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Abstract. In this paper, we provide two new proofs of a remarkable inequality involving the circumradius, inradius
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1. INTRODUCTION

Throughout this paper, we denote by R,r and s the circumradius, inradius and semiperimeter

of a triangle ABC, respectively.

For any triangle ABC, we have the following double inequality:

2R2 +10Rr− r2−2(R−2r)
√

R2−2Rr

≤ s2 ≤ 2R2 +10Rr− r2 +2(R−2r)
√

R2−2Rr.(1.1)
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This was first proved by E. Rouché in 1851 and it was subsequently rediscovered in many

different forms by several authors. The above inequalities are known today as the fundamental

triangle inequality. For its history, variants, proofs, corollaries and related results, we refer the

reader to the monograph [17] and articles [1-3, 6, 15, 20, 21].

In 1961, W. J. Blundon [3] proved that for any triangle the lower bound and the upper bound

of s2 given by the above inequalities are the best possible. However, we have already known

that for a non-obtuse triangle, there is no best lower bound of s2 (or s) in terms of R and r.

In 1944, C. Ciamberlini [5] first gave the following linear inequality for non-obtuse triangles

(see also [4]):

(1.2) s≥ 2R+ r,

with equality if and only if the triangle is right-angled.

Ciamberlini’s inequality is also a fundamental result in triangle inequalities. A number of

triangle inequalities (not limited to non-obtuse triangles) can be proved by using (1.2) and other

results.

In 1972, A. Walker [19] found that the following quadratic inequality (see also [17, p.248]):

(1.3) s2 ≥ 2R2 +8Rr+3r2

holds for any non-obtuse triangle. Equality in (1.3) holds if and only if the triangle is equilateral

or right isosceles.

In 1996, X. Z. Yang [23] and X. L. Chen [18] independently generalized Walker’s (1.3) to

the case with one parameter. X. Z. Yang established the following inequality:

(1.4) s2 ≥ 2(1+ k)R2 +2
[
4− (3+

√
2)k
]
+
[
3+4(1+

√
2)k
]

r2,

where k is a number and −1≤ k ≤ 1. X.L.Chen proved the equivalent inequality:

(1.5) s2 ≥ kR2 +
[
2(7+

√
2)− (3+

√
2)k
]
−
[
1+4

√
2−2(1+

√
2)k
]

r2,

where k is a real number and 2(1−
√

2)≤ k ≤ 4.

In 2010, J. Liu [7] established the following non-obtuse triangle inequality:

(1.6) s2 ≥ 16Rr−3r2− 4r3

R
.
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Equality condition is the same as Walker’s inequality (1.3).

In 2020, J. Liu [11] applied inequality (1.6), Ciamberlini’s inequality (1.2) and Euler’s in-

equality

(1.7) R≥ 2r

to obtain a further generalization of Walker’s inequality, that is

(1.8) s2 ≥ 4mR3−4(m−n)R2r− (7m+3n)Rr2−2(m+2n)r3

(m+n)R−2mr
,

where m and n are arbitrary non-negative real numbers (not both zero). As applications of this

result, a lot of new inequalities in the form s2 ≥ f (R,r) were given in [11]. For example,

(1.9) s2 ≥ 4R2 +9r2 +
4r3

R
,

and

(1.10) s2 ≥ 4R2−Rr+13r2 +
(R−2r)r3

R2 .

In the recent articles [12-14, 16, 22], the author used Ciamberlini’s inequality (1.2), inequali-

ties (1.6) and (1.10) to establish some new triangle inequalities. We think that both inequalities

(1.6) and (1.10) are remarkable.

In this paper, we shall give two new proofs of inequality (1.6) by establishing two identities.

We also generalize both inequalities (1.6) and (1.10) to the case with one parameter. Our new

results are the same as that inequality (1.8) in fact contains Walker’s inequality (1.3), inequality

(1.9) and other known inequalities.

2. TWO NEW PROOFS OF INEQUALITY (1.6)

In [11], the author pointed out that in any triangle the following identity holds:

(2.1) ∑(c2 +a2−b2)(a2 +b2− c2)(b− c)2 = 32r2s2(s2−2R2−8Rr−3r2),

where a,b and c are the sides of the triangle and ∑ denotes the cyclic sum over the sides.

