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Abstract. The present paper is focused on developing Chebyshev-type inequalities using the fractional-order

integrals with exponential kernels. We obtain new comparison results for synchronous functions and by the method

of mathematical induction we will use these inequalities for a family of non-negative increasing functions. Also

we prove a related Chebyshev-type inequality with fractional integral operators under conditions of monotonicity

of the functions under consideration. These findings enrich the theory of inequalities in the fractional calculus that

supplies methods used in math analysis, engineering, and other areas where memory impacts or time delays exist.
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1. INTRODUCTION

As for the presented work, it can be associated with the Chebyshev-type inequality that has

been developed within the context of fractional-order integrals with exponential kernels, as

well as the barely mentioned Hermite–Hadamard inequality that defines bounds for convex

functions. [1, 2, 3, 4, 5].
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f (s)+ f (t)
2

≤ 1
t− s

∫ t

s
f (x)dx≤ f

(
s+ t

2

)
.

For the consideration of fractional calculus, this relation can be used to derive new constraints

for differential inequalities of fractional order of convex functions with exponential kernel [6, 7,

8], thus expanding the mathematical basis of these types of programs and improving the ability

to address inequalities in this generalized context.

They are practical in mathematics, especially in analysis, probability theory, and mathemat-

ical inequalities [9, 10]. All these inequalities give estimates for integrals or sums of functions

under some conditions of monotonicity and convexity [11, 12, 13, 14]. In the classical context,

such inequalities help in controlling the difference of functions or variables and assessing the

degree of dependency, thereby knowing their value in various applications. Nevertheless, with

the help of fractional calculus, the application field of the Chebyshev-type inequality has risen,

and that is why it requires new investigations regarding its application for the given settings con-

taining fractional integrals in view of the regulated exponent, particularly when the exponential

kernel is used.

Thus, this paper examines the relationship between these two fields by concentrating on

Chebyshev-type inequalities [15, 16], as applied to fractional-order integrals with exponential

kernel functions. To this end, it is our desire to arrive at improved inequalities that would lead

to more accurate estimates of the various processes described by such integrals. The subject has

applications in the analysis of engineering systems that involve memory effects and in applied

physics and economics where time delay is an issue. These results can be used for the de-

scription of systems in which fractional behavior and exponential growth or decay are essential

characteristics; thus, the obtained results extend the applicability of both Chebyshev inequalities

and fractional calculus in scientific practice.

2. PRELIMINARIES

Within this part , we remind some important preliminaries.
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Lemma 1. (A) If there exist synchronous functions β and γ , subsequently [17, 18]

(2.1) [γ(ψ)− γ(ψ0)][β (ψ)−β (ψ0)]≥ 0,

And also, ψ,ψ0 ∈ [a,b].

(B) If there exist asynchronous functions β and γ , after that [19, 20]

(2.2) [γ(ψ)− γ(ψ0)][β (ψ)−β (ψ0)]≤ 0,

In addition, ψ,ψ0 ∈ [a,b].

3. MAIN RESULTS

Within light of Lemma 1, in this section With the exponential kernals, we propose four In-

equalities of Chebyshev type for integrals of the general fractional-order.

Theorem 1. If two synchronous functions are β and γ , on [a,b] for α = 1, the inequality having

exponential

(3.3) aIα
t [γ(t)β (t)]≥ aIα

t γ(t) · aIα
t β (t)∫ a

t ΩαK (s,y)α

Proof. By using (2.1), we obtain

(3.4) γ(τ)β (τ)+ γ(λ )β (λ )≥ γ(τ)β (λ )+ γ(λ )β (τ)

where λ ,τ ∈ [a, j].

Multiplying inequality (3.4) by Ωαeyα

(3.5) γ(τ)β (τ)Ωαeyα + γ(λ )β (λ )Ωαeyα ≥ γ(τ)β (λ )Ωαeyα + γ(λ )β (τ)Ωαeyα

Integrating, we get∫ t

a
γ(τ)β (τ)Ωαeyαdy+ γ(λ )β (λ )

∫ t

a
Ωαeyα

≥ β (λ )
∫ t

a
γ(τ)Ωαeyαdy+ γ(λ )

∫ t

a
β (τ)Ωαeyαdy(3.6)

Now (3.6) can be expressed as

(3.7) aIα
t [γ(t)β (t)]+ [γ(λ )β (λ )]

