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1. INTRODUCTION

The main forms of Gronwall’s differential and integral inequalities can be given by

Lemma 1. [6] Let x be a real continuous function defined in [0,T ] satisfies the differential

inequality

(1) x
′
≤ a(t) x+b(t), t ∈ (0,T ]

for some a,b ∈ L1[0,T ], then x satisfies the pointwise estimate

(2) x(t)≤ x(0) e
∫ t

0 a(θ)dθ +
∫ t

0
b(s) e

∫ t
s a(θ)dθ ds, ∀t ∈ (0,T ].

Lemma 2. [14] Let x, a and b be real continuous functions defined in [0,T ], a(t) ≥ 0 for

t ∈ [0,T ]. We suppose that on [0,T ] we have the inequality
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(3) x(t)≤ b(t)+
∫ t

0
a(s) x(s) ds,

then

(4) x(t)≤ b(t)+
∫ t

0
a(s) b(s) e

∫ t
s a(θ)dθ ds.

The fractal and tempered-fractal forms of Gronwall’s inequality will be an extensions of (1),

(3) that incorporate concepts from the theory of fractals and tempered operators.

Definition 1. Let f be defined on [a,b], x ∈ [a,b], and t ∈ (a,b), t 6= x, and β ∈ (0,1).

The fractal derivative is defined by

Dβ f (x) =
d f (x)
dxβ

= lim
x→t

f (x)− f (t)
xβ − tβ

,

if the limit exists.

• Let f be differentiable, then

d f (x)
dxβ

= lim
x→t

f (x)− f (t)
x− t

x− t
xβ − tβ

=
d f (x)

dx
x1−β

β
,

and

lim
β→1

d f (x)
dxβ

= lim
β→1

d f (x)
dx

x1−β

β
=

d f (x)
dx

.

• Let f (x)
dxβ

be exists, then

lim
x→t

( f (x)− f (t) ) = lim
x→t

f (x)− f (t)
xβ − tβ

(xβ − tβ ) =
f (x)
dxβ

0 = 0,

which implies that f is continuous at x.

Example 1. Let f (x) =
√

x. Differentiating f with respect to x, we obtain

d
√

x
dx

=
1

2
√

x

which proves that f is not differentiable at zero. But the fractal derivative Dβ f (x) of order

β = 1/2 exists and
d
√

x
d
√

x
= lim

x→t

√
x−
√

t
√

x−
√

t
= 1.



FRACTAL AND TEMPERED-FRACTAL GRONWALL’S INEQUALITIES TYPE 3

Definition 2. Let f be a bounded measurable function on [a,b]. Then the fractal integral of the

function f can be defined as

Iβ f (x) = β

∫ x

0
sβ−1 f (s) ds,

and

lim
β→1

Iβ f (x) =
∫ x

0
f (s) ds,

then
d
dx

(Iβ f (x)) = β
d
dx

∫ x

0
sβ−1 f (s) ds = β xβ−1 f (x) a.e., x ∈ [a,b]

and
x1−β

β

d
dx

(Iβ f (x)) =
d

dxβ
(Iβ f (x)) = f (x).

Definition 3. Let f be defined on [a,b], x ∈ [a,b], λ > 0, and β ∈ (0,1). Then the tempered-

fractal derivative of the function f is defined by

(5) T
λ

Dβ f (x) = e−λx d
dxβ

( f (x) eλx).

Definition 4. Let f be a bounded measurable function on [a,b]. Then the tempered-fractal

integral of the function f can be defined as

T
λ

Iβ f (x) = β

∫ x

0
sβ−1 e−λ (x−s) f (s) ds.

The paper organizes as follows. Firstly, we generalize the differential form of Gronwall’s

lemma to the fractal differential form

Dβ x(t)≤ a(t) x(t)+b(t), t ∈ (0,T ]

and the tempered-fractal differential form

T
λ

Dβ x(t)≤ a(t) x(t)+b(t), t ∈ (0,T ].

Moreover, some corollaries and the non-linear case will be given.

Secondly, we generalize the integral form of Gronwall’s lemma to the fractal integral form

x(t)≤ b(t)+
∫ t

0
β sβ−1 a(s) x(s) ds
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and the tempered-fractal integral form

x(t)≤ b(t)+
∫ t

0
β sβ−1 e−λ (t−s) a(s) x(s) ds.

