf 0 p](20)) €
+ B[f" 0 0]"(20) + 6u(R, 7, @, B)B[f* o p|" (20)|

Since f(z) does not vanish in |z| < 1, proceeding similarly as in the proof of (29), it

follows that the polynomial
(B[f 0 0l(2) + ¢u(R, 1,0, B)Bf 0 p](2))e™
+ B[f" 0 o]*(2) + du(R, 1, @, B)B[f* o p]"(2)

does not vanish in |z| < 1. Hence

( [foal(z0) + on(R,r,a, B)B[f o ](2’0)) in
+ B[f* o J]*(ZO) + ¢n(R, T,d,B)B[f* o p]*(zo) 7& 0.
We take

_ _ (B[Pod](z0)+¢n (R.r,0.8) B[Pop] (20)) e’ + B[P*00]* (20) +¢n (R.7,03) B[P* op] * (20)
H (B[foo(z0)+n(R.r,c,8) B[fopl(20))et1+B[f*o0]* (20)+¢n (R,r,a,8) Blf *op]* (20)

so that u is well-defined real or complex number with x| > 1 and with this choice of p,

from (30), we get M(zy) = 0. This clearly is a contradiction to the fact that M(z) does
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not vanish in |z| < 1. Thus (31) holds, which in particular gives for each p > 0 and 7 real,

/0 (BP0 0)(c™) + 6u(R, 1,0, B)BIP o pl(c))
+ B[P* 0 0]"(¢®) + ¢ (R, 7, &, f)B[P* o p]*(e®)|Pd6
< / |(BLf 0 01(2) + du(Ror 0 B)BLS o pl(2)) e

(32) + B[f* o o]*(e”) + ¢u(R, 7, @, B)B[f* o p]*(e”)|d0
Using Lemma 2.7 and (28), we get for each p > 0,

/O "(BIP 0 0)() + 6u(R. 10, B)BIP o pl(c)) "
1 B[P* 0 o] () + gu(R. 7., B)BIP" o ol () d6

21T
sKW+%mmmWﬂmw+u+mmmm®WW/!ﬂﬁww
0

2w

(33) = |(R™ + ¢n(R, 7,0, B)r")Ane’™ + (1 + ¢ (R, 7, @, B)))\o|p/ !P(ei0)|p do
0

Now if Pi(z) has a zero on |z| = 1, then applying (33) to the polynomial Q(z) =
Py (tz)Py(z) where t < 1, we get for each p > 0, R > r > 1 and 7 real,

/0 " I(BIQ o ol(€%) + 6u(R, 10, H)BIQ 0 pl(c)) e
L(BIQ® 0 0" () + du(R. 1.6, B)BIQ o p* () P'd6

21
(34) sum+mmmmmme+a+%mm@3WW/\MWWM-
0

Letting ¢ — 1 in (34) and using continuity, the desired result follows immediately and

this proves Lemma 2.7.
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Lemma 2.8. If P € P, and P*(z) = z"P(1/z), then for every p > 0, o, B € C with

la| < 1,6/ <land R>r >1,

/0 7r/0 i ‘(B[P 0 0](e®) + ¢ (R, 7, a, B)B[P o p](ew))ei”
+(B[P" o o)(€”) + ¢n(R, 7, 0, B) B[P* o p](@ig)) Pdo

2m
S / ’(Rn + ¢n(R’ T? CY, ﬁ)Tn)Anein + (1 + ¢n(R7 T? CY, ﬁ)))\o‘pdn
0

(35) x /O ’ |P(e?)]" o

where B € By, 0(2) := Rz, p(z) :==rz, A, and ¢, (R,r,a, 5) are defined by (12) and (15)
respectively. The result is best possible and the extremal polynomial is P(z) = 52", [ # 0.

Proof. Since B[P* o c|*(2) + ¢, (R, 7, &, 3) B[P* o p]*(2) is the conjugate polynomial of
B[P* 0 0](2) + ¢n(R, 1, o, ) B[P* 0 p](2),

| BIP" 0 o] (") + ¢u(R, 1 &, B)BIP" 0 p]*(¢”)]

= |B[P* o 0](e") + én(R, 7, o, B)B[P* 0 p] ()|, 0 < 0 < 27
and therefore for each p > 0, R >r > 1 and 0 < § < 27, we have

