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1. INTRODUCTION

The well-known Steffensen’s inequality [17] is written as:

Let f and g be integrable functions on [a,b] such that f is nonincreasing and for every y ∈ [a,b],

0≤ g(y)≤ 1. Then the following inequality∫ b

b−λ

f (y)dy ≤
∫ b

a
f (y)g(y)dy ≤

∫ a+λ

a
f (y)dy (1.1)

holds, where λ =
∫ b

a g(y)dy . A point to be noted if f is nondecreasing then the inequality (1.1)

is reversed. In [13,14] a comprehensive survey on steffensen’s integral inequality can be found.
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Anderson, in [4], gave the the time scales version of Steffensen’s integral inequality as fol-

lows: ∫ b

b−λ

f (t)∇t ≤
∫ b

a
f (t)g(t)∇t ≤

∫ a+λ

a
f (t)∇t , (1.2)

where f is of one sign and nonincreasing, 0 ≤ g ≤ 1 for every t ∈ [a,b]T, λ =
∫ b

a g(t)∇t , and

b−λ , a +λ ∈ [a,b]T. We get delta version of Steffensen’s integral inequality by replacing 4

in place of ∇ in (1.2). ∫ b

b−λ

f (t)4t ≤
∫ b

a
f (t)g(t)4t ≤

∫ a+λ

a
f (t)4t , (1.3)

where f is of one sign and nonincreasing, 0 ≤ g(t) ≤ 1 for every t ∈ [a,b]T, λ =
∫ b

a g(t)4t ,

and b−λ , a +λ ∈ [a,b]T.

The theory of time scales was first developed by Steffen Hilger in 1988 in his Ph.D. thesis

[11], marking a significant milestone in the history of mathematical analysis. This theory aimed

to unify discrete and continuous analysis (see [12]). Since then, it has attracted considerable

attention. The works by Bohner and Peterson [5, 6] have made substantial contributions to the

study of time scales, offering a comprehensive approach to time scales calculus and resolving

numerous related problems.

By seeing the past history, there are many reasonable number of dynamic inequalities on

time scales are studied by many researchers. In [1, 7, 8], Authors investigate and proved some

Steffensen type inequalities using diamond-α integral. In [2, 3], Authors proved different kind

of inequalities on time scales.

2. TIME SCALES ESSENTIALS

A time scales T is an arbitrary nonempty closed subset of a real numbers R. The set of real

numbers R and set of integers Z are two well-known examples of time scales. If T has left-

scattered maximum M1 then T
κ := T−{M1}; otherwise, Tκ = T.

Let a function f : T→ R , t ∈ T
κ , f4(t) ∈ R, is said to be the delta derivative of f at t , if for

any ε > 0 there exist a neighborhood V1 of t such that, for all s ∈ V1, we have

|[ f (σ(t))− f (s)]− f4(t)[σ(t)− s ]|≤ ε|σ(t)− s |

Theorem 2.1. [18] Assume ψ,φ : are differentiable at ϖ ∈ Tκ ,
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(1) The sum ψ +φ : T→ R are also differentiable at ϖ with

(ψ +φ)M(ϖ) = ψ
M(ϖ)+φ

M(ϖ). (2.1)

(2) For any constant k and kψ : T→ R is differentiable function at ϖ with

(kψ)M(ϖ) = kψ
M(ϖ). (2.2)

(3) The product ψφ : T→ R is differentiable function at ϖ with

(ψφ)M = ψ
M(ϖ)φ(ϖ)+ψ(σ(ϖ))φM(ϖ). (2.3)

(4) If ψ(ϖ)ψ(σ(ϖ)) 6= 0, then 1
ψ

is differentiable function at ϖ with(
1
ψ

)M

(ϖ) =− ψM(ϖ)

ψ(ϖ)ψ(σ(ϖ))
. (2.4)

(5) If φ(ϖ)φ(σ(ϖ)) 6= 0, then ψ

φ
is differentiable at ϖ and(

ψ

φ

)M

(ϖ) =
ψM(ϖ)φ(ϖ)−ψ(ϖ)φM(ϖ)

φ(ϖ)φ(σ(ϖ))
. (2.5)

For example, [(ϖ)2]M = ϖ +σ(ϖ) and
( 1

ϖ

)M
=− 1

ϖσ(ϖ) .