Additionally, some corollaries and the non-linear case will be given.

2. FRACTAL DIFFERENTIAL FORM

Lemma 3. Let x be a real continuous function defined in [0,T ] satisfies the fractal differential

inequality

(6) Dβ x(t)≤ a(t) x(t)+b(t), t ∈ (0,T ]

for some bounded measurable functions a and b, then x satisfies the pointwise estimate

(7) x(t)≤ x(0) eβ
∫ t

0 θ β−1a(θ)dθ +β

∫ t

0
sβ−1 b(s) eβ

∫ t
s θ β−1a(θ)dθ ds, ∀t ∈ (0,T ].

Proof. we have

dx(t)
dtβ

≤ a(t) x(t)+b(t),

t1−β

β

dx(t)
dt

≤ a(t) x(t)+b(t),

dx(t)
dt

≤ β tβ−1 a(t) x(t)+β tβ−1 b(t),

dx(t)
dt
−β tβ−1 a(t) x(t) ≤ β tβ−1 b(t).

Multiplying by e−β
∫ t

0 θ β−1a(θ)dθ , we obtain

e−β
∫ t

0 θ β−1a(θ)dθ x
′
(t)−β tβ−1 e−β

∫ t
0 θ β−1a(θ)dθ a(t) x(t) ≤ β tβ−1 e−β

∫ t
0 θ β−1a(θ)dθ b(t),

d
dt
( e−β

∫ t
0 θ β−1a(θ)dθ x(t) ) ≤ β tβ−1 e−β

∫ t
0 θ β−1a(θ)dθ b(t).

Integrating, we get

e−β
∫ t

0 θ β−1a(θ)dθ x(t)− x(0) ≤ β

∫ t

0
sβ−1 e−β

∫ s
0 θ β−1a(θ)dθ b(s) ds,

e−β
∫ t

0 θ β−1a(θ)dθ x(t) ≤ x(0)+β

∫ t

0
sβ−1 e−β

∫ s
0 θ β−1a(θ)dθ b(s) ds,

x(t) ≤ eβ
∫ t

0 θ β−1a(θ)dθ x(0)+β

∫ t

0
sβ−1 eβ

∫ t
s θ β−1a(θ)dθ b(s) ds.

�
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Remark 1. If β = 1 in Lemma 3, then the fractal differential inequality (6) will be a differential

inequality as in Lemma 1.

Now, we shall present some important special cases resulting from lemma 3

2.1. Special cases of fractal differential form.

(i) If a is constant, then the fractal differential inequality (6) will be

Dβ x(t)≤ a x(t)+b(t)

and by Lemma 3, we obtain

x(t)≤ x(0) eatβ

+β

∫ t

0
sβ−1 b(s) ea(tβ−sβ ) ds.

(ii) If b is constant, then the fractal differential inequality (6) will be

Dβ x(t)≤ a(t) x(t)+b

and this implies that

x(t)≤ x(0) eβ
∫ t

0 θ β−1a(θ)dθ +β b
∫ t

0
sβ−1 eβ

∫ t
s θ β−1a(θ)dθ ds.

(iii) If b = 0, then the fractal differential inequality (6) will be

Dβ x(t)≤ a(t) x(t)

and this implies that

x(t)≤ x(0) eβ
∫ t

0 θ β−1a(θ)dθ .

(iv) If a and b are constants, then the fractal differential inequality (6) will be

Dβ x(t)≤ a x(t)+b

and this implies that

x(t)≤ x(0) eatβ

+
b
a
(eatβ

−1).
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2.2. The non-linear fractal differential form.

Lemma 4. Let f : [0,T ]×R+→ R+ be measurable in t ∈ [0,T ] and continuous in x ∈ R+, and

there exist two bounded measurable functions a and b such that f (t,x(t))≤ a(t) x(t)+b(t).

If the function f satisfies the non-linear fractal differential inequality

Dβ x(t)≤ f (t,x(t)),

then x satisfies the inequality (7).

