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Abstract. The current work explores some novel dynamic inequalities of the Steffensen type on time scales by
using the diamond-, which is characterized as a linear mixture of the delta and nabla integrals. The derived in-
equalities not only offer a generalization of some dynamic inequalities but also extend a few recognized continuous
inequalities by establishing new discrete inequalities on time scales.

Keywords: Steffensen’s inequality; dynamic inequality; diamond-« integral; time scales.

2010 AMS Subject Classification: 26D 10, 26D 15, 26D20, 34A12, 34A40.

1. INTRODUCTION

The Steffensen Integral Inequality is a powerful tool in the analysis of integrals, particu-
larly in approximation theory and functional analysis. It is a generalization of several classical
inequalities and is typically used to establish bounds for integrals involving convex functions.

The Steffensen Integral Inequality is an inequality that provides upper and lower bounds for
the integral of a convex function under certain conditions. The original form of this inequal-
ity, developed by the Norwegian mathematician Karl Steffensen, is often applied to integrals
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involving the derivative of a convex function. It plays a crucial role in numerical integration,
helping to estimate the error in various numerical methods.

The classical Steffensen’s inequality [18] can be expressed as:
Let ¥ and & be integrable functions on [h;,1;] such that ¥ is non increasing and for every
§ € [91,92], 0 < S(H) < 1. The inequality that follows is

2 "2

(1) [ < [ Comemas< [ om)as

V1 V1
holds, where A = fn"lz S(f)df). A key observation is that if ¥ is non-decreasing, the inequality
(1.1) is reversed.
Also the discrete Steffensen’s inequality [10] is written as:
n n M
(1.2) Y, B(H)< ) ¥H)SH) < ) 9(H)
f=n—Ar+1 h=1 h=1
such that 0 < &(f) < 1, 41,4, € {1,2....n} with A, < Z’g;l S(f)) < Ay. In[14, 15] an extensive
survey of Steffensen’s integral inequality is provided.

Karl Steffensen’s extended the classical integral inequalities (such as the trapezoidal rule) and
developed a more general version that could deal with convex and concave functions, enhancing
its applicability. Inequality is particularly useful in the context of dynamic inequalities on time
scales, which is a broader framework for analyzing both continuous and discrete phenomena.

Anderson [6] provides Steffensen’s integral inequality in the context of time scales, which is
expressed as:

"2
6(3)6(E)VE§/ 3(E)VE,

"2
(13) / B(E)VE <
n—A 91

V1
where ¥ is of one sign and non increasing, 0 < &(E) < 1 for every E € [py,02]1, A =
JyrS(E)VE, and 2 — A, 91 + 4 € [91,92] 7

Some generalizations of inequality (1.3) are given by Ozkan and Yildrim in [16] as follows.
If we have the inequality

["1@0u@) < ["6E)0a(E < [ 2(E)0u(2),

V1 N1
for ¥ > 0,E € [p1,92] 7, and the inequality
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for ¥ <0,E € [p1,92] 7, then
92 92 Y
[ 2@x@0aE < [ “0@6E)0u(E) < [ 2@2E)0u()
where 0 < S(E) < x(E) for all E € [91,192] with £, 7 € [91,92] 7.

The foundation of time scale theory was laid by Steffen Hilger in his Ph.D. thesis in 1988
[11]. This approach was developed to unify the realms of discrete and continuous analysis (see
[12]). This theory has since become a focal point of much attention. The books by Bohner and
Peterson [7, 8] cover all the basic definitions related to time scaleS calculus.

Many authors have observed a wide range of dynamic inequalities on time scales through-
out history, authors explored some novel nonlinear retarded integral inequalities of the Gron-
wall-Bellman—Pachpatte type in [1], authors proved some Steefensen-type inequalities on time
scales in [2], authors discussed well-known inequalities Young’s inequality, Jensen’s inequal-
ity, Holder’s inequality, Minkowski’s inequality, Steffensen’s inequality, Hermite-Hadamard in-
equality, Cebysv’s inequality and Opial type on time scales and their extensions with weighted
functions in [5], Authors discussed continuous and discrete analogous of certain inequalities
which provides an explicit bound of some unknown functions in [13].