Proposition 2.2. [10] Let a,b,c ∈ T, β ∈ R, and f,g be continuous functions on IT, then

(1)
∫ b
a (f(ϖ)+g(ϖ))4ϖ =

∫ b
a f(ϖ)4ϖ +

∫ b
a g(ϖ)4ϖ

(2)
∫ b
a (β f(ϖ))4ϖ = β

∫ b
a f(ϖ)4ϖ

(3)
∫ b
a f(ϖ)4ϖ =−

∫ a
b f(ϖ)4ϖ

(4)
∫ b
a f(ϖ)4ϖ =

∫ c
a f(ϖ)4ϖ +

∫ b
c f(ϖ)4ϖ

(5)
∫ a
a f(ϖ)4ϖ = 0.

3. MAIN RESULTS

This section is dedicated to stating and proving the main results.

(1) A1 = a,b ∈ Tκ with a < b.

(2) A2 = f1, f2, f3 : [a,b]→ R are delta integrable functions on [a,b]T.

(3) A3 = Q is of one sign and decreasing and 0≤ L(W )≤ J(W ) on [a,b]T.

(4) A4 = f4 : [a,b]→ R is delta integrable function on [a,b]T.
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Lemma 3.1. Let A1,A2 hold. Assume a sub-interval [u,v ]T ⊆ [a,b]T with the condition∫ v
u f3(t)4t =

∫ b
a f2(t)4t .

Then ∫ v

u
Q(W )J(W )4W −

∫ b

a
Q(W )L(W )4W

=
∫ u

a
L(W )[Q(v)−Q(W )]4W

+
∫ v

u
[J(W )−L(W )][Q(W )−Q(v)]4W +

∫ b

v
L(W )[Q(v)−Q(W )]4W

(3.1)

And ∫ b

a
Q(W )L(W )4W −

∫ v

u
Q(W )J(W )4W

=
∫ u

a
L(W )[Q(W )−Q(u)]4W

+
∫ v

u
[Q(u)−Q(W )][J(W )−L(W )]4W +

∫ b

v
L(W )[Q(W )−Q(u)]4W

(3.2)

Proof. By straightforward calculation, we obtain∫ v

u
Q(W )J(W )4W −

∫ b

a
Q(W )L(W )4W

=
∫ v

u
Q(W )J(W )4W −

∫ u

a
Q(W )L(W )4W −

∫ v

u
Q(W )L(W )4W −

∫ b

v
Q(W )L(W )4W

=
∫ v

u
Q(W )[J(W )−L(W )]4W −

∫ u

a
Q(W )L(W )4W −

∫ b

v
Q(W )L(W )4W (3.3)

=
∫ v

u
[J(W )−L(W )]Q(W )4W −

∫ v

u
Q(v)[J(W )−L(W )]4W

+
∫ v

u
Q(s)[J(W )−L(W )]4W

−
∫ u

a
Q(W )L(W )4W −

∫ u

a
Q(v)L(W )4W +

∫ u

a
Q(v)L(W )4W

−
∫ b

v
Q(W )L(W )4W −

∫ b

v
Q(v)L(W )4W +

∫ b

v
Q(v)L(W )4W

=
∫ v

u
[J(W )−L(W )][Q(W )−Q(v)]4W +

∫ v

u
Q(v)[J(W )−L(W )]4W

+
∫ u

a
[Q(v)−Q(W )]L(W )4W −

∫ u

a
Q(v)L(W )4W

+
∫ b

v
[Q(v)−Q(W )]L(W )4W −

∫ b

v
Q(v)L(W )4W

=
∫ u

a
[Q(v)−Q(W )]L(W )4W +

∫ v

u
[J(W )−L(W )][Q(W )−Q(v)]4W
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+
∫ b

