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Abstract. In this paper, we use the Schur convexity of function and majorization inequality give the majorized

proof for generalized Luo-geng Hua inequality.
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1. INTRODUCTION

Let δ and α be normal constant numbers, and

C = {x = (x1, . . . ,xn)|xi ≥ 0,x1 + · · ·+ xn ≤ δ} .

Then for any x ∈C, we have

(δ − x1 + · · ·+ xn)
2 +α(x2

1 + · · ·+ x2
n)≥ α(n+α)−1(1)

holds.

Inequality(1) is Luo-geng Hua inequality (see[1]).
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Z. L. Wang use dynamic programming method extended Luo-geng Hua inequality to the

following form (see[2]):

Let δ and α be normal constant numbers, and

C = {x = (x1, . . . ,xn) | xi ≥ 0,x1 + · · ·+ xn ≤ δ} .

If p > 1 or p < 0, for any x ∈C, then

F(x) := (δ − x1 + · · ·+ xn)
p +α

p−1(x2
1 + · · ·+ x2

n)≥ kp−1
n δ

p(2)

holds. Where kn = α(n+α)−1, when 0 < p < 1 inequality (2) reverse.

Pearće and Pečarić use weighted Jensen inequality to generalize Luo-geng Hua inequality

into function from(see[3]).

Theorem 1. Let f be a real convex function on the I ⊆ R, α;x1, . . . ,xn be real numbers. If

α > 0 and δ − x1−·· ·− xn,αx1, . . . ,αxn ∈ I, then

f

(
δ −

n

∑
i=1

xi

)
+

n

∑
i=1

α
−1 f (αxi)≥

α +n
α

f
(

αδ

α +n

)
(3)

if f (x) is concave function inequality (3) reverse.

Schur convexity was introduced by Schur in 1923, and it has many important applications

in analytic inequalities, linear regression, graphs and matrices, combinatorial optimization,

information-theoretic topics, Gamma functions, stochastic orderings, reliability, and other re-

lated fields.

By studying the Schur convexity of corresponding functions and combining the majorization

inequalities, to discover and prove various kinds of analytic inequalities, it is a hot topic of the

inequalities research in recent years.

In this paper, a new proof of Theorem 1 is given by using the majorization theory, to prove

Theorem 1, we need the following definitions and lemmas.

2. PRELIMINARIES

We introduce some definitions and lemmas, which will be used in the proofs of the main

results in subsequent sections.
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Definition 1 ([4, 6, 7]). Let x = (x1, . . . ,xn) and y = (y1, . . . ,yn) ∈ Rn.

(i) x is said to be majorized by y (in symbols x≺ y) if ∑
k
i=1 x[i]≤∑

k
i=1 y[i] for k = 1,2, . . . ,n−

1 and ∑
n
i=1 xi = ∑

n
i=1 yi, where x[1] ≥ ·· · ≥ x[n] and y[1] ≥ ·· · ≥ y[n] are rearrangements

of x and y in a descending order.

(ii) Ω ⊂ Rn is called a convex set if (αx1 +βy1, . . . ,αxn +βyn) ∈ Ω for any x and y ∈ Ω,

where α and β ∈ [0,1] with α +β = 1.

(iii) let Ω⊂Rn, ϕ: Ω→R is said to be a Schur convex function on Ω if x≺ y on Ω implies

ϕ (x)≤ ϕ (y) . ϕ is said to be a Schur concave function on Ω if and only if −ϕ is Schur

convex function.

Lemma 1 ([5, 7]). Let Ω⊂Rn is convex set, and has a nonempty interior set Ω◦ . Let ϕ : Ω→R

is continuous on Ω and differentiable in Ω◦. Then ϕ is the Schur convex (Schur concave)

function, if and only if it is symmetric on Ω and if

(x1− x2)

(
∂ϕ

∂x1
− ∂ϕ

∂x2

)
≥ 0(or ≤ 0;respectively)

holds for any x = (x1, · · · ,xn) ∈Ω◦.

Lemma 2 ([5, 7]). Let x = (x1, . . . ,xn) ∈ Rn
++. Then

(4)

An(x), · · · ,An(x)︸ ︷︷ ︸
n

≺ (x1, · · · ,xn).

3. PROOF OF MAIN RESULTS

Proof of Theorem 1.

Proof. Let

L(x) = f

(
δ −

n

∑
i=1

xi

)
+

n

∑
i=1

α
−1 f (αxi).

Obviously L(x) is symmetry with x1, . . . ,xn, it may be assumed that x1 ≥ x2. Write θ = δ −

∑
n
i=1 xi,ω1 = αx1,ω2 = αx2. Because α > 0, so ω1 ≤ ω2. We have

∂L
∂x1

=
d f (θ)

dθ

dθ

dx1
+α

−1 d f (ω1)

dω1

dω1

dx1
=−d f (θ)

dθ
+

d f (ω1)

dω1

∂L
∂x2

=
d f (θ)

dθ

dθ

dx2
+α

−1 d f (ω2)

dω2

dω2

dx2
=−d f (θ)

dθ
+

d f (ω2)

dω2
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Due to f (x) is convex function, hence

∆ := (x1− x2)

(
∂L
∂x1
− ∂L

∂x2

)
= (x1− x2)

(
d f (ω1)

dω1
− d f (ω2)

dω2

)
≥ 0,

by Lemma 1 L(x) is Schur convex with (x1, . . . ,xn) on In ⊆ Rn. By the majorization inequality

in Lemma 2 An(x), · · · ,An(x)︸ ︷︷ ︸
n

≺ (x1, · · · ,xn)

and Definition 1, we have

f

(
δ −

n

∑
i=1

xi

)
+

n

∑
i=1

α
−1 f (αxi)≥ f (δ −nAn(x))+nα

−1 f (αAn(x)).

Let t = An(x),z(t) = f (δ −nt)+nβ−1 f (αt), write θ1 = δ −nt,θ2 = αt, then

z
′
(t) =−n

d f (θ1)

dθ1
+n

d f (θ2)

dθ2
.

Let z
′
(t) = 0, we get

(5)
d f (θ1)

dθ1
=

d f (θ2)

dθ2
.

Obviously, when θ1 = θ2 formula (5) holds, therefore, t0 = δ

α+n is a solution to z
′
(t) = 0.

Because z
′′
(t) = n2 f

′′
(θ1)+αn f

′′
(θ2)≥ 0, so z(t0) = z

(
δ

α+n

)
is minimum of z(t), hence

f (δ −n)+
n

∑
i=1

α
−1 f (αxi)≥ f (δ −nAn(x))+nα

−1 f (αAn(x))

≥ δ

α +n
f
(

αδ

α +n

)
.

The proof of Theorem 1 is complete. �
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