∫ t

a
Ωαeyα ≥ β (λ )aIα

t γ(t)+ γ(λ )aIα
t β (λ )
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Multiplying (3.7) by Ωαesα gives the inequality

aIα
t [γ(t)β (t)]Ωαesα +[γ(λ )β (λ )]Ωαesα

∫
a

Ωαeyα

≥ β (λ )Ωαesα
aIα

t γ(t)+ γ(λ )Ωαesα
aIα

t β (t)(3.8)

By integrating the inequality (3.8), we get

aIα
t [γ(t)β (t)]

∫ t

a
Ωαesα +

∫ t

a
[γ(λ )β (λ )]Ωαesαds

∫ t

a
Ωαeyα

≥ aIα
t γ(t)

∫ t

a
β (λ )Ωαesαds+ aIα

t β (t)
∫ t

a
γ(λ )Ωαesαds(3.9)

(3.10) [aIα
t γ(t)β (t)]

∫
a

Ωαesα + aIα
t [γ(t)β (t)]

∫
a

Ωαeyα ≥ 2aIα
t β (t)aIα

t γ(t)

Hence (3.3) is true.

Theorem 2. If two synchronous functions are γ and β on [a, j] and α,η = 1 and t > 0.

[aIα
t γ(t)β (t)]

∫ t

a
ΩηK sη + aIη

t [γ(τ)β (t)]
∫ t

a
ΩαK yα

≥ aIη

t β (t)aIα
t γ(t)+ aIη

t γ(t)aIα
t β (t)(3.11)

Proof. Multiplying (3.11) by Ωηesη , we get

aIα
t [γ(t)β (t)]Ωηesη +[γ(λ )β (λ )]Ωηesη

∫ t

a
eyα

≥Ωηesη
β (λ )aIα

t γ(t)+Ωηesη
γ(λ )aIα

t β (t)(3.12)

After integrating, we get (3.12).

aIα
t [γ(t)β (t)]

∫ t

a
Ωηesη +

∫ t

a
Ωηesη [γ(λ )β (λ )]dρ

∫ t

a
Ωαeyα

≥
∫ t

a
Ωηesη

β (λ )dρaIα
t γ(t)+

∫ t

a
Ωηesη

γ(λ )dρaIα
t β (t)(3.13)

By using (3.13), we get:

aIα
t [γ(t)β (t)]

∫ t

a
Ωηesη + aIη

t [γ(t)β (t)]
∫ t

a
Ωαeyα

≥ aIη

t β (t)aIα
t γ(t)+ aIη

t γ(t)aIα
t β (t)(3.14)
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Lastly, (3.14) can be stated as:

aIα
t [γ(t)β (t)]

∫ t

a
ΩηK yα + aIη

t [γ(t)β (t)]
∫ t

a
ΩαK yα

≥ aIη

t β (t)aIα
t γ()+ aIη

t γ(t)aIα
t β (t)(3.15)

Finally, the proof of (3.11) is complete.

Remark 1. Assume β and γ are functions that are asynchronous on [a, j], then the inequalities

(3.3) and (3.11) are inverted where [γ(λ )−β (τ)][γ(τ)−β (λ )]≤ 0.

Remark 2. For α = η , Theorem 2 overlaps with Theorem 1.

Theorem 3. If (γi)i=1,...,n are n functions that increase positively on [a, j] and α = 1, then

(3.16) aIα
t [

n

∏
i=1

γi(t)]≥
[∫ t

a
K (s,y)α

]1−n

[
n

∏
i=1

γi(t)]aIα
t

Proof. Using the inductive method of mathematics, let n = 1 in (3.16), we have

(3.17) aIα
t γ1(t)≥ aIα

t γ2(t)

(3.18) aIα
t [γ1(t)γ1(t)]≥

aIα
t [γ1(t)] · aIα

t [γ2(t)]∫ a
t K (s,y)α

which is due to (3.3) of Theorem 1. Based on the principle of induction, we assume

(3.19) aIα
t [

n−1

∏
i=1

γi(t)]≥
[∫ t

a
t(s,y)k

]2−n

[
n−1

∏
i=1

γi(t)]aIα
t

Now (γi)i=1,...,n are increasing functions, indicating that the function [∏n−1
i=1 γi(t)]. Thus, we

apply (3.3) to the functions [∏n−1
i=1 γi(t)]=γ and γn = γ , to get

(3.20) aIα
t [

n

∏
i=1

γi(t)]≥
[

1∫
τ

a K (s,y)α

]
× [aIα

t [
n−1

∏
i=1

γi(t)]aIα
t γn(t)]

From (3.19) and (3.20), we can observe that (3.16) is true.