Clearly, we immediately deduce from (2.1) that Walker’s inequality (1.3) holds for non-

obtuse triangles. A natural question is whether an identity similar to (2.1) that is related to
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inequality (1.6) exist ? Upon reflection, we find two related identities. One of them is

∑a(b+ c−a)(b2 + c2−a2)(a−b)2(a− c)2

= 16rs2(s2−12Rr−3r2)(Rs2−16R2r+3Rr2 +4r3).(2.2)

Next, we first prove this identity and then use it to prove inequality (1.6). Denote by P0 the left

hand side of (2.2). Expanding gives

P0 =−3c7b−5b2ca5 +2b4ca3 + c8−5a2bc5 +8abc6 +10a2b3c3

+2a4bc3−5a2b5c−5b2c5a+8a6bc+2a4b3c−5ab5c2

+2ab3c4 +10a3b3c2 +2a3bc4 +2b6c2−11b2c4a2

−5a5bc2 +2b4c3a−11b2c2a4−11b4c2a2−6b4c4

+10b2c3a3 +8b6ca+2b2c6−6c4a4 +2c2a6 +2c6a2

−6a4b4 +2a2b6 +2a6b2 +3c5a3 +3c3a5−3a7b+3b3a5

−3a7c+3b5a3 +a8−3b7a−3b7c+3c5b3 +3b5c3 +b8−3c7a,(2.3)

from which we further easily obtain

P0 =2∑a8−3∑a∑a7 +2∑a2
∑a6 +11abc∑a5

−5abc∑a∑a4 +2abc∑a2
∑a3−11(abc)2

∑a2

+3∑a2
∑b3c3 +7(abc)2

∑bc−6∑b4c4.(2.4)

Recalling that in any triangle ABC we have the following known identities:

abc = 4Rrs,(2.5)

∑bc = s2 +4Rr+ r2,(2.6)

∑a2 = 2s2−8Rr−2r2,(2.7)

∑a3 = 2s3− (12Rr+6r2)s,(2.8)

∑a4 = 2s4−4(4R+3r)s2r+2(4R+ r)2r2,(2.9)
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∑a5 = 2s5−20(R+ r)s3r+10(2R+ r)(4R+ r)sr2,(2.10)

∑a6 = 2s6−6(4R+5r)s4r+6(24R2 +24Rr+5r2)s2r2−2(4R+ r)3r3,(2.11)

∑a7 = 2s7− (28Rr+42r2)s5 +(224R2r2 +280Rr3 +70r4)s3

− (448R3r3 +448R2r4 +140Rr5 +14r6)s,(2.12)

∑a8 = 2s8− (32Rr+56r2)s6 +(320R2r2 +480Rr3 +140r4)s4

− (1024R3r3 +1280R2r4 +480Rr5 +56r6)s2

+512R4r4 +512R3r5 +192R2r6 +32Rr7 +2r8,(2.13)

∑b3c3 = s6−3(4R− r)s4r+3s2r4 +(4R+ r)3r3,(2.14)

∑b4c4 = s8−4(4R− r)s6r+4(4R+ r)s2r5 +2(16R2−8Rr+3r2)s4r2

+(4R+ r)4r4.(2.15)

In fact, identities (2.5)-(2.9) are given in the monograph [17] and identities (2.10)-(2.15) have

been proved by the author in [8] and [10]. From (2.4), using ∑a = 2s and the above identities,

simplifying and factoring we obtain identity (2.2).

Based on identity (2.2), we can give a proof of inequality (1.6) as follows:

Proof. If triangle ABC is equilateral, then it is easy to know that (1.6) becomes an equality. If

triangle ABC is not equilateral. Using (2.6) and (2.7), we get

(2.16) ∑(b− c)2 = 2(s2−12Rr−3r2).

Thus if triangle ABC is not equilateral then we have the strict inequality s2− 12Rr− 3r2 > 0.

Note that the left hand side of (2.2) is non-negative for non-obtuse triangle ABC, we immediately

deduce

Rs2−16R2r+3Rr2 +4r3 ≥ 0,

which proves inequality (1.6). Also, from identity (2.2) we easily conclude that the equality in

(1.6) occurs if and only if the triangle is equilateral or right isosceles. �

Next, we give another proof of inequality (1.6):
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Proof. Firstly, we prove the following identity:

∑a(a−b)(a− c)(b+ c−a)(b2 + c2−a2) = 16rs2 (Rs2−16R2r+3Rr2 +4r3) .(2.17)

Denote by Q0 the left hand side of (2.17). Expanding and arranging gives

Q0 =4∑a6−2∑a∑a5−∑a2
∑a4 +6abc∑a3

−abc∑a∑a2 +4∑b3c3−6(abc)2.(2.18)

Then using ∑a = 2s, identities (2.5), (2.14) and (2.7)-(2.11), we easily obtain identity (2.17).

