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Abstract. The Wright function is a special function with notable applications in several branches of mathematics,
including geometric function theory. It helps in constructing and studying classes of analytic and univalent func-
tions, particularly due to its connection with fractional calculus and differential subordinations. The target of this
paper is to discuss a new subclass 7' Sﬁ’m(h, 0, ) of univalent functions with negative coefficients related to Wright
distributation in the unit disk U = {z: |z] < 1}. We obtain basic properties like coefficient inequality, distortion
and covering theorem, radii of starlikeness, convexity and close-to-convexity, extreme points, Hadamard product,
and closure theorems for functions belonging to our class.
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1. INTRODUCTION

In 1933, Wright [15] introduced a special function which is named as Wright function and

defined in the following way
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where A > —1, u € C and I'(+) stands for the usual Gamma function. The series given by (1) is

absolutely convergent for all z € C while for A = —1 this is absolutely convergent in U. He also

proved that it is an entire function for A > —1. For more basic properties on Wright functions

one may refer to Gorenflo et al.[5] and Mustafa[6]. It is easy to see that the series (1) is not in

normalized form so we norimalized it as

Wy u(z) =T()zWy, 4 (2)

_ v D!
) Wiu(2) = n;om

where A > —1, u > 0, z € U. Now, we introduce Wright distribution in the following way, first

we define the series

oo F(u)m”“

3) W), u(m) = ngbm

which is convergent for all A, u,m > 0.

The probability mass function of Wright distribution is given by

B F(u>mn+l
— Il (An+p) Wy, (m)

4 p(n) ,m,u,A>0,n=0,1,2,3,...

It is worthy to note that for A = 0 it reduces to the Poisson distribution.

Let <7 signify the class of all functions u(z) of the type
) u(z) =z+ Z an?"
n=2

in the open unit disc U = {z € C : |z| < 1}. Let S be the subclass of .7 consisting of univalent
functions and satisfy the following usual normalization condition u(0) = u’(0) —1 =0. We
denote by S the subclass of <7 consisting of functions u(z) which are all univalent in U. A
function u € o7 is a starlike function of the order ¢, 0 < ¢ < 1, if it satisfy

' (2)

u(z)

(6) EK{ }>g,z€U.
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We denote this class with S*(¢) . A function u € &7 is a convex function of the order ¢, 0 <

¢ < 1, if it fulfil

(7) 91{1+Zu”(z)} >g,zeU.
u'(z)

We denote this class with K(g). Note that $*(0) = §* and K(0) = K are the usual classes of
starlike and convex functions in U respectively. Let T denote the class of functions analytic in
U that are of the form
(8) u(z)zz—ianz", an>0zeU

n=2
and let T*(¢) = TNS*(g), C(g) =TNK(g). The class T*(g) and allied classes possess some
interesting properties and have been extensively studied by Silverman [12].
In 2014, by using the definition of Poisson distribution, Porwal [8] introduced Poisson dis-
tribution series and gave a nice application of it on certain classes of univalent functions and
opened up a new direction of research in the geometric function theory. After the investigation
of this series several researchers investigated various distribution series like Hypergeometric
distribution series [1], Pascal distribution series [3], Mittag-Leffler type Poisson distribution
series [4], Binomial distribution series [7], generalized distribution series [9] Hypergeometric
type distribution series [10], confluent hypergeometric distribution series [11], generalized hy-
pergeometric distribution series [13], Borel distribution series [14] (see also [2]) and obtained
various interesting results on certain classes of univalent functions for these series. Now, using

the definition of Wright distribution, we introduce the Wright distribution series as follows:

L(p)m" "
n—1)ITA(n—1) —I—,U)W;L_‘H(m) '

KA, u,mz) =2+ Y, (
n=2

The convolution of two power series u(z) of the form (5) and g(z) =z+Y.,,_, b,2" is defined

as the power series

(uxg) (@) = 2+ ¥ arbu"
n=2

Now, we introduce the linear operator Iﬁ,m : &/ — &/ defined as
I u(z) = u(@)=K(A,p,m,z)

) = z+ Z (I)nanzn
n=2
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where

L(p)m" -
D(A(n—1)+u)(n—1)1Wy , (m)) "

Now, by making use of the Wright distributation, we define a new subclass of functions moti-

(10) b, =

vated by the recent work of [5, 6, 8, 9].
Definition 1.1 For0 <7< 1,0< o< 1,and 0< ¢ < 1, we let TSf;vm(h, 0,G) be the subclass

of u consisting of functions of the form (8) and its geometrical condition satisfy

A u
h ((Iﬁ,mu(z))' — ) (Z))

A
O (I u(z)) + (1 — 1)

Z

<g, (zel),

where Iﬁ’mu is given by (9).