Theorem 4. Assume ω , β , and γ functions that are monotone on [a, j] for α,η = 1 and t > 0

then

aIα
t [γ(t)β (t)ω(t)]

∫ t

a
ΩηK sη − aIη

t [γ(t)β (t)ω(t)]
∫ t

a
ΩαK yα
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≥ aIη

t β (t)aIα
t [γ(t)ω(t)]+ aIη

t γ(t)aIα
t [β (t)ω(t)]− aIη

t [γ(t)β (t)]aIα
t ω(t)

+aIη

t ω(t)aIα
t [γ(t)β (t)]+ aIη

t [β (t)ω(t)]aIα
t γ(t)− aIη

t [γ(t)ω(t)]β (t)(3.21)

Proof. By using

[γ(τ)− γ(λ )][β (τ)−β (λ )][ω(τ)−ω(λ )]≥ 0(3.22)

[γ(τ)β (τ)ω(τ)]− [γ(λ )β (λ )ω(λ )]− [γ(τ)β (λ )ω(τ)]−[γ(λ )β (τ)ω(τ)]

+[γ(λ )β (λ )ω(τ)]−[γ(τ)β (τ)ω(λ )]−[γ(τ)β (λ )ω(λ )]+[γ(λ )β (τ)ω(λ )]≥0(3.23)

∫ t

a
Ωαeyα [γ(τ)β (τ)ω(τ)]dy− [γ(λ )β (λ )ω(λ )]

∫ t

a
Ωαeyα ≥ β (λ )

∫ t

a
Ωαeyα [γ(τ)ω(τ)]dy

+γ(λ )
∫ t

a
Ωαeyα [β (τ)ω(τ)]dy− [γ(λ )β (λ )]

∫ t

a
Ωαeyα

ω(τ)dy+ω(λ )
∫ t

a
Ωαeyα [γ(τ)β (τ)]dy

+[β (λ )ω(λ )]
∫ t

a
Ωαeyα

γ(τ)dy− [γ(λ )ω(λ )]
∫ t

a
Ωαeyα

β (τ)dy(3.24)

Immediately, (3.24) can be displayed as.

aIα
t [γ(t)β (t)ω(t)]− [γ(λ )β (λ )ω(λ )]

∫ t

a
Ωαeyα ≥ β (λ )aIα

t [γ(t)ω(t)]

+γ(λ )aIα
t [β (t)ω(t)]− [γ(λ )β (λ )]aIα

t ω(t)+ω(λ )aIα
t [γ(t)β (t)]

+[β (λ )ω(λ )]aIα
t γ(t)− [γ(λ )ω(λ )]aIα

t β (t)(3.25)

Multiplying (3.25) by Ωηesη and integrating we get

aIα
t [γ(t)β (t)ω(t)]

∫ t

a
Ωηesη − aIη

t [γ(t)β (t)ω(t)]
∫ t

a
Ωαeyα

≥ aIη

t β (t)aIα
t [γ(t)ω(t)]+ aIη

t γ(t)aIα
t [β (t)ω(t)]− aIη

t [γ(t)β (t)]aIα
t ω(t)

+aIη

t ω(t)aIα
t [γ(t)β (t)]+aIρ

t [β (t)ω(t)]aIα
t γ(t)−aIη

t [γ(t)ω(t)]aIα
t β (t)(3.26)

aIα
t [γ(t)β (t)ω(t)]

∫ t

a
Ωηesη − aIη

t [γ(t)β (t)ω(t)]
∫ t

a
Ωαeyα

≥ aIη

t β (t)aIα
t [γ(t)ω(t)]+ aIη

t γ(t)aIα
t [β (t)ω(t)]− aIη

t [γ(t)β (t)]aIα
t ω(t)

+aIη

t ω(t)aIα
t [γ(t)β (t)]+aIρ

t [β (t)ω(t)]aIα
t γ(t)−aIη

t [γ(t)ω(t)]aIα
t β (t)(3.27)

Thus, (3.27) can be demonstrated.
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4. APPLICATION OF CHEBYSHEV-TYPE INEQUALITIES IN MODELING POPULATION

DYNAMICS

Description of the Issue In the ecosystem context a population has interaction effects over

time, delayed response to change, and competition for resources by predation. According to

Patteman and Meirack, the effects of memory in such dynamics have to be taken into account

when modelling such phenomenon especially in biological species that exhibit cyclical or os-

cillatory behavior. The processes governing such systems may not be easily discerned and in

general, precise description and forecasting with the help of the dynamic models of the integer

order can cause major challenges. From the perspective of the correction of the using fractional-

order, to describe the dynamics of the memory effects and, in this way, the phenomena under

consideration, the proposed approach provides better models, and, therefore, better predictions.