We now prove that for non-obtuse triangle ABC the following inequality holds:

(2.19) ∑a(a−b)(a− c)(b+ c−a)(b2 + c2−a2)≥ 0.

By symmetry, we may assume that a≥ b≥ c, then

a(a−b)(a− c)(b+ c−a)(b2 + c2−a2)≥ 0.

Thus, it remains to show that

b(b− c)(b−a)(c+a−b)(c2 +a2−b2)+ c(c−a)(c−b)(a+b− c)(a2 +b2− c2)≥ 0.

Since a≥ b≥ c,c2 +a2−b2 > 0 and a2 +b2− c2 > 0, we need to show

c(a− c)(a+b− c)(a2 +b2− c2)−b(a−b)(c+a−b)(c2 +a2−b2)≥ 0.

Note that

(a+b− c)c− (c+a−b)b = (b− c)(b+ c−a)≥ 0.

It remains to show

(a− c)(a2 +b2− c2)− (a−b)(c2 +a2−b2)≥ 0,

which can be rewritten as

a2(2a−b− c)+(b+ c)(b− c)2 ≥ 0.

This is true under the assumption. Thus inequality (2.19) is proved. Therefore, from identity

(2.17) we deduce that inequality (1.6) holds and its equality condition is easy to be determined.

�
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Remark 1. Inequality (2.19) can be generalized to

(2.20) ∑a(b+ c−a)(b2 + c2−a2)(a−b)n(a− c)n ≥ 0,

where n is a natural number.

Remark 2. In Remark 2 of the article [11], the author gave a simple proof of inequality (1.6),

but the typographical errors were appeared here. Both expressions R2−Rr− r2 in (2.10) and

(2.11) should be corrected to R2−2Rr− r2.

3. A GENERALIZATION OF INEQUALITY (1.6) AND ITS APPLICATIONS

In this section, we shall give a generalization of inequality (1.6), which is actually an uni-

fied generalization of Walker’s inequality (1.3), inequality (1.10) and other known inequalities.

We shall use Ciamberlini’s inequality (1.2) and the first inequality of the fundamental triangle

inequality (1.1) to prove the following Theorem 1 and Theorem 2 given in the next section.

Theorem 1. Let k be a real number such that 0≤ k≤ 3+
√

2, then for non-obtuse triangle ABC

the following inequality holds:

(3.1) s2 ≥ (4− k)R2 +4kRr+3(3− k)r2 +
2(2− k)r3

R
,

with equality if and only if the triangle ABC is equilateral or right isosceles.

Proof. We consider the following two cases to complete the proof.

Case 1. R and r satisfy R2−2Rr− r2 ≥ 0.

In this case, according to Ciamberlini’s inequality (1.3), to prove inequality (3.1) we need to

show

(2R+ r)2− (4− k)R2−4kRr−3(3− k)r2− 2(2− k)r3

R
≥ 0.

Simplifying and factoring gives equivalent inequality

(R2−2Rr− r2) [(R−2r)k+4r]
R

≥ 0,

which is clearly true since k ≥ 0 and Euler’s inequality R≥ 2r. Thus, inequality (3.1) is proved

under Case 1. Moreover, one sees that equality in (3.1) holds only when s = 2R+ r and R2−

2Rr− r2 = 0, and then we further conclude that the triangle must be right isosceles.
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Case 2. R and r satisfy R2−2Rr− r2 < 0.

In this case, by the first inequality of the fundamental triangle inequality (1.1), to prove

inequality (3.1) we need to show

2R2 +10Rr− r2−2(R−2r)
√

R2−2Rr

− (4− k)R2−4kRr−3(3− k)r2− 2(2− k)r3

R
≥ 0.

Multiplying both side by R and factoring, it becomes the following equivalent inequality:

(R−2r)
[
(R2−2Rr− r2)k−2R2 +2r2 +6Rr−2R

√
R2−2Rr

]
≥ 0.

Since we have Euler’s inequality (1.7), it remains to show the following strict inequality:

(R2−2Rr− r2)k−2R2 +2r2 +6Rr−2R
√

R2−2Rr > 0.(3.2)

If k = 0, note that −2R2 +2r2 +6Rr > 0 follows from the assumption, so we have to show

(−2R2 +2r2 +6Rr)2−4R2(R2−2Rr)> 0.

This is equivalent to

r(4R+ r)(r2 +2Rr−R2)> 0,

which is true under the assumption.