This article aims to establish new Steffensen-type inequalities on general time scales, as given
in [9]. By employing diamond-¢ integrals, we obtain the one-of-a-kind Steffensen inequalities.
When o = 1, the diamond- o integrals become equivalent to delta integrals, and for o = 0, they

converge to the nabla integral. A valuable analysis of diamond-a calculus is presented in [17].

2. TIME SCALES ESSENTIALS

A nonempty closed subset of the real numbers R is referred to as a time scale T. If T has
left-scattered maximum Q; then T* := T —{Q;}; otherwise, T* = T. If T has right-scattered

maximum Q; then T := T —{Q.}; otherwise, T = T. Finally, we have Tk = T, N T¥.

Definition 2.1. [7, 8] Let y : T — R be a function, where E € T, and define w*(Z) and
l//V(E) as the delta and nabla derivatives of ¥ at Z, respectively. Given any € > 0, there exist

neighborhoods V; and V, of & for every s € V; and s € V», we have:

[W(c(E)) —w(s)] - v2(E)[0(E) —s]| < &|o(E) —s],
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and

[W(p() —v(s)] - v (E)p(E) sl < elp(E) —s|.

The following is the delta and nabla integration by parts rule on time scales, as discussed in

[7, 8]:

D2
@n ) ONE)SEAE=D(92)6 () ~1)S() ~ | B7(E)S(E)AZ

"2 "2
(22) ; BV (2)S(Z)VE = 8 (12)S(n2) — 9 (91)S (1) — . O (E)S(E)VE

The link between the time scale calculus T and the difference calculus Z or differential
calculus R will be employed as shown below.
(i): f T =R, then
o(E)=p(E)=Z, wE)=v(E)=0, B4%E)=0"(E)=v(),
(2'3) 02 "2 "2
B (2)AZ — / SEWVE= [ B(E)dE.
D1

V1
(ii): If T =Z, then

(2.4)
n2 h2—1 o N2
/ (B)AE= Y 0(z), / EvE= Y 9@E
n E=y; i E=p;+1

where A and V are forward and backward difference operator.

For any E € T, the diamond-o dynamic derivative of ¥ at E is specified by
900 = 92 (E)+ (1—a)dY(E), O0<a<l,

and is represented as 1900‘, where ¥ is a Delta and nabla differentiable function on T, with T

being a time scale. For further details on diamond-o calculus, we recommend the paper [17].

3. MAIN RESULTS

This section is dedicated to stating and proving the main results.
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Lemma 3.1. Consider that

(a;) N is positive q-integrable function on [91,v;] 7.
() 9,6,%,B : [91,92]7 = R are Og-integrable function on [vy,92] 7.
(A3) [w,v]r S le,d]t C 91,927 with
L A(E)BE) Ol + [T NE)(E)Oal = f72TUE)S(E) o,
(A4) 6 € [91,92] 7.
Then

D2

[ s@mE0E [ v@rE0E- [ d@6E0

_ [ 200) _3(E) 900) ) sy e s
I (‘57(9) N(E )> O““*/( (=) 9> N(E)[x(E) -~ 6(E)]0at
(3.1)
' 19(3) M N(= o A = o
+/u ( z _ﬁt(e)>m(“)[%(~)+x(~) S(E)]0aZ

)
d E) 9(0) )« = 2 S(= = ” @_@ N(= = =
+f (m —o>‘ﬁ(~)[x(~) S(E)]0az+ [ <gﬁ<9) &(E)m(u)c%(u)oau.

Proof. Using direct computation, we derive.

[ 3@BE0E+ / IE)1(E)0at fﬁ(@)@(@)%a
—/ 9(2)B(E)0 0 + [/ 9(E <>au+/ (2 <>au+/ 9(E )%S}
[m 3(2)& oau+/ O(E <>au+/ B(E <>au+/ 3(E)S(E)aE

"2

+ 19(3)6(3)%3]
d
B (E)

-/ Vsiaz)[%(am(i)—6(3)19%(3)

d o c z ] i i
[ e -eergBoa- [ FOooneoa- [

_ ([ 26)_9(E) EYN(E)O B [ PE) 9O\ 5=y (= =
-, <z9(3) m)6<~>‘ﬁ<~>0a~+ / ( : )fﬂ(u)[x(u) S(2)|0aE

OuZ+ [ MDA - 6(2)

NE)  NG)
N(E)[B(E) +2(E) ~ S(E)]0aE

9(6) 3
NwO) NE)

