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Abstract. By employing delta integrals, we establish new Steffensen-type dynamic inequalities on arbitrary time
scales, thereby extending and unifying several known results of Steffensen-type inequalities within a broader and
more flexible analytical framework.
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1. INTRODUCTION

The well-known Steffensen’s inequality [17] is written as:
Let f and 4 be integrable functions on [a, 6] such that £ is nonincreasing and for every y € [a, 6],

0 < 4(y) < 1. Then the following inequality

b b at+A
/ﬁ_lf(y)dyé/a f(y)y(y)dyﬁ/a f(y)dy (1.1)

holds, where A = | f 4(y)dy. A point to be noted if £ is nondecreasing then the inequality (1.1)
is reversed. In [13,14] a comprehensive survey on steffensen’s integral inequality can be found.
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Anderson, in [4], gave the the time scales version of Steffensen’s integral inequality as fol-

lows:
at+i

/:)Lf(t)Vt < /:][(t)g(t)Vt < /a f(¢)Vt, (1.2)

where f is of one sign and nonincreasing, 0 < g < 1 for every ¢ € [a, b]1, A = ffg(t)Vt, and
b—A, a+ A € [a,b]T. We get delta version of Steffensen’s integral inequality by replacing A
in place of V in (1.2).

/;;Lf(tmtS/uﬁf(t)y(tMtS/aMf(t)At, (1.3)

where f is of one sign and nonincreasing, 0 < 4(t) < 1 for every ¢ € [a, b|T, A = ffg(t)At,
and 6—A, a+ A € [a, b]T.

The theory of time scales was first developed by Steffen Hilger in 1988 in his Ph.D. thesis
[11], marking a significant milestone in the history of mathematical analysis. This theory aimed
to unify discrete and continuous analysis (see [12]). Since then, it has attracted considerable
attention. The works by Bohner and Peterson [5, 6] have made substantial contributions to the
study of time scales, offering a comprehensive approach to time scales calculus and resolving
numerous related problems.

By seeing the past history, there are many reasonable number of dynamic inequalities on
time scales are studied by many researchers. In [1,7, 8], Authors investigate and proved some
Steffensen type inequalities using diamond- integral. In [2, 3], Authors proved different kind

of inequalities on time scales.

2. TIME SCALES ESSENTIALS

A time scales T is an arbitrary nonempty closed subset of a real numbers R. The set of real
numbers R and set of integers Z are two well-known examples of time scales. If T has left-
scattered maximum 9 then T® := T— {;}; otherwise, T = T.

Let a function f: T— R, t € T¥, f2(t) € R, is said to be the delta derivative of f at ¢, if for

any € > 0 there exist a neighborhood 7/; of ¢ such that, for all s € 7/;, we have
[f(o(£) = f()] = f2 (D)o (t) = s]|< e o () s

Theorem 2.1. [18] Assume y, ¢ : are differentiable at @ € T,
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(1) The sum y+ ¢ : T — R are also differentiable at @ with
(V+¢)"(@) = y* (@) +9¢°(@). 2.1)
(2) For any constant k and ky : T — R is differentiable function at @ with
(ky)*(@) = ky*(@). (2.2)
(3) The product w¢ : T — R is differentiable function at @ with
(v9)" =y*(@)¢(®) +y(c(@))¢"(@). (2.3)

(4) If y(@)y(o(@)) #0, then % is differentiable function at @ with

0 y(@)
(w) @)=~ @we@) @4

(5) If p(@)¢(o(@)) #0, then ¥ o is differentiable at @ and

wv\* . vA(@)9(0) - y(@)9" (@)
() @=" ey 23
For example, [(®©)%]* = @ + o(®) and (%)A = _a)ol(aj)'

Proposition 2.2. [10] Let a,b,c € T, B € R, and f,g be continuous functions on I, then

(1) [{(f(®@)+g(@)Ao = [P (@) AG+ [ 9(®)A®
(2) [2(Bf(@) 2w =B L (@) Aw

(3) [7(®@)Am = - [ (@) Ao
(4) [JH@) A5 = [{§(@)AD + [ {(B)As
(5) g f(@)Aw =0.