v
[Q(v)−Q(W )]L(W )4W

+Q(v)
(∫ v

u
[J(W )−L(W )]4W −

∫ u

a
L(W )4W −

∫ b

v
L(W )4W

)
=

∫ u

a
[Q(v)−Q(W )]L(W )4W +

∫ v

u
[J(W )−L(W )][Q(W )−Q(v)]4W

+
∫ b

v
[Q(v)−Q(W )]L(W )4W

+Q(v)
(
−
∫ u

a
L(W )4W −

∫ v

u
L(W )4W −

∫ b

v
L(W )4W +

∫ v

u
J(W )4W

)
=

∫ u

a
[Q(v)−Q(W )]L(W )4W +

∫ v

u
[J(W )−L(W )][Q(W )−Q(v)]4W

+
∫ b

v
[Q(v)−Q(W )]L(W )4W +Q(v)

(
−
∫ b

a
L(W )4W +

∫ v

u
J(W )4W

)
By applying the assumption

∫ v
u J(W )4W =

∫ b
a L(W )4W in above equation we have

=
∫ u

a
[Q(v)−Q(W )]L(W )4W +

∫ v

u
[J(W )−L(W )][Q(W )−Q(v)]4W

+
∫ b

v
[Q(v)−Q(W )]L(W )4W

which proves identity (3.1).

To prove the identity (3.2) again take equation (3.3)

=
∫ v

u
Q(W )[J(W )−L(W )]4W −

∫ u

a
Q(W )L(W )4W −

∫ b

v
Q(W )L(W )4W

=
∫ v

u
[J(W )−L(W )]Q(W )4W −

∫ v

u
Q(u)[J(W )−L(W )]4W

+
∫ v

u
Q(u)[J(W )−L(W )]4W

−
∫ u

α̃

Q(W )L(W )4W −
∫ u

a
Q(u)L(W )4W +

∫ u

a
Q(u)L(W )4W

−
∫ b

v
Q(W )L(W )4W −

∫ b

v
Q(u)L(W )4W +

∫ b

v
Q(u)L(W )4W

=
∫ v

u
[J(W )−L(W )][Q(W )−Q(u)]4W +

∫ v

u
Q(u)[J(W )−L(W )]4W

+
∫ u

a
[Q(u)−Q(W )]L(W )4W −

∫ u

a
Q(u)L(W )4W

+
∫ b

v
[Q(u)−Q(W )]L(W )4W −

∫ b

v
Q(u)L(W )4W

=
∫ u

a
[Q(u)−Q(W )]L(W )4W +

∫ v

u
[J(W )−L(W )][Q(W )−Q(u)]4W
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+
∫ b

v
[Q(u)−Q(W )]L(W )4W

+Q(u)
(∫ v

u
[J(W )−L(W )]4W −

∫ u

a
L(W )4W −

∫ b

v
L(W )4W

)
=

∫ u

a
[Q(u)−Q(W )]L(W )4W +

∫ v

u
[J(W )−L(W )][Q(W )−Q(u)]4W

+
∫ b

v
[Q(u)−Q(W )]L(W )4W

+Q(u)
(
−
∫ u

a
L(W )4W −

∫ v

u
L(W )4W −

∫ b

v
L(W )4W +

∫ v

u
J(W )4W

)
=

∫ u

a
[Q(u)−Q(W )]L(W )4W +

∫ v

u
[J(W )−L(W )][Q(W )−Q(u)]4W

+
∫ b

v
[Q(u)−Q(W )]L(W )4W +Q(u)

(
−
∫ b

a
L(W )4W +

∫ v

u
J(W )4W

)
Using assumption

∫ v
u J(W )4W =

∫ b
a L(W )4W in above equation.

=
∫ u

a
[Q(u)−Q(W )]L(W )4W +

∫ v

u
[J(W )−L(W )][Q(W )−Q(u)]4W

+
∫ b

v
[Q(u)−Q(W )]L(W )4W

The identity (3.2) is thus completely proved.

Remark 3.2. By setting u→ a,v→W in (3.1) and u→ `,v→ b in (3.2) respectively,we get the

same result when α = 1 in [15, Lemma 3.3].