Proof. By applying Lemma 3, we get the result. �

Lemma 5. Let f : [0,T ]×R+→ R+ be measurable in t ∈ [0,T ] and continuous in x ∈ R+, and

there exist a bounded measurable function a and a positive constant b such that f (t,x(t)) ≤

a(t)+b x(t). If the function f satisfies the non-linear fractal differential inequality

Dβ x(t)≤ f (t,Dα x(t)),

then x satisfies the inequality

x(t)≤ x(0)+
∫ t

0

β sβ−1 a(s)

1−b β

α
T β−α

ds.

Proof. let dx(t)
dt = y(t), we get

(8) x(t) = x(0)+
∫ t

0
y(s) ds

and

dx(t)
dtβ

≤ f (t,
dx(t)
dtα

),

t1−β

β
y(t) ≤ f (t,

t1−α

α
y(t)),

y(t) ≤ β tβ−1 f (t,
t1−α

α
y(t))

≤ β tβ−1 ( a(t)+b
t1−α

α
y(t) )

≤ β tβ−1 a(t)+b
β

α
T β−α y(t).
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Thus

(1−b
β

α
T β−α) y(t) ≤ β tβ−1 a(t),

y(t) ≤ β tβ−1 a(t)

1−b β

α
T β−α

,

then, by substituting in (8), we get the result. �

3. TEMPERED-FRACTAL DIFFERENTIAL FORM

Lemma 6. Let x be a real continuous function defined in [0,T ] satisfies the tempered-fractal

differential inequality

(9) T
λ

Dβ x(t)≤ a(t) x(t)+b(t), t ∈ (0,T ]

for some bounded measurable functions a and b, then x satisfies the pointwise estimate

(10) x(t)≤ x(0) e−λ t+β
∫ t

0 θ β−1a(θ)dθ +β

∫ t

0
sβ−1 b(s) e−λ (t−s)+β

∫ t
s θ β−1a(θ)dθ ds, ∀t ∈ (0,T ].

Proof. We have

e−λ t d
dtβ

(eλ t x(t)) ≤ a(t) x(t)+b(t),

e−λ t t1−β

β

d
dt

(eλ t x(t)) ≤ a(t) x(t)+b(t),

e−λ t t1−β

β
(eλ t dx(t)

dt
+λ eλ t x(t)) ≤ a(t) x(t)+b(t),

dx(t)
dt

+λ x(t) ≤ β tβ−1 a(t) x(t)+β tβ−1 b(t),

dx(t)
dt

≤ ( β tβ−1 a(t)−λ ) x(t)+β tβ−1 b(t).

Now, by using Gronwall’s lemma 1, we get

x(t) ≤ x(0) e
∫ t

0( β θ β−1 a(θ)−λ )dθ +
∫ t

0
β sβ−1 b(s) e

∫ t
s ( β θ β−1 a(θ)−λ )dθ ds,

≤ x(0) e−λ t+β
∫ t

0 θ β−1a(θ)dθ +β

∫ t

0
sβ−1 b(s) e−λ (t−s)+β

∫ t
s θ β−1a(θ)dθ ds.

�
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Remark 2. If λ = 0 in Lemma 6, then the tempered-fractal differential inequality (9) will be a

fractal differential inequality as in Lemma 3.

Now, we shall present some important special cases resulting from lemma 6.

3.1. Special cases of tempered-fractal differential form.

(i) If a is constant, then the tempered-fractal differential inequality (9) will be

T
λ

Dβ x(t)≤ a x(t)+b(t)

and by Lemma 6, we obtain

x(t)≤ x(0) e−λ t+atβ

+β

∫ t

0
sβ−1 b(s) e−λ (t−s)+a(tβ−sβ ) ds.

(ii) If b is constant, then the tempered-fractal differential inequality (9) will be

T
λ

Dβ x(t)≤ a(t) x(t)+b

and this implies that

x(t)≤ x(0) e−λ t+β
∫ t

0 θ β−1a(θ)dθ +β b
∫ t

0
sβ−1 e−λ (t−s)+β

∫ t
s θ β−1a(θ)dθ ds.

(iii) If b = 0, then the tempered-fractal differential inequality (9) will be

T
λ

Dβ x(t)≤ a(t) x(t)

and this implies that

x(t)≤ x(0) e−λ t+β
∫ t

0 θ β−1a(θ)dθ .