2. COEFFICIENT INEQUALITY

In this section, we obtain a necessary and sufficient condition for function to be in the class
TS} m(h,0,6).
Theorem 2.1 Let the function u be defined by (8). Then u € TSﬁ,m(h, 0,¢) if and only if

(o)

(11) Y [a(n—1)+¢(no +1—h)|Pyay < g(o +(1—h))
n=2

where 0 < ¢ < 1,0<h <1, and 0 < 0o < 1. The result (11) is sharp for the function

s(o+(1-h))
filn—1)+¢(no+1—h)|d,

u(z) =z— ' n>2.

Proof. Suppose that the inequality (11) holds true and |z| = 1. Then we obtain

Aoy w
h <(1ﬁ,mu(z))/ - Ili,m (Z)> | —G |0 (Iﬁ,mu(z))/‘f‘ (1 —h)lu,m (Z)> |

4 4

=|—h Z (n— l)@nanznl‘
n=2

(o)

o+ (1—h) =Y (no+1—h)Pua,""
n=2

)

<Y [hn— 1)+ ¢(n6+ 1 — h)|Duan — g(o+ (1)
n=2

IA

0.
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Hence, by maximum modulus principle, u € TSﬁjm(h,G,g). Now assume that u €

TSﬁm(h, 0,G) so that

A u
h ((lﬁ,mu(z))/ - —]”’mz (Z)>

A
O (I} pu(2))' + (1 — 1) e

Z

<g, zelU.

Hence

<¢

A u
" <<Iﬁvmu<z>>' - W)

Therefore, we get

A u
c (I&jmu(z))/ +(1 —h)w> ‘ .

Z

< glo+(1=h)=Y (no+1—n)Puan"|.

Thus

Y n(n—1)+¢(no+1—h)|Pua, < g(c+ (1 —h))
n=2

and this completes the proof.
Corollary 2.1 Let the function u € TSﬁm(h, 0,6). Then

¢(o+(1-1n)
[i(n—1)+¢(no+1—h)|P,

a, < 7' n>2.

3. DISTORTION AND COVERING THEOREM

We introduce the growth and distortion theorems for the functions in the class TSﬁm (h,0,6).

Theorem 3.1 Let the function u € TSﬁ,m(h, 0,5). Then

¢(o+(1—n))
[+ c(20 + 1 —h)|Ps

€(6+(1_h)) ‘ ’2'

2 < <
=@l s+ g a1 ne,

2| =
The result is sharp and attained

slo+(=n) >
i+c(2o+1—n)®y]~

u(z) =z—
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Proof.
u(z)| = 2= Y and"| < 2|+ ) anlz|”
n=2 n=2
<|z|+2)? Y. an.
n=2
By Theorem 2.1, we get
- s(o+(1—n))

12 .
(12) P h+g(26+1—h)]d>n
Thus

g(o+(1—-n)) 2
< |zl + .
(@) < I [h+g(2c+1—h)]61>2| |
Also
(2) > || = Z anlz]"

> 4~ 12 Y an
n=2

g(6+ (1 _h)) | |2
h+c(20+1—-h)|®Py "
Theorem 3.2 Let u € TSﬁm(h, 0,6). Then

_ 2g(0+ (1))
[h+g(26+ 1 —h)q)z]

> |z| —

2¢(c+(1—h))

<l <1
2l <l (2)l < 1+ i+¢(20+1—h)]P,

|z|

with equality for
26(0+(1—-n)) 5

= F o T ey

Proof. Notice that

i+ 620+ 1 )P ) nay,
n=2

< i nfiln—1)+¢(no+1—hn)|d,a,
n=2

(13) <¢(o+(1-n)),

from Theorem 2.1. Thus

=11- Z na,?* !
n=2
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<1+ Y naylz*!
n=2

<1+1z| Y nay
n=2

2¢(c+(1—h))

14 <l+ .
(14 - |Z|[h+g(20‘+1—h)]<1>2
On the other hand

W/ (z)] = 1= Y nan""!
n=2
n=2
>1—|¢| Z nay,
n=2
2¢(c+(1—h))

15 >1— .

(1) N P o

Combining (14) and (15), we get the result.