Theorem 3.3. Assume A1,A2,A3 hold. Further suppose that
∫ b

a L(W )4W =
∫ v j

u j
J(W )4W

where [u j,v j]T ⊆ [a,b]T for j = 1,2 and v1 ≤ v2.

Then

∫ v2

u2

Q(W )J(W )4W − s(b,u2,v2)≤
∫ b

a
Q(W )L(W )4W ≤

∫ v1

u1

Q(W )J(W )4W +S(a,u1,v1)

where

S(a,u1,v1) =
∫ u1

a
[Q(W )−Q(v1)]L(W )4W ≥ 0

s(b,u2,v2) =
∫ b

v2

[Q(u2)−Q(W )]L(W )4W ≥ 0
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Proof. By setting u = u1 and v = v1 in identity (3.1), we have∫ v1

u1

Q(W )J(W )4W −
∫ b

a
Q(W )L(W )4W

=
∫ u1

a
L(W )[Q(v1)−Q(W )]4W

+
∫ v1

u1

[J(W )−L(W )][Q(W )−Q(v1)]4W +
∫ b

v1

L(W )[Q(v1)−Q(W )]4W

(3.4)

Since Q is decreasing on intervals [u1,v1],[v1,b] and from inequality 0≤ L(W )≤ J(W )

we conclude that∫ b

v1

L(W ) [Q(v1)−Q(W )]4W ≥ 0 and
∫ v1

u1

[J(W )−L(W )] [Q(W )−Q(v1)]4W ≥ 0

which implies that∫ v1

u1

[J(W )−L(W )] [Q(W )−Q(v1)]4W +
∫ b

v1

L(W ) [Q(v1)−Q(W )]4W ≥ 0

Therefore equation (3.4) becomes∫ v1

u1

Q(W )J(W )4W −
∫ b

a
Q(W )L(W )4W +

∫ u1

a
L(W )[Q(W )−Q(v1)]4W ≥ 0

∫ v1

u1

Q(W )J(W )4W +S(a,u1,v1)≥
∫ b

a
Q(W )L(W )4W

(3.5)

where

S(a,u1,v1) =
∫ u1

a
L(W )[Q(W )−Q(v1)]4W ≥ 0.

Now by setting u = u2 and v = v2 in identity (3.2), we have∫ b

a
Q(W )L(W )4W −

∫ v2

u2

Q(W )J(W )4W

=
∫ u2

a
L(W )[Q(W )−Q(u2)]4W

+
∫ v2

u2

[Q(u2)−Q(W )][J(W )−L(W )]4W +
∫ b

v2

L(W )[Q(W )−Q(u2)]4W

(3.6)

By the assumption on intervals [a,u2],[u2,v2] the function Q is decreasing and Q ≤ 0 and also

from inequality 0≤ L(W )≤ J(W ) we have∫ u2

a
L(W )[Q(W )−Q(u2)]4W ≥ 0 and

∫ v2

u2

[Q(u2)−Q(W )][J(W )−L(W )]4W ≥ 0
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which implies that∫ u2

a
L(W )[Q(W )−Q(u2)]4W +

∫ v2

u2

[Q(u2)−Q(W )][J(W )−L(W )]4W ≥ 0

So equation (3.6) becomes∫ b

a
Q(W )L(W )4W −

∫ v2

u2

Q(W )J(W )4W ≥
∫ b

v2

L(W )[Q(W )−Q(u2)]4W

∫ b

a
Q(W )L(W )4W ≥

∫ v2

u2

Q(W )J(W )4W − s(b,u2,v2)

(3.7)

where

s(b,u2,v2) =
∫ b

v2

[Q(u2)−Q(W )]L(W )4W ≥ 0.

By the combination of the inequalities (3.5) and (3.7) the proof of inequality (3.4) is completed.

Remark 3.4. By setting u1→ α,u2→ β −λ ,v1→ α +λ ,v2→ β and J(W ) = 1, the inequality

(3.4) reduces to inequality (1.1).