[ 1B 0ol + o0 BP0 e
+(B[P" 0 0](e”) + ¢u(R, 7,0, ) B[P o p(e)) [Pdn
= [T IBIP o ole) + su(Ror, 9BIP o )
HBIP* 0 0](c%) + 6,(R. 7,00 B)BIP* o gl(e)] Py
= [T 1B o o1(e) + (R0 HBIP o e

(36) +|B[P* 0 o]"(e”) + du(R,r, &, B)B[P" o p]*(e")[["dn.
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Integrating both sides of (36) with respect to 6 from 0 to 27 and using Lemma 2.7, we
get

/Oﬂ/oW|(B[Poa](ei9)+gbn(R,r,a’ﬁ)B[pop](ew))em

+(B[P* 0 0](e”) + ¢u(R, 7, a, B)B[P* o p|(e"))["dndf

:/OW/OW||B[Poa](ei9)+qsn(R,r,aﬁ)B[pop](ew”em

+|B[P* 0 0]*(”) + ¢u(R, 7, &, B) B[P* o p]*(e”)|[Pdnd0
2T 27
= / (/ (B[P o a](ew) + ¢n(R, 7,0, B)B[P o p](ew))em
0 0
+(B[P* o o]* (") + ¢pn(R. 7, &, B) B[P~ 0 p|*(e")) de9> dn
2
< / (R™ + ¢ (R, 7, 0, B)r™)Ape™ + (1 + ¢n (R, 7, &, B)) No|Pdn
0
27
P(e®)|" dg
<[ 1Pe)
27r .
< / |(R" 4+ ¢n(R, 7, a0, B)r")Npe' + (1 4 ¢n(R, 7, v, B)) Ao|Pdn
0

2m
y / (i) 7o
0
This completes the proof of Lemma 2.8.

3. Main results

We first present the following result which is a compact generalization of the inequali-

ties (1),(2), (5) and (10) and extends inequality (13) for 0 < p < 1 as well.

Theorem 3.1. If P € P,, then for arbitrary real or compler numbers o, [ with

la| <1, 18| <1,R>r>1and 0 <p < oo,
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B[P o 0(z) + én(R, 7, a, B) B[P o p](2)]],
(37) SR + ¢n (Ryry 0, ) " [Anl [ P(2)]],

where B € B, 0(z) :== Rz, p(z) :=rz, A, and ¢, (R, 7, o, B) are defined by (12) and (15)
respectively. The result is best possible and equality in (37) holds for P(z) = az",a # 0.

Proof. By hypothesis P € P,, we can write

n

P(z) = P(2)Py(2) = cH(z —z) [] G=2), k=1 c#0

j=k+1

where all the zeros of Py(2) lie in |z| < 1 and all the zeros of P(z) lie in |z| > 1. First
we suppose that all the zeros of Py(z) lie in |z| < 1. Let P;(z) = 2" *P,(1/%), then all
the zeros of Pj(z) lie in |z| < 1 and |P;(z)| = |Px(2)| for |z] = 1. Now consider the
polynomial

n

F(z) = Pi(2) Py (2) = CH(Z —z) [ 1-=2),

j=k+1

then all the zeros of F(z) lie in |z| < 1 and for |z| =1,
(38) [F() = [P B (2)] = [P(2)| [Pa(2)] = | P(2)]

Observe that P(2)/F(2) — 1/ [[}_,,(—%;) when z — oo, so it is regular even at oo and

thus from (38) and by the maximum modulus principle, it follows that
|P(2)| < |F(2)| for |z| >1.

Since F(z) # 0 for |z| > 1, a direct application of Rouche’s theorem shows that the
polynomial H(z) = P(z) + AF(z) has all its zeros in |z| < 1 for every A with |[A| > 1.
Therefore, for all real or complex numbers «, 5 with || < 1,|f] < 1and R >r > 1, it
follows that all the zeros of h(z) = H(Rz) + ¢n(R,r, o, B)H (rz) lie in |z]| < 1. Applying

Lemma 2.2 to the polynomial h(z) and noting that B is a linear operator, it follows that
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all the zeros of

BIR)(2) = BIH 0 0](2) + 6a(R, 7,0, B)BIH o p](2)

= B[P oo|(2) + ¢n(R,r,c, B)B[P o p|(2)
FABIF 0 0)(2) + 6u(R,7, 0 B)BIF 0 p)(2)
lie in |2| < 1 for every A with [A| > 1. This implies
B[P 0 0](2) + 6u(R, 7, 0, B)BIP o p)(2)] < |BIF 0.0)(2) + 6u(R,1, 0, 5)B{F 0 p](2)]
for |2| > 1, which, in particular, gives for each p >0, R > > 1 and 0 < § < 2,
[ 1B o o1(e) + u(Ror0, )BLE 0 ()