3. MAIN RESULTS

This section is dedicated to stating and proving the main results.
(1) @ = a,b € T* with a < b.
(2) @5 = f1,f2, /5 |a, 6] — R are delta integrable functions on |[a, 6].
(3) o3 = 2 is of one sign and decreasing and 0 < L(#) < J(#') on [a, bT.
(4) oy = fa: [a, b)) — R is delta integrable function on [a, b|.
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Lemma 3.1. Let <], o/ hold. Assume a sub-interval [u,v|r C [a,b]T with the condition

IAGINEN S AGIY:

Then
Com I AW — / " owya A
- aul(W)[Q(v)—Q(W)]AW (3.1)
+ ;[3’(7/)—1(7/)][3(7/) 2( )]AWJF/ 20v)—20)|AW
And

R / C oI AW

= [ I)LW) = 2u)\LW (3.2)

a

+ [126) - 2030 x0m)2w + [ 220 - 20l

u

Proof. By straightforward calculation, we obtain
/u "I AW~ / R AN
_ /VQ(W)BI(V/)AW—/MQ(V/)I(V/)AW—/MVQ(W)EL(V/)AW—/vﬁo@(V/)l(W)AV/
_ / 2w AW — / DV ) AW — / o s (3.3)
_ / I ) - L) 2H) N — / 2WFH) - L) AW
+ / 9(s ValIN
_ / QNI )W — / DWEW)VAY + / R YN
- / 53(7/)1("//)A7/— / " oL oW+ / "o aw
=[O -2mieon) - 2wiaw + [ 2wEor) -amsw
+/“ 2(0) = 2(W) L) AW—/ﬂuQ(v)i(W)AW
+/ AW/ﬁﬁvl(W)AW

- / (2(v) — QW) AW ) AW + / W) - LWL ) — 20) ] AW
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+2(v) (-/ i(W)A“//—/vl % AW—/VEI(W)A“//JF/MVBI(W)AW)

- /M[Q(v)—Q(W)]l(V/ A“///Jr/ W) =AW )|[LW) - 20)| AW
+/ WVAH + D(v ( /1 AW+/3! AW)
By applying the assumption [*J(# VAW = [PL(#) AW in above equation we have
— / [20) = 2L AW + / F)-ZWN2W) - 20"
+ / W)AW

which proves identity (3.1).

To prove the identity (3.2) again take equation (3.3)

_ / 2003V N / QNVEW)DW — / QNI OW
_ / I - WVNY — / RIN
+ [ 2 AW

_ / WV ) AW — / " oA )N + / I AN
b b b
- / DIVEW )Y — / DLW AW + / DLW AW
_ / B - L)L) - 2] AW + / "W IW) - LW AW
+ / L2w) — 2NV ) AW — / WLV AW

+/vﬁ[g() WYY — /

_ /a”[g(@_g(ymwy ar+ [BO -2 - 2wiaw
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+ / "L 2) - 2NE AW
+ () ( / B -1 AW — / ‘L) A — / EI(W)AW)
= [120-20mEon s+ [ Bo -x)ie0r) - 2w)aw
+ / "L 20) — 2R ) AW
+2(u) (—/aui(%‘/)AV/—/MVBL(W)AW—/VEI(V//)AV/Jr/MvBI(W)AW/)
= [12w-2omamsw + [ 3o -1)ieon) - 2w)aw
+ [ L20) - 2NEW) D + D) (- / SR / Vwmaw)
Using assumption [YF(#)AW = [P L(#) AW in above equation.
= [lew-2onmonar+ [ BOH-lien) - ewisw
+ / " 200) - 2 ) AW

The identity (3.2) is thus completely proved.

Remark 3.2. By settingu — a,v — # in (3.1) and u — ¢,v — b in (3.2) respectively,we get the

same result when ¢ = 1 in [15, Lemma 3.3].

Theorem 3.3. Assume <7,,.9%, .97 hold. Further suppose that faﬁ LW ) AW = f;jizl(W)AW
where [uj,v;|T C [a, b7 for j = 1,2 and vi <vy.
Then

/ P 2TV — (6,12, m2) < / o am)aw < / N 2INIW )Y +S(a,ur )
where

S(a,u,vi) = /MI[Q(W)—Q(W)]I(W)AW/EO

a

s(b,ua,v2) — / " ) — 2WNEH) AW >0
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Proof By setting u=u; and v = v in identity (3.1), we have
/M 1” 2N IH)AY — / " aomamaw
- / L2t - 20 DY (3.4)
+ / 1” IV )= ZW)N2H ) — 2 AW + / ?Wﬂ )[2v) = 200|870

Since 2 is decreasing on intervals [u;,v],[v1, 6] and from inequality 0 < L(#") <J(¥#)

we conclude that
/ ") [ 200) - 2N AW >0 and / Y IO -1 [2H) - 20)| AW >0
which implies that

[ Bom -2 11200 - 20087+ [ 200 (200) - 200 87 20

uy

Therefore equation (3.4) becomes

/ Y oIy mw - / RN / YL e — 20 >0

/u lvl DINVI VAW +S(a,u1,v1) > / "oy )aw o
where
S(a,ur,v) = / L)) - 200 > 0.
Now by setting u = us and v = v, in identity (3.2), we have
/a "oy - / :2 NI DY
— / PLN2H) - 2w) | AW (3.6)