Theorem 3.5. Assume A1,A2,A3 hold. Further let
∫ b

a L(W )4W =
∫ v j

u j
J(W )4W where

[u j,v j]T ⊆ [a,b]T for j = 1,2,3 and v1 ≤ v2 ≤ v3.

Then
3

∑
j=2

∫ v j

u j

Q(W )J(W )4W − y(b,u2,v2,u3,v3)

≤ 2
∫ b

a
Q(W )L(W )4W

≤
2

∑
j=1

∫ v j

u j

Q(W )J(W )4W +Y (a,u1,v1,u2,v2)

(3.8)

where

y(b,u2,v2,u3,v3) = ∑
3
j=2
∫ b

v j
[Q(u j)−Q(W )]L(W )4W ≥ 0

Y (a,u1,v1,u2,v2) = ∑
2
j=1
∫ u j

a [Q(W )−Q(v j)]L(W )4W ≥ 0

Proof. By setting u = u j and v = v j for j=1,2 in identity (3.1), respectively.∫ v1

u1

Q(W )J(W )4W −
∫ b

a
Q(W )L(W )4W

=
∫ u1

a
L(W )[Q(v1)−Q(W )]4W

+
∫ v1

u1

[J(W )−L(W )][Q(W )−Q(v1)]4W +
∫ b

v1

L(W )[Q(v1)−Q(W )]4W

(3.9)
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∫ v2

u2

Q(W )J(W )4W −
∫ b

a
Q(W )L(W )4W

=
∫ u2

a
L(W )[Q(v2)−Q(W )]4W

+
∫ v2

u2

[J(W )−L(W )][Q(W )−Q(v2)]4W +
∫ b

v2

L(W )[Q(v2)−Q(W )]4W

(3.10)

Addition of equations (3.9) and (3.10) yields.

2

∑
j=1

∫ v j

u j

Q(W )J(W )4W −2
∫ b

a
Q(W )L(W )4W

=
2

∑
j=1

∫ u j

a
L(W )[Q(v j)−Q(W )]4W

+
2

∑
j=1

∫ v j

u j

[J(W )−L(W )][Q(W )−Q(v j)]4W +
2

∑
j=1

∫ b

v j

L(W )[Q(v j)−Q(W )]4W

(3.11)

From inequality 0≤ L(W )≤ J(W ) and by the assumption Q is decreasing on intervals

[u1,v1], [u2,v2], [v1,b], [v2,b], we conclude that∫ v j

u j

[J(W )−L(W )][Q(W )−Q(v j)]4W ≥ 0

and
∫ b

v j

L(W )[Q(v j)−Q(W )]4W ≥ 0 f or j = 1,2

So
2

∑
j=1

[∫ v j

u j

[J(W )−L(W )][Q(W )−Q(v j)]4W +
∫ b

v j

L(W )[Q(v j)−Q(W )]4W

]
≥ 0 (3.12)

Equation (3.11) becomes together with (3.12).

2

∑
j=1

∫ v j

u j

Q(W )J(W )4W −2
∫ b

a
Q(W )L(W )4W ≥

2

∑
j=1

∫ u j

a
L(W )[Q(v j)−Q(W )]4W

2

∑
j=1

∫ v j

u j

Q(W )J(W )4W +Y (a,u1,v1,u2,v2)≥ 2
∫ b

a
Q(W )L(W )4W (3.13)

where

Y (a,u1,v1,u2,v2) =
2

∑
j=1

∫ u j

a
[Q(W )−Q(v j)]L(W )4W ≥ 0.
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Now by replacing u = u j and v = v j for j=2,3 in identity (3.2), respectively.

∫ b

a
Q(W )L(W )4W −

∫ v2

u2

Q(W )J(W )4W

=
∫ u2

a
L(W )[Q(W )−Q(u2)4W

+
∫ v2

u2

[Q(u2)−Q(W )][J(W )−L(W )]4W +
∫ b

v2

L(W )[Q(W )−Q(u2)]4W

(3.14)

∫ b

a
Q(W )L(W )4W −

∫ v3

u3

Q(W )J(W )4W

=
∫ u3

a
L(W )[Q(W )−Q(u3)4W

+
∫ v3

u3

[Q(u3)−Q(W )][J(W )−L(W )]4W +
∫ b

v3

L(W )[Q(W )−Q(u3)]4W

(3.15)

Addition of equations (3.14) and (3.15) yields.