If 0 < 0≤ k ≤ 3+
√

2, in this setting, to prove (3.2) we need to show

(3+
√

2)(R2−2Rr− r2)−2R2 +2r2 +6Rr−2R
√

R2−2Rr > 0,

that is
√

2R(R−2r)+R2− (
√

2+1)r2−2R
√

R2−2Rr > 0.

By Euler’s inequality, we only need to prove[√
2R(R−2r)+R2− (

√
2+1)r2

]2
−4R2(R2−2Rr)> 0,

Expanding and factoring, we know that the above inequality is equivalent to

1
7
(2
√

2−1)(7R+5r+3
√

2r)(R+
√

2r− r)(R−
√

2r− r)2 > 0.
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By the assumption R2−2Rr− r2 < 0, we know that R 6= (
√

2+1)r. Thus, the above inequality

holds strictly. We thus proved that when 0 ≤ k ≤ 3+
√

2 inequality (3.2) holds strictly. This

completes the proof of inequality (3.1) under Case 2.

Combining the arguments of the above two cases, we proved that when 0 ≤ k ≤ 3+
√

2

inequality (3.1) holds for all non-obtuse triangles.

We have known that the equality in the first inequality of (1.1) holds if and only if the triangle

is isosceles with the vertex angle greater than or equal to π/3 (see [21]). Also, we have known

that the equality in Euler’s inequality R≥ 2r holds if and only if the triangle is equilateral. Note

that inequality (3.2) is strict. We thus conclude that the equality condition of (3.1) is the same

as Euler’s inequality under Case 2.

Finally, combining the equality conditions of (3.1) under Case 1 and Case 2, we determine

that equality in (3.1) holds if and only if triangle ABC is equilateral or right isosceles. This

completes the proof of Theorem 1. �

Remark 3. In fact, it is easy to know that inequality (3.1) is equivalent to

(3.3) (R−2r)(R2−2Rr− r2)k+Rs2−4R3−9r2R−4r3 ≥ 0,

which could be proved by showing the previous inequality (1.9) and the case k = 3+
√

2 of

inequality (3.3) (We omit the details here).

Remark 4. For any non-acute triangle, we have Emmerich’s inequality (see [17, p.251]):

(3.4) R≥ (1+
√

2)r.

Thus, from the above proof of inequality (3.1) under Case 2, one can see that if k > 3+
√

2 then

inequality (3.1) holds for non-acute triangles.

In what follows, we shall give some applications of Theorem 1.

In Theorem 1, taking k = 2,4,0 respectively, we immediately obtain the following corollary:

Corollary 3.1. For any non-obtuse triangle ABC Walker’s inequality (1.3), inequalities (1.6)

and (1.9) hold.

In inequality (3.1) we can take k = r/R and then it is easy to obtain
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Corollary 3.2. For any non-obtuse triangle ABC inequality (1.10) holds.

We have seen that inequality (3.1) is an unified generalization of Walker’s inequality (1.3),

inequalities (1.6), (1.9) and (1.10).

Since R≥ 2r, we have
2r(2R+ r)

R2 < 4.

Note that 4 < 3+
√

2, we can take k = 2r(2R+ r)/R2 in Theorem 1 and then it is easy to obtain

the following improvement of Walker’s inequality:

Corollary 3.3. Let ABC be a non-obtuse triangle, then

(3.5) s2 ≥ 2R2 +8Rr+3r2 +
2(R−2r)(R2−2Rr− r2)2

R3 .

If n is a positive number, then the previous inequality (1.8) is equivalent to

(3.6) s2 ≥ 4mR3−4(m−1)R2r− (7m+3)Rr2−2(m+2)r3

(m+1)R−2mr
.

To consider the relation between inequalities (3.1) and (3.6), we assume that

4mR3−4(m−1)R2r− (7m+3)Rr2−2(m+2)r3

(m+1)R−2mr

= (4− k)R2 +4kRr+3(3− k)r2 +
2(2− k)r3

R
.(3.7)

Solving k gives

k =
4(R−mr)

(m+1)R−2mr
.

By Euler’s inequality, one sees that if 0≤ m≤ 2 then k ≥ 0. Also, we note that

0 <
4(R− r)

(m+1)R−2mr
= 4− 4m(R− r)

(m+1)R−2mr
< 4.

Therefore, from Theorem 1 we can obtain the following corollary:

Corollary 3.4. When 0≤ m≤ 2, inequality (3.6) holds for any non-obtuse triangle ABC.