(iv) If a and b are constants, then the tempered-fractal differential inequality (9) will be

T
λ

Dβ x(t)≤ a x(t)+b

and this implies that

x(t)≤ x(0) e−λ t+atβ

+β b
∫ t

0
sβ−1 e−λ (t−s)+a(tβ−sβ ) ds.
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(v) Let x be a real continuous function defined in [0,T ] satisfies the tempered differential

inequality

T
λ

D x(t)≤ a(t) x(t)+b(t), t ∈ (0,T ]

for some bounded measurable functions a and b, then x satisfies

x(t)≤ x(0) e−λ t+
∫ t

0 a(θ)dθ +
∫ t

0
b(s) e−λ (t−s)+

∫ t
s a(θ)dθ ds, ∀t ∈ (0,T ].

3.2. The non-linear tempered-fractal differential form.

Lemma 7. Let f : [0,T ]×R+→ R+ be measurable in t ∈ [0,T ] and continuous in x ∈ R+, and

there exist two bounded measurable functions a and b such that f (t,x(t))≤ a(t) x(t)+b(t).

If the function f satisfies the non-linear tempered-fractal differential inequality

T
λ

Dβ x(t)≤ f (t,x(t)),

then x satisfies the inequality (10).

Proof. By applying Lemma 6, we get the result. �

4. FRACTAL INTEGRAL FORM

Lemma 8. Let x, a and b be real continuous functions defined in [0,T ], a(t)≥ 0 for t ∈ [0,T ].

We suppose that on [0,T ] we have the fractal integral inequality

(11) x(t)≤ b(t)+
∫ t

0
β sβ−1 a(s) x(s) ds,

then

(12) x(t)≤ b(t)+
∫ t

0
β sβ−1 a(s) b(s) eβ

∫ t
s θ β−1a(θ)dθ ds.

Proof. Let us consider the function

H(t) =
∫ t

0
β sβ−1 a(s) x(s) ds, t ∈ [0,T ]
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then we have H(0) = 0, and

H
′
(t) = β tβ−1 a(t) x(t)

≤ β tβ−1 a(t) ( b(t)+
∫ t

0
β sβ−1 a(s) x(s) ds )

≤ β tβ−1 a(t) b(t)+β tβ−1 a(t) H(t), t ∈ [0,T ].

Then

H
′
(t)−β tβ−1 a(t) H(t)≤ β tβ−1 a(t) b(t).

Multiplying by e−
∫ t

0 βθ β−1a(θ)dθ > 0, we obtain

H
′
(t) e−

∫ t
0 βθ β−1a(θ)dθ −β tβ−1 a(t) H(t) e−

∫ t
0 βθ β−1a(θ)dθ ≤ β tβ−1 a(t) b(t)e−

∫ t
0 βθ β−1a(θ)dθ ,

d
dt
(H(t) e−

∫ t
0 βθ β−1a(θ)dθ ) ≤ β tβ−1 a(t) b(t)e−

∫ t
0 βθ β−1a(θ)dθ .

Integrating, we get

H(t) e−
∫ t

0 βθ β−1a(θ)dθ −H(0) ≤
∫ t

0
β sβ−1 a(s) b(s) e−

∫ s
0 βθ β−1a(θ)dθ ds,

H(t) ≤ e
∫ t

0 βθ β−1a(θ)dθ

∫ t

0
β sβ−1 a(s) b(s) e−

∫ s
0 βθ β−1a(θ)dθ ds

≤
∫ t

0
β sβ−1 a(s) b(s) e

∫ t
s βθ β−1a(θ)dθ ds, t ∈ [0,T ].

Since

x(t)≤ b(t)+H(t) ⇒ x(t)−b(t)≤ H(t).

Thus

x(t)−b(t) ≤
∫ t

0
β sβ−1 a(s) b(s) e

∫ t
s βθ β−1a(θ)dθ ds,

x(t) ≤ b(t)+
∫ t

0
β sβ−1 a(s) b(s) e

∫ t
s βθ β−1a(θ)dθ ds.

�

Remark 3. If β = 1 in Lemma 8, then the fractal integral inequality (11) will be the integral

form of Gronwall’s inequality as in Lemma 2.

Now, we shall present some important corollaries resulting from lemma 8.
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4.1. Some corollaries of the fractal integral form.