_I_

—
QU

N
=1

|
Zg 3
N— — ~—m0—

3

NE) A (E) - S(E)] 0ok + /;2 ( ) S(E)N(E)OeE
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;;Eg;[/uv (E)B <>oc~+/ N(E <>ocu+/ NE Oau+/ TE)x(E) Ok

+[ 0= [ fE@eEoe- [ fEeE0- [ fEeE0.e
(3.2)

- [ @e@o.a- | ”zsit@)@(z)oaz} .
From (43)

[ 1@3E0.E+ [ R@E0u - [ HE@SE 00
Therefore
%[/V’ﬁ@) 3<>au+/ =)y 3<>au+/ FUZ) 2 (B) O

(3.3) +/ (®)x(E) <>a_—/mc (2)6 (3><>a_—/cusft(z)e(s)<>as

Hence identity (3.1) is proved directly from (3.2) and (3.3).

Corollary 3.1. Delta version of Lemma 3.1 can be found by setting oo = 1 in (3.1).

(3.4)

(90 9E) mmiian s [ BE) BO) Yoo
- (—&(6) &(EJG(H)%(H)A# ( 2 T(@))mu[x(u) 8(®))Az
(BE) 90\ e
+f (;ﬁ@)——ﬁ(9)>m<~>[%<~>+%<~> S(@)az
$(0E) 90) ) arminims wminm s (7 (30) BE) ) grm e m n
+ / <9"z(3) 0(9)>m(u)[x(u) S(E)]AZ + /d <0(9> 61(3))91(46(“)&

Corollary 3.2. When we set a@ =

0 in Lemma 3.1, we obtain the nabla form of (3.1), given by:
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/uvﬁ(E v~+/ SEEVE- [ 8(E)SE)VE

e w B (E) Le) P
Dy, (sﬁ(e) N(= > V“*/( e 6) NE)[x(E) - 6(E)|VE

+/( S °6)> N(E)[B(E) +x(E) - 6(E)]VE
¥(0) B(E)

2 o
P E)x(E)-6(E)|VE = | NE)S(E)VE.
(() (9)> RE)H(E) - SE@)vE+ (m(e) m)) ®)8(@)

Corollary 3.3. When T is equal to R in Lemma 3.1, relation (2.3) allows us to deduce:

/ =)dE + / az- | ?2 9(2)&(2)dE

(3.5)

Qa
,i"

:’08
[]
EE

32

d ~B(0) | % - = —\1 = 2 w_ﬁ(g) o o
+f (9"1(3) : (6)>m<~>mu> S(E)z+ | (sj’t(e) w@)sn(a)@(u)du.

Corollary 3.4. If T =7 in Lemma 3.1, and utilizing relation (2.3), the identity (3.1) becomes

v—1 d—1 92
Y 0@B(E)+ Y 2@x(E) - ) 2@)S(E)
E=u E=c E=p;

_¥ (20 BE
_7; (fit(e) N(Z

Ly (’?23 - %";) RE)BE) +x(2) - 6(2)]
(&) _ >)

E=d
Theorem 3.1. Let (4;) — (43) of Lemma 3.1,

(As) © /N is non increasing, and

(As) 0 < 6(2) < x(£) <B(E) VE € [91, 1]
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be satisfied, then the following inequalities are hold:

n2
(3.6) B(E)S(E)0ak < &,
)

92 d
(3.7) 3(E)S(E)0at < £ / (

D1

3(E)  3()
RE) @)

68 | " 5(2)S(2)0aE < £ /

D1 d

where

v(8ld) _ (= o =S -
* / d) () N(E)[B(E) +x(E) — 6(F)]OaE.

If 9/ 91 is non decreasing, then inequalities (3.6),(3.7) and (3.8) must be reversed.

Proof. Since ¥/ MNis nonincreasing, MNis positive, and 0 < & < y <8, we have

¢ 19(3)_M (= ) G(= =
(3.9) / (m & sﬁ(@)m“)[ﬂ“) S()]OGaZ >0,
and
(9d) D) gymreimin
(3.10) /d <%—%)‘ﬁ(u)6(u)<>auzo.