Remark 5. From equation (3.7), one can solve m as follows:

m =
4− k

R+ k(R−2r)
.
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Thus, from inequality (3.6) we can deduce that if 0 ≤ k ≤ 4 then inequality (3.1) holds for

non-obtuse triangles.

In Theorem 1, we take k = 3/2. Simplifying and factoring gives the following inequality

(which was given in [11]):

Corollary 3.5. Let ABC be a non-obtuse triangle, then

(3.8) s2 ≥ (5R+2r)(R+ r)2

2R
.

In Theorem 1, we can take k = 4(R− 2r)/(5R− 4r) since it is easy to show 0 ≤ k < 4. A

simple calculation gives the following inequality (which was given in [11]):

Corollary 3.6. Let ABC be a non-obtuse triangle, then

(3.9) s2 ≥ R(4R+ r)2

5R−4r
.

Remark 6. In any triangle the following identity holds:

∑a(a−b)(a− c)(b2 + c2−a2)(b+ c−a)−1 = 4r
[
(5R−4r)s2−R(4R+ r)2] ,(3.10)

which could be used to prove (3.9) (we omit the details here).

In inequality (3.1), we can take k = 2(2R+ r)/(R+ r) and then it is easy to obtain the fol-

lowing new inequality:

Corollary 3.7. Let ABC be a non-obtuse triangle, then

(3.11) s2 ≥ r(18R2 +5Rr− r2)

R+ r
.

Remark 7. In any triangle the following identity holds:

∑a(b+ c)(a−b)(a− c)(b2 + c2−a2) = 16rs2 [(R+ r)s2− r(18R2 +5Rr− r2)
]
,(3.12)

which could be used to prove inequality (3.11).

Clearly, we can take

k =
2(4R2 +4Rr+3r2)

2R2 +2Rr+3r2

in (3.1) and further obtain
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Corollary 3.8. Let ABC be a non-obtuse triangle, then

(3.13) s2 ≥ r(2R+ r)(4R+ r)2

2R2 +2Rr+3r2 .

Remark 8. In any triangle the following identity holds:

∑(a−b)(a− c)(c+a−b)(a+b− c)(b2 + c2−a2)a2

= 64sr2 [(2R2 +2Rr+3r2)s2− r(2R+ r)(4R+ r)2] ,(3.14)

which could be used to prove inequality (3.13).

In inequality (3.1), we take

k =
2r

(
√

2+1)R+ r
,

then it is easy to obtain

Corollary 3.9. Let ABC be a non-obtuse triangle, then

(3.15) s2 ≥ 4R2−2(
√

2−1)Rr+(7+4
√

2)r2.

Note that

3+
√

2− 4R+2(
√

2−1)r
R+(

√
2−1)r

=
(
√

2−1)(R+ r+
√

2r)
R− r+

√
2r

> 0.

We can take in (3.1) that

k =
4R+2(

√
2−1)r

R+(
√

2−1)r
.

Simplifying gives us the following corollary:

Corollary 3.10. Let ABC be a non-obtuse triangle, then

(3.16) s2 ≥ 2(7+
√

2)Rr− (1+4
√

2)r2.

Putting

k0 =
2(2R2−4Rr+2

√
2Rr+ r2− r2

√
2)

(R− r)(R− r+
√

2r)
,

then we have k0 > 0 by Euler’s inequality. Also, we have

3+
√

2− k0 =
(
√

2−1)(R2−2Rr+
√

2Rr− r2− r2
√

2)
(R− r)(R− r+

√
2r)

> 0.

Thus, we can take k = k0 in Theorem 1 and the following inequality follows after the simplifi-

cation:
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Corollary 3.11. Let ABC be a non-obtuse triangle, then

(3.17) s2 ≥ 16Rr−5r2 +
2(2−

√
2)(R−2r)r2

R− r
.

Remark 9. The constant 2(2−
√

2) in (3.17) is the best possible in the sense that can not be

replaced by a larger constant. In addition, we remark that inequality (3.17) can not be obtained

from inequality (3.6) and inequality (4.1) below.

4. A GENERALIZATION OF INEQUALITY (1.10) AND ITS APPLICATIONS

Motivated and inspired by Theorem 1, we considered generalizations of inequality (1.10) and

found the following Theorem 2 in connection with Walker’s inequality (1.3), inequalities (1.6),

(1.9), (1.10) and other known inequalities.

