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Abstract. In this paper, we use the Schur convexity of function and majorization inequality give the majorized
proof for generalized Luo-geng Hua inequality.
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1. INTRODUCTION
Let 60 and o be normal constant numbers, and
C={x=(x1,---yXn)|xi >0,x;+---+x, < 8}.
Then for any x € C, we have
(1) (8 —x14+-Fx) +axi++x2)>an+oa)!

holds.
Inequality(1) is Luo-geng Hua inequality (see[1]).
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Z. L. Wang use dynamic programming method extended Luo-geng Hua inequality to the
following form (see[2]):

Let 6 and o be normal constant numbers, and
C={x=(x1,..c,xn) |xi>0,x;+-- +x, < 3}.
If p>1orp<0,foranyx e C, then
(2) F(x):=(8—xi4+-+x)P + P 1o+ 4+x2) > kP8P

holds. Where k, = a(n+ a)~!, when 0 < p < 1 inequality (2) reverse.
Pearce and Pecari¢ use weighted Jensen inequality to generalize Luo-geng Hua inequality

into function from(see[3]).

Theorem 1. Let f be a real convex function on the I C R, a;xy,...,x, be real numbers. If

o>0and 6 —x)—-—X,,0x1,...,0x, €1, then

<5 LA Lo otn od
3) f(5—2x,>+i_zloc flox;) > o f(a+n)

i=1

if f(x) is concave function inequality (3) reverse.

Schur convexity was introduced by Schur in 1923, and it has many important applications
in analytic inequalities, linear regression, graphs and matrices, combinatorial optimization,
information-theoretic topics, Gamma functions, stochastic orderings, reliability, and other re-
lated fields.

By studying the Schur convexity of corresponding functions and combining the majorization
inequalities, to discover and prove various kinds of analytic inequalities, it is a hot topic of the
inequalities research in recent years.

In this paper, a new proof of Theorem 1 is given by using the majorization theory, to prove

Theorem 1, we need the following definitions and lemmas.

2. PRELIMINARIES

We introduce some definitions and lemmas, which will be used in the proofs of the main

results in subsequent sections.
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Definition 1 ([4, 6, 7]). Let x = (x,...,x,) andy = (y1,...,yn) € R".
(i) xis said to be majorized by y (in symbols x < y) if Zf.‘ xp < ): 1y fork=1,2,.
land ! ,x; =Y | yi, where X[q) = -+ 2 xpy and ypp) > -+ >y, are rearrangements
of x and y in a descending order.
(ii) Q C R" is called a convex set if (ax; + By1,...,0x, + By,) € Q for any x and y € Q,
where o and 3 € [0,1] with a + 8 = 1.
(iii) let Q C R", ¢: Q — R is said to be a Schur convex function on Q if x < y on Q implies
o0 (x) < @(y). ¢ is said to be a Schur concave function on Q if and only if —¢ is Schur

convex function.

Lemma 1 ([5, 7]). Let Q C R" is convex set, and has a nonempty interior set Q° . Let ¢ : Q — R
is continuous on Q and differentiable in Q°. Then @ is the Schur convex (Schur concave)

function, if and only if it is symmetric on L and if

(x1 —x2) (3—;2 - %) > 0(or < 0;respectively)

holds for any x = (x1,--+ ,x,) € Q°.

Lemma 2 ([5, 7]). Let x = (x1,...,x,) € R . Then

“4) An(x)a"' 7An(x) = (xla"' 7xn)'

3. PROOF OF MAIN RESULTS

Proof of Theorem 1.

Proof. Let

M=

L(x):f(5 )—f—Za L(ax;).

Obviously L(x) is symmetry with xi,...,x,, it may be assumed that x; > x. Write 6 = 0 —

1

i

Y xi, @ = axy,m = 0xy. Because a > 0, so @) < w,. We have

IL _df(6)de . df(e)der _ df(8)  df(o)

dx1 do dx do; dx;  df do;

IL _df(0)do _df(@)dw; _df(0)  df(e)
dx;  dO dx dw, dx, dO daw,
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Due to f(x) is convex function, hence

A= (x1 —x2) (g—xLl - g—xLz) = (x1 —x2) <d];,(a(:1) - d];(aa)f)) >0,

by Lemma 1 L(x) is Schur convex with (xy,...,x,) on I" C R". By the majorization inequality

in Lemma 2

én(x)’... ,An(x)/ =< (xl,... 7xn)

and Definition 1, we have

f (5 - ixl) + i a ' flax) > f(8 —nAn(x))+na f(aA(x)).
i=1 i=1

Lett =A,(x),z(t) = f(8 —nt) +nB~ ' f(at), write 8; = & —nt, 0, = at, then

' df(e df(e
z (1) =—n J;,(ell)nLn ];(922).

Let 7 (1) = 0, we get

df(6r) _df(6)

) de,  do,

o

Obviously, when 6; = 6, formula (5) holds, therefore, 7o = =

Because 2’ (1) = 2" (01) + anf’ (6) > 0, 50 2(10) = 2 (52

is a solution to Z (f) = 0.

a +n) is minimum of z(¢), hence

n

F8—n)+Y a ' flax) > f(8 —nAn(x)) +no ! f(atAn(x))

i=1
> o f( ad )
a-+n oa-+n

The proof of Theorem 1 is complete. (]
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