From (3.1),(3.9) and (3.10) with 8 = d, we obtain

[ o@mE 0 [ 9@E 0w [ 0@6E@)06E

(3.11) +/C
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+f (M W) REB(E) +1(E) - S(@)]0aE

N(d) N(E)

(E) 3 sy214(2) - B0z
— / (m( )mmmu) S(E)0uE

n(9(d)
o, (W ()

Hence (3.6) is proved.
Also (3.7) is proved from (3.1) and (3.10), Similarly (3.8) is proved from (3.1) and (3.9). 0

Corollary 3.5. After setting oo = 1 in Theorem 3.1, we obtain the following delta version of

inequalities (3.6),(3.7),(3.8), respectively.

= = = _ ¢ 0(3) _ & = ") ) o
61y [TaEsEnz<s / ( ERET d)> NE)A(E) - SE)AT < &,
B(E)

G4 [TeESEAT <8, - /”2 (M _
d

Where

c[vE) v(d) o A
ACE sft(d)>6(~)’ﬁ(~)A_

(D) OE) sz e o(z)Az
)\ S &(EJ E)x(E)-6(E)]

R P
" \ @) ﬁt(a))m(“>[%<“>+%<~> &(2))AZ

Corollary 3.6. The nable version of inequalities (3.6),(3.7),(3.8) can be found by setting o =0

in Theorem 3.1 respectively.

)
(3.15) / "B(E)S(E)VE < £,
D1

(3.16) /020(

)

\[_11
&
Lxl
<]
(x]
INA
)
[\)
|
—
QU
/N
<>
\[x/]
|
ol &
&
N~
=
\[_xl
X
Lxl
|
(6]
\[_xl
<
(x]
VAN
¢}
5
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D2 "2 [ 3 (d Y E °
(3.17) / 3(2)S(E)VE §£2—/ (ﬁ— ( )> S(E)N(E)VE < £».

h a \Nd) NE)
Where
g = uvﬁ(E)%(E)V3+ cdﬁ(E)x(E)VE
) 19_d) TN (V=
s (aﬁ(z)_sj’rt(d) SEME)VE
u(md) 3(8)

(i

N(E)BE) +2(8) - S(E)V

Corollary 3.7. If T = R and using the relation (2.3) in Theorem 3.1, we obtain the following

inequalities, respectively.

w
G
™
S,
o
IN
=
2

(3.18) /;219(

02 d
(3.19) 9 (2)G(2)dE < £ —/ ( :

"2 92
(3.20) Y(E)S(E)dE < &3 _/ <_ _
d

Where

“(3E) ) EYN(E)IE
s (9"1(3) N(d) SEMN(E)M=
+ <M 28 sm) () - (@)

N(E)[B(E) +x(E) — &(E)]dE.

Corollary 3.8. If T = 7Z and applying the relation (2.3) in Theorem 3.1, we get the following

respectively.

(3.21) ) H(E)S(E) < L,



(3.22)

(3.23)

Where
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v—1 -1
Y 9(E)B(E) +2; B(E)x(E)
= a(&)_ﬁ_@)wm:
X (M) ") s@ie
T (2@ BE)\ 5o imy am
) (M e )m<~>[x<_> &(2)]

Theorem 3.2. Let (4;) — (43) of Lemma 3.1 and

(27) O/ 3 is non increasing in the A and V cense, be fulfilled.

If

then

(3.24)

11
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Y 8d) _B(E) ) 5= = ) S(= =
+/u <%— 9"1(3)) NE)B(E) +x(F) - 6(F)]0ak.

Proof. Using (3.4) with (2.1), we get

d N2
/ 8(= = 4 / @xEAE- [ o(@)S(E)Az
1

B (E)
N(Z

_M TYN(EIAR
R S(E)N(E)AE

1

+A( ;> )
e
+/< (d) 5

N(E)[x(2) - S(2))AZ

v —_
—

Rd) @) N(E)[B(E)+x(E) - 6(F)]AE

_ / ! ( / " sum)rE - 6(3)]AE) (%)AAE]
x [—/dm (/:(E)‘ft(E)G(E)AE) (%)AAE] > 0.

Similarly, taking (3.5) with (2.2), we have

/19(3 AH+/ B (2)x(E)AZ — 19( )G (E)AE

9(E)  0(d)

Jr/n1 e ) SC JR(E)AZ

() BE)

+/c Sid) N
v od)  B(E)

At R

[ o) (42
T Pp——

/ )0+ / )00l / " 9(2)B(E)Oal

D1

N(E)[x(2) - S(2))AZ

)
—
-
N

N(E)[B(E) +2(2) - &(F)]AZ

)
)
)
)
)

d

> 0.