Theorem 2. Let k be a real number such that 0 ≤ k ≤ 9+ 3
√

3, then for non-obtuse triangle

ABC the following inequality holds:

(4.1) s2 ≥ 4R2 +(4− k)Rr+(4k−7)r2 +[(16−3k)R+2(4− k)r]
r3

R2 .

Equality occurs only when the following three cases: (i) The triangle ABC is equilateral; (ii) The

triangle ABC is right isosceles; (iii) The triangle ABC is isosceles with the ratio 1 : 1 : (3−
√

3)

of the three sides and k = 9+3
√

3.

Proof. We consider the following two cases to complete the proof.

Case 1. R and r satisfy R2−2Rr− r2 ≥ 0.

In this setting, by Ciamberlini’s inequality (1.2) we need to show

(2R+ r)2−4R2− (4− k)Rr− (4k−7)r2− [(3k−16)R+2(k−4)r]
r3

R2 ≥ 0.

Simplifying and factoring gives the following equivalent inequality:

r(R2−2Rr− r2) [k(R−2r)+8r]
R2 ≥ 0,

which is true under the assumption since we have k ≥ 0 and Euler’s inequality. Also, we see

that equality in (4.1) occurs only when s = 2R+ r and R2− 2Rr− r2 = 0. Then it is easily

determined that the triangle must be right isosceles.

Case 2. R and r satisfy R2−2Rr− r2 < 0.
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We set d0 =
√

R2−2Rr. According to the first inequality of the fundamental triangle inequal-

ity (1.1), for proving (4.1) we need to prove

2R2 +10Rr− r2−2(R−2r)d0

−4R2 +(k−4)Rr− (4k−7)r2 +[(3k−16)R+2(k−4)r]
r3

R2 ≥ 0.

It is not difficult to know that this inequality is equivalent to

R−2r
R2

[
r(R2−2Rr− r2)k−2R3 +2R2r+10Rr2 +4r3−2d0R2]≥ 0.(4.2)

By Euler’s inequality R≥ 2r, it remains to show that

(4.3) r(R2−2Rr− r2)k−2R3 +2R2r+10Rr2 +4r3−2d0R2 ≥ 0.

When k = 0, we shall show the above inequality is strict, i.e.

(4.4) −2R3 +2R2r+10Rr2 +4r3−2d0R2 > 0.

Under the assumption R2−2Rr− r2 < 0, it is clear that−2R3+2R2r+10Rr2+4r3 > 0. So we

only need to show

(−2R3 +2R2r+10Rr2 +4r3)2− (2d0R2)2 > 0.

Using d0 =
√

R2−2Rr and simplifying, the above inequality becomes

4r2(r2 +2Rr−R2)(3R+2r)2 > 0,

which is clearly true under the assumption.

When 0 < k ≤ 9+3
√

3, to prove inequality (4.3) we need to prove

(9+3
√

3)(R2−2Rr− r2)r−2R3 +2R2r+10Rr2 +4r3−2d0R2 ≥ 0.(4.5)

To do this, we first prove the following inequality:

(9+3
√

3)(R2−2Rr− r2)r−2R3 +2R2r+10Rr2 +4r3 > 0,(4.6)

which can be rewritten as[
(7+3

√
3−4

√
2)r−2R

][
(1+
√

2)r−R
]2

+2
[
(3
√

6+5
√

2−2)R− (3
√

6+6
√

3+
√

2+5)r
]

r2 ≥ 0.(4.7)
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We now note it follows from the assumption R2−2Rr− r2 < 0 that

(4.8) r > (
√

2−1)R.

So we have

(7+3
√

3−4
√

2)r−2R > (7+3
√

3−4
√

2)(
√

2−1)R−2R ≈ (1.708 · · ·)R > 0,

In addition, by Euler’s inequality we have

(3
√

6+5
√

2−2)R− (3
√

6+6
√

3+
√

2+5)r

≥ 2(3
√

6+5
√

2−2)r− (3
√

6+6
√

3+
√

2+5)r

≈ (0.684 · · ·)r > 0.

Thus, inequality (4.7) and then (4.6) are proved.

We turn back to (4.5). To prove this inequality it remains to show that[
(9+3

√
3)(R2−2Rr− r2)r−2R3 +2R2r+10Rr2 +4r3

]
− (2d0R2)2 ≥ 0.

Using d0 =
√

R2−2Rr, simplifying and factoring gives the following equivalent inequality:

−1
9
(3+
√

3)r(R2−2Rr− r2)(12R+3r+ r
√

3)
[
3R− (3+2

√
3)r
]2
≥ 0,(4.9)

which is true under the assumption. Thus inequality (4.5) is proved and we have proved that

inequality (4.3) holds for 0 ≤ k ≤ 9+ 3
√

3. Therefore, we finish the proof of inequality (4.1)

under Case 2.