+ [0 - 200N 20|87 + [ 200200 - 2] an

By the assumption on intervals [a,us],[uz, V] the function 2 is decreasing and 2 < 0 and also

from inequality 0 < (%) < J(#') we have

/a CIW) LA ) - Q)| AW >0 and / 1 2(w) — 200FH) — LAY >0
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which implies that
[ 2o - 2w an + [ (260) - 20BN - 2AW 20
So equation (3.6) becomes

/ R I / 2o Iy AW > / "L 2(0) - D) AW

‘ (3.7)
oA A > / 2 2INIW)AW — 5(6,u2,2)

a

where

5(6,112,v2) = / | D) — LWL ) AW >0,

V2

By the combination of the inequalities (3.5) and (3.7) the proof of inequality (3.4) is completed.

Remark 3.4. By settingu; — o, up — B —A,vi > a+A,v; — B and J(#') = 1, the inequality

(3.4) reduces to inequality (1.1).

Theorem 3.5. Assume o\, hold. Further let [PL(W)AW = f,:j?SI(W)AW where

[uj,vjlt C [a,b]T for j=1,2,3 and vi < vy <va.

Then
3 vj
QLN)IHW)AW —y(b,u,v2,u3,v3)
j=27uj
6
L2 LA ) AW (3.8)
2y
< Z e@(%)?(%)AW+Y(£1,M1,V1,M2,V2)
j=17uj
where

Y(buz,va,u3,v3) =Y, [[2(u;) — LU0 EW)AW >0

Vj
Y(a,ur,vi,uz,va) =Yy [ )= 20 )W )AW >0
Proof. By setting u=u; and v = v, for j=12 in identity (3.1), respectively.
/u 2N IV — / e YN
_ / Lo 20n) - 200 AW (3.9)

a

+/ FOV)-L(P)N2(7) _Q(Vl)]AW‘f’/vlﬁ MO m2Ies
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/ 2 oI ) AW — / R AN

= / MZI(W 2 (va) — 20| AW (3.10)
= [mon)-xom20r) - 2w+ [ x0r)i20a) - 20n)aw

Addition of equations (3.9) and (3.10) yields.

b
Z/ IN)AW -2 [ I )W

uj

L) L2(v)) =L)ALV

.
I

[
_M~
T

2
-2oar+y | L) (20) - 20w

+
(glS

S
E\.
S
2
S

~.
I

—

<

(3.11)

From inequality O < (W) < J(W') and by the assumption 2 is decreasing on intervals

[ur,v1], [ua,v2], [v1, 6], [v2, 6], we conclude that

/ IV - ZPN[2H) ~ 20)| 5% >0

and / %1(%)[3@,-) — 2 AW >0 for j=12
So

) { | B -xomiieon - 26ew + | )2l - emar] =0 G

j=1

Equation (3.11) becomes together with (3.12).

2 vj b
Z/ Q(W)BI(W)AV/—z/ DAV )W > Z/ W) 2(v;) — 20| DWW
j:1 uj a
2 v; b
Z/ Q(V/)‘J(W)AW—|—Y(a,u1,v1,u2,vz)22/ DAV )W (3.13)
i—1/Uj a
where

2 u;
Y (a,u1,v1, 42, v2) = 2/ (200 — 20)JE(W) AW > 0.
=1

a
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Now by replacing u = uj and v = v; for j=2,3 in identity (3.2), respectively.
b
/ DAV ) AW — / R GE YN
_ / 10 D) AW (3.14)

b
+ / NBOV) =2 NAW + [ 20200~ 2o

/ " amyaw A - / S a3 aw
/ D(us) AW (3.15)
b
+[ 12 PNBOY) =AW + [ 2O 20) ~ 2Aas)| 57
Addition of equations (3.14) and (3.15) yields.

2 / R i / MR : (YN
a j=2"uj

3 u;
=Y [Tror)ier) - ewsn
j=2"4

<y, [0ty - eommon) -aomar + Y, [ (2 PRI
j=2"4j j=2"Vij
(3.16)

In the view of assumption 2 is decreasing on intervals |a,us], [a,u3], [uz,v2], [u3,v3] and 2 <0

and also from inequality 0 < L(W') < J(W'). we have,

/ Y1020 - 2;) AW >0

and / YL2wy) — 2B - LWL >0 for j=2.3

J

3 uj v;
Z[/ L)L) - L) 5 20+ [ (@)~ 20BN -2 AW |20 (31T
j=2 L/a uj
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Therefore equation (3.16) becomes, together with equation (3.17).

b 3 Vj 3 b
2 / 200EW)AW - Y / 2003 > Y / L) 20) — 2(u)| AW
“ j=2 j=2

uj vj
b
2/ QLW VAW > Z/ WNVANW —y(b,up,vo,u3,v3) (3.18)
a j=2"Hj
where

3 b
y(b,u2,v2,u3,v3) = Z/ (2(u;) — 20 ) LW )AW >0
e~ |,
Combining the inequalities (3.13) and (3.18) we have the required result(3.8).