(i) If a is constant, then the fractal integral inequality (11) will be

x(t)≤ b(t)+a
∫ t

0
β sβ−1 x(s) ds,

and by Lemma 8, we obtain

x(t)≤ b(t)+a
∫ t

0
β sβ−1 b(s) ea(tβ−sβ ) ds.

(ii) If b is differentiable, then the fractal integral inequality (11) follows that

x(t)≤ b(0) eβ
∫ t

0 θ β−1a(θ)dθ +
∫ t

0
b
′
(s) eβ

∫ t
s θ β−1a(θ)dθ ds.

Proof. We already know that the fractal integral inequality (11) follows that

x(t) ≤ b(t)+
∫ t

0
β sβ−1 a(s) b(s) eβ

∫ t
s θ β−1a(θ)dθ ds

≤ b(t)+
∫ t

0
b(s)

d
ds

(− e
∫ t

s βθ β−1a(θ)dθ ) ds,

then

x(t) ≤ b(t)− ( b(s) e
∫ t

s βθ β−1a(θ)dθ )s=t
s=0 +

∫ t

0
b
′
(s) e

∫ t
s βθ β−1a(θ)dθ ds

≤ b(0) e
∫ t

0 βθ β−1a(θ)dθ +
∫ t

0
b
′
(s) e

∫ t
s βθ β−1a(θ)dθ ds.

�

(iii) If b is constant, then the fractal integral inequality (11) will be

x(t)≤ b+
∫ t

0
β sβ−1 a(s) x(s) ds,

and it follows that

x(t)≤ b eβ
∫ t

0 θ β−1a(θ)dθ .

(iv) If b = 0, then the fractal integral inequality (11) will be

x(t)≤
∫ t

0
β sβ−1 a(s) x(s) ds,

and it follows that

x(t)≤ 0.
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(v) If a and b are constants, then the fractal integral inequality (11) will be

x(t)≤ b+a
∫ t

0
β sβ−1 x(s) ds,

and it follows that

x(t)≤ b eatβ

.

4.2. The non-linear fractal integral form.

Lemma 9. Let f : [0,T ]×R+→ R+ be measurable in t ∈ [0,T ] and continuous in x ∈ R+, and

there exist two bounded measurable functions a and c such that f (t,x(t))≤ a(t) x(t)+ c(t).

If the function f satisfies the non-linear fractal integral inequality

x(t)≤ b(t)+
∫ t

0
β sβ−1 f (s,x(s)) ds,

then x satisfies the inequality

x(t)≤ B(t)+
∫ t

0
β sβ−1 a(s) B(s) eβ

∫ t
s θ β−1 a(θ) dθ ds,

where B(t) = b(t)+β
∫ t

0 sβ−1 c(s) ds.

Proof.

x(t) ≤ b(t)+
∫ t

0
β sβ−1 f (s,x(s)) ds

≤ b(t)+
∫ t

0
β sβ−1 (a(s) x(s)+ c(s)) ds

= b(t)+
∫ t

0
β sβ−1 c(s) ds+

∫ t

0
β sβ−1 a(s) x(s) ds

= B(t)+
∫ t

0
β sβ−1 a(s) x(s) ds.

By applying Lemma 8, we get the result. �

5. TEMPERED-FRACTAL INTEGRAL FORM

Lemma 10. Let x, a and b be real continuous functions defined in [0,T ], a(t)≥ 0 for t ∈ [0,T ].

We suppose that on [0,T ] we have the tempered-fractal integral inequality

(13) x(t)≤ b(t)+
∫ t

0
β sβ−1 e−λ (t−s) a(s) x(s) ds,



FRACTAL AND TEMPERED-FRACTAL GRONWALL’S INEQUALITIES TYPE 13

then x satisfies

(14) x(t)≤ b(t)+
∫ t

0
β sβ−1 e−λ (t−s) a(s) b(s) eβ

∫ t
s θ β−1a(θ)dθ ds.

Remark 4. If λ = 0 in Lemma 10, then the tempered-fractal integral inequality (13) will be a

fractal integral inequality as in Lemma 8.

Now, we shall present some important corollaries resulting from lemma 10

5.1. Some corollaries of the tempered-fractal integral form.

(i) If a is constant, then the tempered-fractal integral inequality (13) will be

x(t)≤ b(t)+a
∫ t

0
β sβ−1 e−λ (t−s) x(s) ds,

and by Lemma 10, we obtain

x(t)≤ b(t)+a
∫ t

0
β sβ−1 e−λ (t−s) b(s) ea(tβ−sβ ) ds.