Therefore
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c ﬁ(E)_M g -
+/m (;57(5) d) S(Z)N(E)Oat
(@D 9E) sym e eiere s
* / <g°t(d) R(E) N(E)[x(E) — 6(E)]Vak
v M_ 19(3) - = . - -
+/u (;ﬁ(d) (=) N(E)[B(E) +x(E) - 6(E)]0aZ
=a Vﬁ(E)%(E)AEJr(Ha) Vﬁ(E)%(z)vz

rve [ (202

N(
+a/ (?(d) ?(E)>‘ft(E)[%(E)er(E)—QS(E)]AE
B

+(1+a>/uv o)

Hence, (3.24) proved.

AUTHORS’> CONTRIBUTIONS

All authors have read and finalized the manuscript with equal contribution.

CONFLICT OF INTERESTS

The authors declare that there is no conflict of interests.

13



14 LABEEB AHMAD, HAMNA YOUNAS

REFERENCES

[1] A. Abdeldaim, A. A. El-Deeb, On generalized of certain retarded nonlinear integral inequalities and its ap-
plications in retarded integro-differential equations, Appl. Math. Comput. 256 (2015), 375-380.
[2] A. Abdeldaim, A. A. El-Deeb, P. Agarwal, H. A. El-Sennary, On some dynamic inequalities of Steffensen
type on time scales, Math. Methods Appl. Sci. 41 (2018), 4737—4753.
[3] R. Agarwal, M. Bohner, A. Peterson, Inequalities on time scales: A survey, Math. Inequal. Appl. 4 (2001),
535-557.
[4] R. Agarwal, M. Bohner, A. Peterson, Inequalities on time scales, a survey, Math. Inequal. Appl. 4 (2001),
535-557.
[5] R. Agarwal, D. ORegan, S. Saker, Dynamic inequalities on time scales, Springer, Cham (2014).
[6] D.R. Anderson, Time-scale integral inequalities in pure and applied mathematics, 6 (2015), 15.
[7] M. Bohner, A. Peterson, Dynamic equations on time scales, An introduction with appl., Birkhduser Boston
(2001).
[8] M. Bohner, A. Peterson, Advance in dynamic equations on time scales, Birkhduser Boston (2003).
[9] A. A. El-Deeb, H. A. El-Sennary, Z. A. Khan, Some Steffensen type dynamic inequalities on time scales,
Adv. Differ. Equ. 2019 (2019), 246.
[10] J. C. Evard, H. Gauchman, Steffensen type inequalities over general measure spaces, Analysis 17 (1997),
301-322.
[11] S. Hilger, A Makettenkalkl with application to center manifolds, Ph.D. Thesis, Universitiat Wiirzburg (1988).
[12] S. Hilger, Analysis on measure chain—a unified approach to continuous and discrete calculus, Result Math.
18 (1990), 18-56.
[13] W. N. Li, Some new dynamic inequalities on time scales, J. Math. Anal. Appl. 319 (2006), 802-814.
[14] D. S. Mitrinovic, The Steffensen inequality, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. (1969),
1-14.
[15] D. S. Mitrinovic, J. E. Pecaric, A. M. Fink, Classical and new inequalities in analysis, Kluwer, Dordrecht
(1993).
[16] U. M. Ozkan, H. Yildirim, Steffensen’s integral inequality on time scales, J. Inequal. Appl. 2007 (2007),
1-10.
[17] Q. Sheng, M. Fadag, J. Henderson, J. M. Davis, An exploration dynamic derivatives on time scales and their
applications, Nonlinear Anal. Real World Appl. 7 (2006), 395-413.
[18] J. F. Steffensen, On certain inequalities between mean values, and their applications to actuarial problems,
Skand. Aktuarietids (1918), 82-97.
[19] Y. Tian, A.A. El-Deeb, F. Meng, Some nonlinear delay Volterra—Fredholm type dynamic integral inequalities
on time scales, Discret. Dyn. Nat. Soc. 2018 (2018), 5841985. https://doi.org/10.1155/2018/5841985.


https://doi.org/10.1155/2018/5841985

	1. INTRODUCTION
	2. Time Scales Essentials
	3. MAIN RESULTS
	Authors' Contributions
	Conflict of Interests
	References