Applying Chebyshev-type Inequalities Chebyshev-type inequalities provide us with a lever

by which we can bound responses of population models to such delayed or memory dependent

interactions. These bounds help maintain the population within reasonable values so that it does

not go all over the place full of oscillations and deviation from agencies’ growth rates projecting

more useful in models sensitive to fluctuations in ecological factors.

Application Example Let us now discuss a population dynamics model for a competing

species system The two competing species are denoted by the populations Q1(t) and Q2(t).

The objective is to reduce the discrepancy between the dynamics of the actual population and

those of the formal ideal population where resources are abundant and interactivities optimal.

Dynamics Model The fractional-order dynamics of species Q1 can be expressed using a

fractional differential equation:

DαQ1(t) = r1Q1(t)
(

1− Q1(t)
K1

)
− cQ1(t)Q2(t),

where Dα is the fractional derivative of order α , r1 is the intrinsic growth rate, K1 is the

carrying capacity, and c represents the competition coefficient with species Q2.

Error Function Definition Define the error function E1(t) to measure the difference between

the observed population Q1(t) and an ideal population Q1,ideal(t):

E1(t) = Q1(t)−Q1,ideal(t).
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This function measures fluctuations as caused by environmental or competition forces that shift

the rates of population growth.

Apply Chebyshev-type Inequalities Using inequalities for fractional order integral,

Chebyshev-type inequalities are used to bound the error function E1(t) for the realism of the

estimated population. If it is assumed that the noise processes of the two populations Q1(t) and

Q1,ideal(t)/are in phase (that is both populations are growing or decreasing), then the inequality

is:

Iα [E1(t)]≥ Iα [Q1(t)]− Iα [Q1,ideal(t)],

where Iα stand for the fractional integral operator. This inequality offers a control of the error

in terms of the fractional integrals of the actual and ideal populations, it does not allow the error

to grow unbounded in oscillating conditions.

Optimization of Model Parameters The derived bounds on E1(t) allows for tuning and

optimization of other parameters in the model which include α , r1, K1 and c to ensure that

the dynamics of population are within acceptable levels. Therefore, adjusting most of these

parameters can help to capture the simulation closer to the data and bring a reasonable level of

competitiveness and environmental factors into the model.

Validation and Simulation Subsequent simulation is then performed to compare the bounds

yielded with those that can be derived using Chebyshev-type of inequalities for the purpose of

ascertaining whether the optimized model fits the empirical population. This validation also

demonstrates that the chosen model is stable and that the use of the fractional order of the

parameters accurately reflects the interactions within a population over time.

The image also gives an overview of what goes into population dynamics modeling. The

first plot at the top of the chart illustrates the actual population. Labor Q1(t) (blue line) grows

with an increase in the ideal population Q1,ideal(t), but the curves differ (blue line breaks away

from the red dashed line). first a boom and then a bust. The middle plot describes the error

function E1(t) that estimates the real distance between the zones. the disparity between actual

and identified population, which declines gradually year by year. The bottom plot highlights

The error function constraints are derived, as well as showing how elements of Chebyshev-type

inequalities can be used to constrain population fluctuations. These plots check the stability and



INVESTIGATING SYNCHRONOUS FUNCTION INEQUALITIES 9

FIGURE 1. Graphical Analysis

proved the theoretical fractional-order model proposed. the synchrony of the two population

curves. In total, they strengthen the idea of the model as an efficient tool to regulate competition

and memory effects.

5. CONCLUSION

In this work, we notice that Chebyshev-type inequalities play a significant role with regard

to fractional-order integrals based on exponential kernels. The stated results confirm not only

that these inequalities can give accurate estimates, but also that they can be applied to solve

problems arising in various fields of mathematics in one form or another. From the intercon-

nectedness of classical inequalities and fractional calculus in this study, there is great potential

for future analysis in understanding functional behavior and approximation. In future work,

efforts should be made to generalize these inequalities and identify further situations where

they may be effective. Thus, the findings of this study facilitate the enrichment of theoretical

knowledge and the development of practical applications in the field of mathematical analysis.
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