(ii) If b is differentiable, then the tempered-fractal integral inequality (13) follows that

x(t)≤ b(0) e−λ t+β
∫ t

0 θ β−1a(θ)dθ +
∫ t

0
(b
′
(s)+λ b(s)) e−λ (t−s)+β

∫ t
s θ β−1a(θ)dθ ds.

Proof. We already know that the tempered-fractal integral inequality (13) follows that

x(t) ≤ b(t)+
∫ t

0
β sβ−1 e−λ (t−s) a(s) b(s) eβ

∫ t
s θ β−1a(θ)dθ ds

≤ b(t)+
∫ t

0
e−λ (t−s) b(s)

d
ds

(− e
∫ t

s βθ β−1a(θ)dθ ) ds,

then we get

x(t) ≤ b(t)− ( b(s) e−λ (t−s) e
∫ t

s βθ β−1a(θ)dθ )s=t
s=0

+
∫ t

0
(b
′
(s)+λ b(s)) e−λ (t−s) e

∫ t
s βθ β−1a(θ)dθ ds

≤ b(0) e−λ t e
∫ t

0 βθ β−1a(θ)dθ +
∫ t

0
(b
′
(s)+λ b(s)) e−λ (t−s) e

∫ t
s βθ β−1a(θ)dθ ds.

�
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(iii) If b is constant, then the tempered-fractal integral inequality (13) will be

x(t)≤ b+
∫ t

0
β sβ−1 e−λ (t−s) a(s) x(s) ds,

and it follows that

x(t)≤ b e−λ t+β
∫ t

0 θ β−1a(θ)dθ +λ b
∫ t

0
e−λ (t−s)+β

∫ t
s θ β−1a(θ)dθ ds.

(iv) If b = 0, then the tempered-fractal integral inequality (13) will be

x(t)≤
∫ t

0
β sβ−1 e−λ (t−s) a(s) x(s) ds,

and it follows that

x(t)≤ 0.

(v) If a and b are constants, then the tempered-fractal integral inequality (13) will be

x(t)≤ b+a
∫ t

0
β sβ−1 e−λ (t−s) x(s) ds,

and it follows that

x(t)≤ b e−λ t+atβ

+λ b
∫ t

0
e−λ (t−s)+a(tβ−ts) ds.

(vi) Let x, a and b be real continuous functions defined in [0,T ], a(t)≥ 0 for t ∈ [0,T ]. We

suppose that on [0,T ] we have the tempered integral inequality

x(t)≤ b(t)+
∫ t

0
e−λ (t−s) a(s) x(s) ds,

then x satisfies

x(t)≤ b(t)+
∫ t

0
e−λ (t−s) a(s) b(s) e

∫ t
s a(θ)dθ ds.

5.2. The non-linear tempered-fractal integral form.

Lemma 11. Let f : [0,T ]×R+→ R+ be measurable in t ∈ [0,T ] and continuous in x ∈ R+, and

there exist two bounded measurable functions a and c such that f (t,x(t))≤ a(t) x(t)+ c(t).

If the function f satisfies the non-linear tempered-fractal integral inequality

x(t)≤ b(t)+
∫ t

0
β sβ−1 e−λ (t−s) f (s,x(s)) ds,
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then x satisfies the inequality

x(t)≤ B(t)+
∫ t

0
β sβ−1 e−λ (t−s) a(s) B(s) eβ

∫ t
s θ β−1 a(θ) dθ ds,

where B(t) = b(t)+β
∫ t

0 sβ−1 e−λ (t−s) c(s) ds.

Proof.

x(t) ≤ b(t)+
∫ t

0
β sβ−1 e−λ (t−s) f (s,x(s)) ds

≤ b(t)+
∫ t

0
β sβ−1 e−λ (t−s) (a(s) x(s)+ c(s)) ds

= b(t)+
∫ t

0
β sβ−1 e−λ (t−s) c(s) ds+

∫ t

0
β sβ−1 e−λ (t−s) a(s) x(s) ds

= B(t)+
∫ t

0
β sβ−1 e−λ (t−s) a(s) x(s) ds.

By applying Lemma 10, we obtain the result. �
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