2
∫ b

a
Q(W )L(W )4W −

3

∑
j=2

∫ v j

u j

Q(W )J(W )4W

=
3

∑
j=2

∫ u j

a
L(W )[Q(W )−Q(u j)4W

+
3

∑
j=2

∫ v j

u j

[Q(u j)−Q(W )][J(W )−L(W )]4W +
3

∑
j=2

∫ b

v j

L(W )[Q(W )−Q(u j)]4W

(3.16)

In the view of assumption Q is decreasing on intervals [a,u2], [a,u3], [u2,v2], [u3,v3] and Q ≤ 0

and also from inequality 0≤ L(W )≤ J(W ). we have,

∫ u j

a
L(W )[Q(W )−Q(u j)4W ≥ 0

and
∫ v j

u j

[Q(u j)−Q(W )][J(W )−L(W )]4W ≥ 0 f or j = 2,3

So

3

∑
j=2

[∫ u j

a
L(W )[Q(W )−Q(u j)4W ≥ 0+

∫ v j

u j

[Q(u j)−Q(W )][J(W )−L(W )]4W

]
≥ 0 (3.17)



STEFFENSEN-TYPE INEQUALITIES FOR DELTA-INTEGRABLE FUNCTIONS 11

Therefore equation (3.16) becomes, together with equation (3.17).

2
∫ b

a
Q(W )L(W )4W −

3

∑
j=2

∫ v j

u j

Q(W )J(W )4W ≥
3

∑
j=2

∫ b

v j

L(W )[Q(W )−Q(u j)]4W

2
∫ b

a
Q(W )L(W )4W ≥

3

∑
j=2

∫ v j

u j

Q(W )J(W )4W − y(b,u2,v2,u3,v3) (3.18)

where

y(b,u2,v2,u3,v3) =
3

∑
j=2

∫ b

v j

[Q(u j)−Q(W )]L(W )4W ≥ 0

Combining the inequalities (3.13) and (3.18) we have the required result(3.8).

Theorem 3.6. Assume A1,A2,A3 hold. Further let
∫ b

a L(W )4W =
∫ v j

u j
J(W )4W where

[u j,v j]T ⊆ [a,b]T for j = 1,2,3, ...,n and also v1 ≤ v2 ≤ v3....≤ vn.

Then

n

∑
j=2

∫ v j

u j

Q(W )J(W )4W − r(un,vn)

≤ (n−1)
∫ b

a
Q(W )L(W )4W

≤
n−1

∑
j=1

∫ v j

u j

Q(W )J(W )4W +R(un−1,vn−1).

(3.19)

where

r(un,vn) =
∫ b

v j
[Q(u j)−Q(W )]L(W )4W ≥ 0

R(un−1,vn−1) =
∫ u j

a [Q(W )−Q(v j)]L(W )4W ≥ 0

Proof. By replacing u = u j and v = v j for j=1,2,...,n-1 in identity (3.1), respectively.

∫ v1

u1

Q(W )J(W )4W −
∫ b

a
Q(W )L(W )4W

=
∫ u1

a
L(W )[Q(v1)−Q(W )]4W

+
∫ v1

u1

[J(W )−L(W )][Q(W )−Q(v1)]4W +
∫ b

v1

L(W )[Q(v1)−Q(W )]4W

(3.20)
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∫ v2

u2

Q(W )J(W )4W −
∫ b

a
Q(W )L(W )4W

=
∫ u2

a
L(W )[Q(v2)−Q(W )]4W

+
∫ v2

u2

[J(W )−L(W )][Q(W )−Q(v2)]4W +
∫ b

v2

L(W )[Q(v2)−Q(W )]4W

(3.21)

Similarly∫ vn−1

un−1

Q(W )J(W )4W −
∫ b

a
Q(W )L(W )4W

=
∫ un−1

a
L(W )[Q(vn−1)−Q(W )]4W

+
∫ vn−1

un−1

[J(W )−L(W )][Q(W )−Q(vn−1)]4W +
∫ b

vn−1

L(W )[Q(vn−1)−Q(W )]4W

(3.22)