Combining the arguments of the above two cases, we proved that inequality (4.1) holds for

all non-obtuse triangles.

We now discuss the equality condition of (4.1) under Case 2.

Clearly, equality in (4.9) occurs if and only if

3R− (3+2
√

3)r = 0.(4.10)

With this and the following known identity

(4.11)
R
r
=

2abc
(b+ c−a)(c+a−b)(a+b− c)

,



16 JIAN LIU

we get

(4.12)
2abc

(b+ c−a)(c+a−b)(a+b− c)
=

3+2
√

3
3

.

If we set b = c = 1, then it is easy to obtain a = 3−
√

3 or a =
√

3− 1 from (4.12). Thus,

it is seen that the equality in (4.3) holds only when k = 9+ 3
√

3 and its sides are in the ratio

1 : 1 : (3−
√

3) or 1 : 1 : (
√

3− 1). Note that the equality conditions of the first inequality of

(1.1) and Euler’s inequality (we have stated in the proof of Theorem 1). Therefore, we conclude

that the equality in (4.1) holds if and only if the triangle is equilateral or its sides are in the ratio

1 : 1 : (3−
√

3) and k = 9+3
√

3 under Case 2.

Combining the equality conditions of (4.1) under Case 1 and Case 2, we deduce that the

statement for the equality condition of (4.1) in Theorem 2 is true. This completes the proof of

Theorem 2. �

In what follows, we shall discuss some applications of Theorem 2.

In Theorem 2, we take k = 4,5 respectively to obtain

Corollary 4.1. Both inequalities (1.9) and (1.10) hold for non-obtuse triangle ABC.

We see that inequality (4.1) is not only generalization of inequality (1.10) but also inequality

(1.9).

If taking k = 0,1,2,3 in inequality (4.1) respectively, then we get the following corollary:

Corollary 4.2. In the non-obtuse triangle ABC, the following inequalities hold:

s2 ≥ 4R4 +4R3r−7R2r2 +16Rr3 +8r4

R2 ,(4.13)

s2 ≥ 4R4 +3R3r−3R2r2 +13Rr3 +6r4

R2 ,(4.14)

s2 ≥ 4R4 +2R3r+R2r2 +10Rr3 +4r4

R2 ,(4.15)

s2 ≥ 4R4 +R3r+5R2r2 +7Rr3 +2r4

R2 .(4.16)

Note that 14 < 9+3
√

3 and

14− 4(4R+ r)
R

=
2(R−2r)

R
≥ 0.
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In Theorem 2, we can take

t =
4(4R+ r)

R
,

then a simple calculation gives

(4.17) s2 ≥ 4R5−8R4r+37R3r2−4R2r3−28Rr4−8r5

R3 .

It is easy to know that this inequality is equivalent to the following inequality:

Corollary 4.3. Let ABC be a non-obtuse triangle, then

(4.18) s2 ≥ 16Rr−3r2− 4r3

R
+

4(R−2r)(R2−2Rr− r2)2

R3 .

Clearly, Euler’s inequality shows that inequality (4.18) is stronger than the previous inequal-

ity (1.6).

In fact, it is easy to know that inequality (4.1) is equivalent to

(4.19) r(R−2r)(R2−2Rr− r2)k+R2s2− (4R4 +4R3r−7R2r2 +16Rr3 +8r4)≥ 0.

Note that R ≥ 2r and inequality (4.13), one sees that if R2 − 2Rr− r2 ≥ 0 and k > 0 then

inequality (4.19) and (4.1) hold. Therefore, by Theorem 2 we conclude that inequalities (4.19)

and (4.1) hold for non-obtuse triangle ABC when R2−2Rr− r2 < 0 and 0 < k ≤ 9+
√

3. Note

that 9+3
√

3 > 14, we obtain the following conclusion:

Corollary 4.4. Assume that r2 +2Rr−R2 > 0 and 0 < k < 14, then inequality (4.1) holds for

all non-obtuse triangles.

Next, we give several applications of Corollary 4.4.

Assume that r2 +2Rr−R2 > 0, then r > (
√

2−1)R follows and it is easy to show

2(R+2r)
r

< 14.