4. RADII OF STARLIKENESS, CONVEXITY AND CLOSE-TO-CONVEXITY

In the following theorems, we obtain the radii of starlikeness, convexity and close-to-
convexity for the class TSﬁ’m(h, 0,G).
Theorem 4.1 Let u € TSﬁm(h,O',g). Then u is starlike in |z| < Ry of order §, 0 < < 1,

where

(1—5)(h(”_1)+g(n6+1_h))q)"}ni], n>2.

e v o

Proof. u is starlike of order 6,0 < 6 < 1 if

/
w{2Elss
u(z)
Thus it is enough to show that
—En—laz”_1 En—la 7!
zu'(2) _1‘ _ n:2( Jan < n:2( Jank
u(z) 1— Y ap"! 1— Y alz!
n=2 n=2
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Thus

zu'(2) e (n=8)
u(2) —1‘§1—61fn§’2(1_5)an|z\ <.

Hence by Theorem 2.1, (17) will be true if

7)

n—96 ., _(n—=1)+¢g(noc+1—-h))d,
1—6|Z‘ < s(o+(1—n)

or if
(1= 8)(An— 1)+ c(no+1—h))D, "

o e T e M

The Theorem 4.1 follows easily from (18).

Theorem 4.2 Let u € TSﬁm(h,G,g). Then u is convex in |z] < R, of order §,0 < § < 1,

where
1
1-6)(h(n—1 1—h))d, | !
(19) R2:inf{( J((n—1) +¢(no+1-h)) "} n>2.
n nn—38)g(c+(1—nh))
Proof. uis convex of order 6,0 < 6 < 1 if
/!
SK{H—ZM <Z>} =)
u'(z)
Thus it is enough to show that
o « -1 n—1 - -1 n—1
2 (2) B ngzn(n )anz . ngzn(n Jan|z|
@) | y - y
wiz I- X na,z"~! 1- X nan‘Z’n_l
n=2 n=2
Thus
'’ (2) . n(n—29) _
20 <1-§if =<,
20 W(z) | = ! ,;2(1—5)“”|Z| =

Hence by Theorem 2.1, (20) will be true if

n(n—5)| |n_1 < (h(n—1)+¢g(noc+1—h))P,
1—s = s(o+(1—h)

or if

21 < (1-8)(h(n—1)+¢(no+1—h))d, ﬁ,nZZ

nn—38)g(c+(1—n))

The theorem follows easily from (21).
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Theorem 4.3 Let u € TSﬁvm(h, 0,6). Then u is close-to-convex in |z| < R3 of order 6, 0 <

0 < 1, where

L J =8 (= 1)+ g(n0 + 1= ), | 7T
(22) R3—1nf{ FCENIEE) } , n>2.

Proof. u is close-to-convex of order 6,0 < 6§ < 1 if
R{d(2)} > 6.

Thus it is enough to show that

W'(z)— 1| = |- Znanz” < Znan|z|” !
Thus
(23) W (@) =1 <1=8if ¥ ———a,lz" ' <1.
= (1-96)

Hence by Theorem 2.1, (23) will be true if

L (hn=1)+¢(no+1—h)®,
S <o+ (-7

1-6
or if

(1= 8)(A(n—1)+¢(no+1—h))d, "

ey A= ng(o (1)

,n > 2.

The theorem follows easily from (24).

5. EXTREME POINTS

In the following theorem, we obtain extreme points for the class TSﬁ,m (h,0,6).
Theorem 5.1 Let u;(z) = z and

¢(o+(1—-n)

" forn=2,3,
h(n—1)+c(no+1—R)d, o o7

un(z) =2 —
Then u € TSﬁ’m(h, 0,¢) if and only if it can be expressed in the form

= Z 0,1, (z), where 6, > 0 and Z 0,=1.
=1

n=1
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Proof. Assume that u(z) = Y. 6,u,(z), hence we get
n=1

- - ¢(c+(1—-n))6, n
D=2 L i )+ eno 1R,

Now, u € TSﬁm(h,G, G), since

hin—1)+¢(noc+1—-hn)|d,
= s(o+(1—n))

(o +(1-h))6,
i(n—1)+¢(no+1—nh)|d,

=Y 6,=1-6,<1.
n=2

Conversely, suppose u € TSﬁm(h, 0,6). Then we show that u can be written in the form
Y 6 (2).
n=1

Now u € TSﬁm(h, 0,¢) implies from Theorem 2.1

B (e il))
"= [a(n—1)+¢(no+1—h)P,

Seing 6, = PO 50100, =25,

and 0; = 1 — E 6,, we obtain u(z) = E Oty (2).

n=2 n=1
6. HADAMARD PRODUCT

In the following theorem, we obtain the convolution result for functions belongs to the class
TS m(h,0,6).
Theorem 6.1 Let u,g € TS(h,0,6,9). Then uxg € TS(h,0,,9) for
uz):z—Zanzn,g —z—anz and (uxg)(z _z—Zan nZ,
n=2 n=2

where
‘> (o +(1—h)ha(n—1)
~ [A(n—1)+¢(no+1-n)?®,—¢%2(c+(1—h))(no+1—h)

Proof. u € TSﬁﬁm(h,G,g) and so

> [i(n—1)+¢(no+1—h)|P,
= L coriom) !
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and

i i(n—1)+¢(no+1—nh)|D,

(20) L (or(1_R)

b, <1.