Addition of all above equations we have

n−1

∑
j=1

∫ v j

u j

Q(W )J(W )4W − (n−1)
∫ b

a
Q(W )L(W )4W

=
n−1

∑
j=1

∫ u j

a
L(W )[Q(v j)−Q(W )]4W

+
n−1

∑
j=1

∫ v j

u j

[J(W )−L(W )][Q(W )−Q(v j)]4W +
n−1

∑
j=1

∫ b

v j

L(W )[Q(v j)−Q(W )]4W

(3.23)

From inequality 0≤ L(W )≤ J(W ) and by our assumption, Q is decreasing on intervals

[u1,v1] , [u2,v2] ,. . . ,[un,vn]. we have

∫ v j

u j

[J(W )−L(W )][Q(W )−Q(v j)]4W ≥ 0

and
∫ b

v j

L(W )[Q(v j)−Q(W )]4W ≥ 0 f or j = 1,2, ...,n−1

So

n−1

∑
j=1

[∫ v j

u j

[J(W )−L(W )][Q(W )−Q(v j)]4W +
∫ b

v j

L(W )[Q(v j)−Q(W )]4W

]
≥ 0 (3.24)
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Finally Equation (3.23) becomes, together with equation (3.24).

n−1

∑
j=1

∫ v j

u j

Q(W )J(W )4W +R(un−1,vn−1)≥ (n−1)
∫ b

a
Q(W )L(W )4W (3.25)

where

R(un−1,vn−1) =
∫ u j

a
[Q(W )−Q(v j)]L(W )4W ≥ 0

Now by setting u = u j and v = v j for j=2,3,...,n in identity (3.2), respectively.∫ b

a
Q(W )L(W )4W −

∫ v2

u2

Q(W )J(W )4W

=
∫ u2

a
L(W )[Q(W )−Q(u2)4W

+
∫ v2

u2

[Q(u2)−Q(W )][J(W )−L(W )]4W +
∫ b

v2

L(W )[Q(W )−Q(u2)]4W

(3.26)

∫ b

a
Q(W )L(W )4W −

∫ v3

u3

Q(W )J(W )4W

=
∫ u3

a
L(W )[Q(W )−Q(u3)4W

+
∫ v3

u3

[Q(u3)−Q(W )][J(W )−L(W )]4W +
∫ b

v3

L(W )[Q(W )−Q(u3)]4W

(3.27)

Similarly∫ b

a
Q(W )L(W )4W −

∫ vn

un

Q(W )J(W )4W

=
∫ un

a
L(W )[Q(W )−Q(un)4W

+
∫ vn

un

[Q(un)−Q(W )][J(W )−L(W )]4W +
∫ b

vn

L(W )[Q(W )−Q(un)]4W

(3.28)

Addition of all above equations yields.

(n−1)
∫ b

a
Q(W )L(W )4W −

n

∑
j=2

∫ v j

u j

Q(W )J(W )4W

=
n

∑
j=2

∫ u j

a
L(W )[Q(W )−Q(u j)]4W

+
n

∑
j=2

∫ v j

u j

[Q(u j)−Q(W )][J(W )−L(W )]4W +
n

∑
j=2

∫ b

v j

L(W )[Q(W )−Q(u j)]4W

(3.29)
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By our assumption, Q is decreasing on intervals [a,u2] , [a,u3] ,...,[a,un] and from inequality

0≤ L(W )≤ J(W ). we conclude that,∫ u j

a
L(W )[Q(W )−Q(u j)]4W ≥ 0

and
∫ v j

u j

[Q(u j)−Q(W )][J(W )−L(W )]4W ≥ 0 f or j = 2,3, ...,n

So

n

∑
j=2

[∫ u j

a
L(W )[Q(W )−Q(u j)]4W +

∫ v j

u j

[Q(u j)−Q(W )][J(W )−L(W )]4W

]
≥ 0 (3.30)

Finally Equation (3.29) becomes, together with equation (3.30).