(39) </ T BIF o 0)(e”) + 6u(R, 7,0, B)BIF o gl()|Fds

Again, since all the zeros of F(z) lie in |2| < 1, it follows, as before, that all the zeros of
B[F(R2)] + ¢n(R, 7, a0, B)F(rz) also lie in |z| < 1. Therefore, if F(2) = b,2" + b,_12""' +
-+ + by, then the operator C., defined by

CyF(2) = B[F 0 0](2) + ¢n(R, 7, , B) B[F o p(2)

2 3(n—1)

— (R" + 6n(R, 7, t, B)r™) Ao + Mo 4 g Yoz + -+ + Aobo
2 8

is admissible. Hence by (24) of Lemma 2.5, for each p > 0, we have
21
/ |B[F o 0](e”) + ¢n(R, 7, v, B)B[F o p](e”)[Pdf
0
2 3 -1 2m )
(40) <R+ én(R, 7, 0, B)r™|| Xo + )\1% + AQ%VD/O |F(e)[Pdo.

Combining inequalities (39) and (40) and noting that |F(e?)| = |P(e)|, we obtain for

eachp>0and R>r > 1,
2m
/ |B[P o o](e”) + ¢n(R, 7, 0, ) B[P o p](e”)[Pdf
0

21
(41) < R + du(R, 1 B[ A / P()Pdb.
0
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In case Pi(z) has a zero on |z| = 1, then the inequality (41) follows by continuity. To

obtain this result for p = 0, we simply make p — 0+.

A variety of interesting results can be deduced from Theorem 3.1 as special cases. Here

we mention a few of these.

The following result follows from Theorem 3.1 by taking g = 0.

Corollary 3.2. If P € P, then for every real or complex number « with |a| < 1,

R>r>1and 0 <p< oo,

(42) IB[P o 0](z) — aB[Popl(2)[|, < |[R" — ar"| [A] [[P(2)]],

where B € B, 0(z) := Rz, p(z) := rz and A, is defined by (12). The result is best
possible and equality in (42) holds for P(z) = az",a # 0.

Setting o = 0 in Corollary 3.2, we get the following sharp result.

Corollary 3.3. If P € P, then for R >1 and 0 < p < o0,
(43) B[P o a(2)]l, < [R"[ | Al [ P(2)]I,,
where B € By, 0(z) := Rz and A,, is defined by (12). The result is best possible and

equality in (43) holds for P(z) = az",a # 0.

Remark 3.4. Corollary 3.3 not only includes inequality (13) as a special case but also
extends it for 0 < p < 1 as well. Further inequality (10) follows from Corollary 3.3 by

letting p — oo in (43).

The case B[P](z) = P(z) of Theorem 3.1 yields the following interesting result which

is a compact generalization of inequalities (1), (2) and (5).
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Corollary 3.5. If P € P,, then for every real or complex number o with |a| < 1,

R>r>1,and p >0,
(44) |[P(Rz) + ¢n (R, 7, B) P(r2)|, < [R" + én (R, 7, 0, B) 7" || P(2) ],

where ¢, (R, 7,0, B) is defined by (15). The result is best possible and equality in (44)
holds for P(z) = az™,a # 0.

Remark 3.6. If we divide the two sides of (44) by R — r with o = 1 and then let

R —r,weget for PeEP,,r>1, || <1land 0 <p< 0,

n—1 "
e (L

(45) <n

p

ZzP'(rz) + 6171?]3(7"2)

The result is best possible and equality in (45) holds for P(z) = az",a # 0.
Taking o = 0 in (41), we obtain:

Corollary 3.7. If P € P,, then for every real or complex number 5 with |f| < 1,

R>r>1and 0 <p< oo,

(46) HB[P(Rz)] + 3 (%)n B[P(rz)]

R+1\"
S’R"+ﬁ(—+ ) r"

) AP

p

where B € B,, and ¢ (R,r,«, 3) is defined by (15). The result is best possible and equality
in (46) holds for P(z) = Az, A # 0.