We have to find the smallest number ¢ such that

a,b, <1.

Z iln—1)+{(no+1—h)|P,

@7) Lo+ (1))

By Cauchy-Schwarz inequality

I

Therefore it is enough to show that

[A(n—1)4{(noc+1—h)|P,

{(o+(1—n)) nb
[(n—1)+g(no +1—1n)]P,
<o (T b
That is
[i(n—1)+¢(no+1-h)]E
(29) Varbn < 1)+ Clno+ 1-R)¢
From (28),

s(oc+(1—h))
anb, < [h(n—1)+¢(no+1—h)®,

Thus it is enough to show that

filn—1)+¢(no+1—-hn)|¢
i(n—1)+C(no+1—h)]g’

¢(o+(1—n))
h(n— 1)+ c(no + 1 — 1)@,

<

which simplifies to

§*(c+(1—=h)h(n—1)
(n—1)+c(no +1—n)2®, — c2(c+ (1 —h))(no+ L —h)’

¢>

11
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7. CLOSURE THEOREMS

We shall prove the following closure theorems for the class TSﬁm(h, 0,6).

Theorem 7.1 Let uj € TS}, (7,0,¢),j=1,2,--+ 5. Then

Z cjuj(z) € TS’1 m(l,0.6).

Foru(z) =z— Z an,jZ", where Z cj=1.
n=2 j=1

Proof.
S
2) =Y cju;(z)
=
=z— Z Z ¢jan, ;7"

n=2j=

=z— Z en’,
n=2

where e, = Jz ¢jan,j. Thus g(z) € TS ,(h,0,¢) if
> [i(n—1)+¢(no+1—n)|P,

en < 1,
) (o +(1-h))

that is, if

hln—1)+¢(no+1—n)|d,
g(o+(1—h))

0
Yy ¢jan,j
n=2 j=l1

hiln—1) —i—g(nG—l— 1—h)|D,

D e e

IN
™- T
O

I

Juy

J

Theorem 7.2 Let u,g € TSP, ,,(7,0,¢). Then

[

h) =2 X (@4 B € TS} (00,2,
n=2

2h(n—1)g*(o + (1 —h))
where § > 1

(n— 1)+ c(no+ 1 —1)2®, — 2¢2(c + (1 —h))(no+ 1 — 1)’
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Proof. Since u,g € TSﬁm(h, 0,6), so Theorem 2.1 yields

= [(A(n—1)+¢(no+1—n)d, 1°
Zl S(o+(1—1) %]<1

n=2

and

i {(h(n— D+6(no+1-1)y, r -
n=2 Q(G+(1_h)) "
We obtain from the last two inequalities

= 1[(h(n—1)+¢(no+1—h))®,]*
Lo ety

But i(z) € TS(h,0,8,q,m), if and only if

> [i(n—1)+C(no+1—h)|d,
G L o (—m)

where 0 < { < 1, however (30) implies (31) if
[i(n—1)+{(noc+1—h)|P,

(30) a2+b2)<1.

(ap+b3) <1,

C(o+(1-n))
_1[(a(n=1) +¢(no +1—h))®, 2
-2 g(o+(1—n))

Simplifying, we get

2h(n—1)g*(o + (1 —h))
A(n—1)+¢(no+1—n)2®, —2¢%2(c + (1 —h))(no+1—h)’

&>

CONCLUSION

The Wright function is an important special function with significant applications in various
areas of mathematics, particularly in geometric function theory. Its close relationship with

fractional calculus and differential subordinations makes it a useful tool for constructing and

analyzing new classes of analytic and univalent functions.

In this paper, we introduced and studied a new subclass

TS} ,.(h,0.¢)

of univalent functions with negative coefficients associated with the Wright distribution in the

open unit disk

U={z:|z] < 1}.

13
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A comprehensive investigation of this class was carried out by establishing several fundamental
geometric properties. In particular, we derived coefficient inequalities, distortion and covering
theorems, and determined the radii of starlikeness, convexity, and close-to-convexity. Further-
more, we examined the extreme points, closure properties, and behavior under the Hadamard
product for functions belonging to this subclass.

The results obtained in this work not only extend several known outcomes in the theory of
univalent functions but also highlight the effectiveness of the Wright function in generating
and studying new analytic structures. These findings may serve as a foundation for further
investigations involving fractional operators, related special functions, and their applications in

geometric function theory.
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