(n−1)
∫ b

a
Q(W )L(W )4W ≥

n

∑
j=2

∫ v j

u j

Q(W )J(W )4W − r(un,vn) (3.31)

where

r(un,vn) =
∫ b

v j

[Q(u j)−Q(W )]L(W )4W ≥ 0

which yields the conclusion of the theorem 3.6 by combining inequalities (3.25) and (3.31).

Theorem 3.7. Suppose A1,A2,A4 hold. with Q is of one sign and decreasing and

0 ≤ N(W ) ≤ L(W ) ≤ J(W ) − N(W ) on [a,b]T. Further suppose
∫ b

a L(W )4W =∫ v j
u j
J(W )4W

where [u j,v j]T ⊆ [a,b]T for j = 1,2 and v1 ≤ v2.

Then∫ v2

u2

Q(W )J(W )4W +
∫ v2

a
|[Q(W )−Q(u2)]N(W )|4W −

∫ b

v2

[Q(u2)−Q(W )]L(W )4W

≤
∫ b

a
Q(W )L(W )4W

≤
∫ v1

u1

Q(W )J(W )4W +
∫ u1

a
L(W )[Q(W )−Q(v1)]4W

−
∫ b

u1

|[Q(W )−Q(v1)]N(W )|4W

(3.32)

Proof. By the assumption that function Q one sign and nonincreasing function on the interval

[v1,b] and 0≤ N(W )≤ L(W )≤ J(W )−N(W )
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it follows that∫ v1

u1

|Q(W )−Q(v1)|[J(W )−L(W )]4W +
∫ b

v1

|Q(v1)−Q(W )|L(W )4W

≥
∫ v1

u1

|Q(W )−Q(v1)|N(W )4W +
∫ b

v1

|Q(v1)−Q(W )|N(W )4W

=
∫ b

u1

|[Q(W )−Q(v1)]|N(W )4W

(3.33)

Also since Q one sign and nonincreasing function on intervals [a,u2] and [u2,v2], it follows that

∫ u2

a
|Q(W )−Q(u2)|L(W )4W +

∫ v2

u2

|Q(u2)−Q(W )|[J(W )−L(W )]4W

≥
∫ u2

a
|Q(W )−Q(u2)|N(W )4W +

∫ v2

u2

|Q(u2)−Q(W )|N(W )4W

=
∫ v2

a
|Q(W )−Q(u2)|N(W )4W

(3.34)

using inequality (3.33) equation (3.4) can be written as∫ v1

u1

Q(W )J(W )4W −
∫ b

a
Q(W )L(W )4W +

∫ u1

a
[Q(W )−Q(v1)]L(W )4W

≥
∫ b

u1

|[Q(W )−Q(v1)]N(W )|4W

(3.35)

and using inequality (3.34) equation (3.6) can be written as∫ b

a
Q(W )L(W )4W −

∫ v2

u2

Q(W )J(W )4W −
∫ v2

u2

[J(W )−L(W )][Q(W )−Q(u2)]4W

≥
∫ v2

a
|[Q(W )−Q(u2)]N(W )|4W

(3.36)

By the combination of the inequalities (3.35) and (3.36) the inequality (3.32) is proved.

Remark 3.8. Inequality (3.32) reduces to inequality (3.4), when N(W ) = 0.

Remark 3.9. A special case of inequality (3.32) can be found, if we put N= ℑ and J= 1, so∫ v2

u2

Q(W )4W −
∫ b

v2

[Q(u2)−Q(W )]L(W )4W +ℑ

∫ v2

a
|[Q(W )−Q(u2)]|4W

≤
∫ b

a
Q(W )L(W )4W

≤
∫ v1

u1

Q(W )4W +
∫ u1

a
L(W )[Q(W )−Q(v1)]4W −ℑ

∫ b

u1

|[Q(W )−Q(v1)]|4W
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where u1,u2,v1,v2 ∈ [a,b]T and 0≤ ℑ≤ L(W )≤ 1−ℑ for all W ∈ [a,b]T.
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