Theorem 3.1 can be sharpened if we restrict ourselves to the class of polynomials P € P,
having no zero in |z| < 1. In this direction, we next present the following result which in
particular includes a generalized L, mean extension of the inequality (11) for 0 < p < oo
and among other things yields a correct proof of inequality (14) for each p > 0 as a special

case.
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Theorem 3.8. If P € P, and P(z) does not vanish in |z| < 1, then for then for

arbitrary real or complex numbers a, 5 with |a| < 1, |f| <1, R>r >1 and 0 < p < o0,

B[P o 0](z) + én(R, 1, a, B) B[P o p](2)]],

< [(R" + ¢n(R, 0, B)r") Apz 4+ (L4 ¢u(R, 7, B)) Aol|
B 11+ =],

(47) “IPG), -

where B € B, 0(z) := Rz, p(z) :=rz, A,, and ¢, (R, 7,0, B) are defined by (12) and (15)
respectively. The result is best possible and equality in (47) holds for P(z) = az™+b, |a| =
[b] # 0.

Proof. By hypothesis P € P, does not vanish in |z| < 1, o(2) = Rz, p(z) = rz

therefore, if P*(z) = 2"P(1/Z), then by Lemma 2.3, we have for 0 < § < 27,

B[P 0 0(e") + ¢u(R, 1, ., ) B[P 0 pl ()]

(48) < |B[P* 0 o](e”) + ¢n(R, 7,0, B) B[P 0 p] ()]
Also, by Lemma 2.8, for each p > 0 and 7 real and R > r > 1,
2 2 ) . .
[ [ 1o oe) + 6u(Rra BP0 (e )
o Jo
+(B[P" 0 0](e”) + ¢u(R, 1, v, B)BIP* 0 pl(e”)) [Pdfdn
21
< [UE oo, B
0
2m )
(49) HL+ ul R )Py [ [P 0,
0
Now it can be easily verified that for every real number o and s > 1,
!s + eia| > ’1 + em‘ )
This implies for each p > 0,

2m 2m
(50) / s+ e|" do > / |1+ e|" dav.
0 0
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If B[P oc](e?) + ¢n(R,7,&, B) B[P o p](e”) # 0, we take

o [BIP 0 0l(€”) + du(R, 1, @, ) B[P* 0 p)(e"”)]
|BIP o 0](e”) + ¢n(R, 7, 0, B)BIP o pl(e?)] *

then by (48), s > 1 and from (50), we get

/0 ' |(B[P 0 0](e”) + ¢ (R, 7, a, B)B[P o p](ew))ei”
+(B[P* 0 0](e"”) + ¢u(R, 7, v, B) B[P* 0 p] (")) |"dn

= |B[P o o](e”) + du(R. 7,0, B) B[P o p](e”)[”

| B[P*00)(e®) + éu(R, 7, a, B)B[P* 0 p]() |
/ BP0 ol(@®) 1 bu(Ror, . H)BIP o () |
= |BIP o 0](e) + ¢u(R, 7,0, B) B[P o p](¢)|”
| | BIP* 0 0](e?) + ¢(R, 7, o, B) B[P o pl(¢?) ||”
/ ‘ +‘B[POU](ew)+¢n(Rﬂ“,a,B)B[POP](€”) an

2
> |B[P o a](ew) + ¢n(R, 7,0, B)B[P o p](ew)]p/o |1+ e™[Pdn.

For B[P o o](e?) + ¢n(R,r,a, B) B[P o p](e?) = 0, this inequality is trivially true. Using

this in (49), we conclude that for each p > 0,
27 ] ] 21 )
/ }B[P o a](ew) + ¢n (R, a, B)B[P o p](ew)}de/ |1 + e”7|p dn
0 0
27 ]
S/ |(R" + ¢n(R, 7, 0, B)r™) e
0
21 )
S+ ou(Rerap)aPdy [ PP,
0

from which Theorem 3.8 follows for p > 0. To establish this result for p = 0, we simply
let p — 0+. This completes the proof of Theorem 3.8.

For § = 0, inequality (47) reduces to the following result.
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Corollary 3.9. If P € P, and P(z) does not vanish in |z| < 1, then for every real or

complex number o with |a] <1, R>r>1and 0 <p < oo,

(51)  [BIPool(z) —aBlPopl(2)], <

where B € B, 0(z) :== Rz, p(z) := rz and A, is defined by (12). The result is best
possible and equality in (51) holds for P(z) = az" + b, |a| = |b|] # 0.

For a = 0, Corollary 3.9 yields the following interesting result.