According to Corollary 4.4, one can take k = 2(R+ 2r)/r in (4.1), then a simple calculation

gives us the following conclusion:

Corollary 4.5. Walker’s inequality (1.3) holds for non-obtuse triangle ABC.
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Putting

k1 =
R2 +4Rr−8r2

2r(R− r)
,

Euler’s inequality shows k1 > 0. Again, when r2 +2Rr−R2 > 0 we have

14− k1 =
r2 +2Rr−R2 + r(22R−21r)

2r(R− r)
> 0.

Thus, by Corollary 4.4, we can take k = k1 in (4.1) and easily obtain the following inequality

given in [11]:

Corollary 4.6. Let ABC be a non-obtuse triangle, then

(4.20) s2 ≥ R(7R2− r2)

2(R− r)
.

Putting

k2 =
2(12R3 +36R2r−13Rr2−10r3)

r(22R2−4Rr−5r2)
,

then we have k2 > 0. When r2 +2Rr−R2 > 0, by Euler’s inequality R≥ 2r we have

14r(22R2−4Rr−5r2)−2(12R3 +36R2r−13Rr2−10r3)

=−24R3 +236R2r−30Rr2−50r3

= 24R(r2 +2Rr−R2)+2r(94R2−27Rr−25r2)> 0.

Hence, if r2 +2Rr−R2 > 0 then 0 < k2 < 14. This means that we can take k = k2 in (4.1) and

further obtain the following corollary:

Corollary 4.7. Let ABC be a non-obtuse triangle, then

(4.21) s2 ≥ (2R+ r)2(4R+ r)2

22R2−4Rr−5r2 .

Now, we set

k3 =
R3 +6R2r+6Rr2−4r3

r(R2 +2Rr− r2)
.

Note that

14r(R2 +2Rr− r2)− (R3 +6R2r+6Rr2−4r3)

= (r2 +2Rr−R2)(R−2r)+ r(4R2 +25Rr−8r2).



INEQUALITIES CONCERNING A NON-OBTUSE TRIANGLE 19

Euler’s inequality shows that if r2 +2Rr−R2 > 0 then 0 < k3 < 14. Thus by Corollary 4.4 we

can take k = k3 in (4.1) and further calculations gives us the following corollary:

Corollary 4.8. Let ABC be a non-obtuse triangle, then

(4.22) s2 ≥ (3R+ r)(R+ r)3

R2 +2Rr− r2 .

5. TWO OPEN PROBLEMS

Considering generalizations of the previous inequality (2.19), we propose the following prob-

lem:

Open Problem 1. What conditions do the real numbers m and n satisfy? For any non-obtuse

triangle ABC the following inequality holds:

(5.1) ∑(a−b)(a− c)(b2 + c2−a2)am(b+ c−a)n ≥ 0.

Another similar problem is the following:

Open Problem 2. What conditions do the real numbers m and n satisfy? For any non-obtuse

triangle ABC the following inequality holds:

(5.2) ∑(a−b)(a− c)(b2 + c2−a2)am(b+ c)n ≥ 0.
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[6] G. Dospinescu, M. Lascu, C. Pohoatǎ, et al. An elementary proof of Blundon’s inequality, J. Inequal. Pure

Appl. Math. 9 (2008), 100.

[7] J. Liu, An inequality involving geometric elments R,r and s in non-obtuse triangles, Teach. Mon. 7 (2010),

51–53. (in Chinese).

[8] J. Liu, A refinement of an equivalent form of a Gerretsen inequality, J. Geom. 106 (2015), 605–615.

[9] J. Liu, A Geometric inequality with applications, J. Math. Inequal. 10 (2016), 641–648.

[10] J. Liu, Two new weighted Erdös-Mordell type inequalities, Discrete Comput. Geom. 59 (2018), 707–724.

[11] J. Liu, Further generalization of Walker’s inequality in acute triangles and its applications, AIMS Math. 5

(2020), 6657–6672.

[12] J. Liu, On a trigonometric inequality in acute triangles, Turkish J. Ineq. 5 (2021), 1–20.

[13] J. Liu, Two new proofs and applications of an acute triangle inequality involving medians and sides, Int. J.

Geom. 11 (2021), 104–121.

[14] J. Liu, An inequality involving medians and sides of an acute triangle, Int. J. Open Probl. Compt. Math. 14

(2021), 49–63.

[15] J. Liu, On the fundamental triangle inequality and Gerretsen’s double inequality, J. Geom. 113 (2022), 19.

[16] J. Liu, Two inequalities involving circumradius, inradius and medians of an acute triangle, Adv. Inequal.

Appl. 2023 (2023), 1.
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