Corollary 3.10. If P € P, and P(z) does not vanish in |z| < 1, then for R > r > 1

and 0 < p < o0,

||RnAnZ+)\0H
S o]

(52) IBIP o al(2)]l =P

P

where B € By, o(z) := Rz and A,, is defined by (12). The result is best possible and
equality in (52) holds for P(z) = az™ + b, |a| = |b] # 0.

Remark 3.11. If we choose & = A\g = Ay = 0 in (49), we get for R > 1 and 0 < p < o0

Rnfl
53 PRI <Y qp
(53) | P'(R2)|l,, < M4l I1P(2)]],

which in particular yields inequality (3).
By the triangle inequality, the following result immediately follows from Corollary 3.10.

Corollary 3.12. If P € P, and P(z) does not vanish in |z| < 1, then for 0 < p < oo
and R > 1,

RAn] + Ao

(51) IBP ool < TP e,

where B € B,,, 0(2) := Rz, A, is defined by (12).
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Remark 3.13. Corollary 3.12 not only validates the inequality (13) for p > 1 but also

extends it for 0 < p < 1 as well.

A polynomial P € P, is said be self-inversive if P(z) = uP*(z) where |u| = 1 and P*(z)
is the conjugate polynomial of P(z), that is, P*(z) = z"P(1/Z). Finally in this paper, we
establish the following result for self-inversive polynomials which includes a correct proof

of another result of Shah and Liman [17, Theorem 3] as a special case.

Theorem 3.14. If P € P, s a self-inversive polynomial, then for arbitrary real or

complex numbers a, § with |o| <1, || <1, R>r>1and 0 <p < o0,

B[P o 0](z) + én(R, 1, a, B) B[P o p](2)]l,

_ IR + 9By Br™) Az + (14 6 (Ro7, 0, 8)) Nl

(55)
11+ =],

SR, -

where B € B, 0(z) := Rz, p(z) :=rz, A, and ¢, (R,7,a, 3) are defined by (12) and (15)
respectively. The result is best possible and equality in (55) holds for P(z) = 2™ + 1.

Proof. Since P € P, is self-inversive polynomial, we have for some u with |u|=1,

P*(z) = uP(z) for all z € C where P*(z) = 2"P(1/z). This gives for 0 < 6 < 27,

B[P 0 0](e”) + ¢u(R, 1, ., B)B[P o p](e”)]

= |B[P* 0 0](e®) + ¢n(R, 7, r, B)B[P* o p](e)].

Using this in (35) and proceeding similarly as in the proof of Theorem 3.8, we get the

desired result for each p > 0. To extension to p = 0 is obtains by letting p — 0+.

The following result is an immediate consequence of Theorem 3.14.
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Corollary 3.15. If P € P, is a self-inversive polynomial, then for |a| < 1,0 < p < oo
and R>nr>1,
|(R™ — ar™) Az + (1 — ) Ao

(56) | B[P od](z) —aB[Pop)l(2)], < 1+ 2]

where B € B, and o(z) := Rz, p(z) :==rz and A, is defined by (12). The result is sharp
and equality in (56) holds for P(z) = 2" + 1.

For a = 0, Corollary 3.15 reduces to the following interesting result.

Corollary 3.16. If P € P, is a self-inversive polynomial, then for 0 < p < oo and
R>1,

IR Apz + Aol
| |

(57) IB[P o o](2)] =P

b
where B € B, 0(z) := Rz and A, is defined by (12). The result is best possible and
equality in (57) holds for P(z) = z" + 1.

By the triangle inequality, the following result follows immediately from Corollary 3.16.

Corollary 3.17. If P € P, is a self-inversive polynomial, then for 0 < p < oo and
R>1,

Rn’“n| |)‘0|
—||P .
p — Hl ZHp H (Z>Hp

where B € B,,, 0(z) := Rz and A, is defined by (12).

(58) IB[P o a](z)]]

Remark 3.18. Corollary 3.16 establishes a correct proof of a result due to Shah and

Liman [17, Theorem 3| for p > 1 and also extends it for 0 < p < 1 as well.
Lastly letting p — oo and setting & = § = 0 in (57), we obtain the following result.

Corollary 3.19. If P € P, is a self-inversive polynomial, then for |z| =1 and R > 1,

|B[Poo](2)] < %{R” M|+ o[} 1P(2)] -
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where B € B,,, 0(z) := Rz and A, is defined by (12). The result is sharp.

[1]
2]
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