Theorem 3.6. Assume <f,ct, 973 hold. Further let faﬁl(V/)AW = fuvjf I )W where

[uj,vjlt C [a,b]T for j=1,2,3,...,n and also vi < vy <v3.... <.

Then
y / Y oIV = (1, v)
=
(n—1) / oW AW (3.19)
i/ JH)AY + Rty 1,vn1)-
where

F(nva) = [} 12(u;) = 00)E(#) AW >0

Rltn_1,vn 1) = [Y[2(0) — 20 AW )AW >0
Proof By replacing u=u; and v =v; for j=1,2....n-1 i identity (3.1), respectively.
/ R (R AN / "oy aw
/ RN (3.20)

= [mon-xon20n) - 2w+ [ aryiem) - 2on)sr
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/ N (R A1 / R AN

a

— /uz L)L (v2) — 20 ) AW G3a1)
+ / B0 - 2N[20) - 20w + [ jl(%)[g(m _owaw

Similarly

N / V"ll FH) = LIN[2) — 2(v 1) AW + / 61 L) 2(vn-1) = 20|V

(3.22)

Addition of all above equations we have
n—1

) ijQ(W)g‘(W)AV//—(n—1)/53(7/)1(7/)A7ﬂ

j=1"uj
n—1 uj

=Y [Czoniew) - eonsw
j=17a

n—1 vj n—1
+¥ [ B =220 - 26er + § [ L 20) - 20w
j=17Yi

j=1"7u;

(3.23)

From inequality O < I(#') < J(W') and by our assumption, 2 is decreasing on intervals

[u,vi], [u2,v2] ,...,[un,vn). we have
[ B -zomiieon) - 2066w =0
and /%1(%)[Q(vj)—c@(%m%zo for j=1,2,..n—1
So

[ /fBW )= L2 )= 20 AW + / fl(%[ﬁ(vj)—o@(ww >0 (324)

=1

~.
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Finally Equation (3.23) becomes, together with equation (3.24).

nil/v]Q(W)%(W)Aww(un_l,vn_l) > (n— 1)/52(7/)1(7/)A7/ (3.25)
j=174j a
where
Rin1,n) = [ 1200) = 2020057 20

Now by setting u =u; and v =v| for j=2,3,...,n in identity (3.2), respectively.
b v
/ DNV — / C I AW
a u
_ / L)L) — D) AW (3.26)

+ 120 - 200N 208+ [ 20200 - 20 2H

/ "oy nw - / R s (N BN %

u3

_ / L2 ) - D) AW (3.27)

+/:[Q(u3)—Q(W)]BI(W)—1(7/)]A7/+/vjsz(7/)[g(y/)_Q(u3)]AW

Similarly

/ "oy nw - / R s (BN %

— / LN L) — D) AW (3.28)
Vn b
+ [12w) = 20BN —2NBW + [ T2 - 20 W
Addition of all above equations yields.

(n—1) / " omamaw -y / vle(W)EI(W)AW

a j=2"Uj
_y / Y1) 20) - 2w
j=27e

+ Z /f (L) = 20| FW) - LW )| AW + i/ji(%[e@(% — 2(u)| AW
=

j=2"74j
(3.29)
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By our assumption, 2 is decreasing on intervals [a,u] , [a,u3]

0<Z(W)<J(W). we conclude that,

..... [a,uy,| and from inequality

IW)N2LW) = 2u)|AW 20
_Q(

and (2(u;) — 2NFHV) = LW ) AW >0 for j=2,3,..n

/auj
I,
So
22 [ [ 2o —ewar + [M126w) - 20Bor) -2 ar | 20 330
Finally Equation (3.29) becomes, together with equation (3.30).
(n—1) KQ(W)SL(W)AW ) /Vj DINIIVAY —r(unyva) (331

j=27u;
where
b
Fit, V) = / [20) ~ 20MEW) AW >0

which yields the conclusion of the theorem 3.6 by combining inequalities (3.25) and (3.31).

Theorem 3.7. Suppose <y, ct5, .94 hold. with 2 is of one sign and decreasing and

0< W) <LH) <IH)—RH) on [a,blr. Further suppose [PL(W)\AW =
[i3orsw

where [uj,v;|T C [a, b7 for j = 1,2 and vi <vy.

Then

[ 20 momsr + [l - 26ison| aw - [ 120) - 200 xon o

up
b

< [ LIMEHW)AW
Vi

< [Temzonar+ [Camiew) - eeian

- [[ieon - 2o ar
(3.32)

Proof. By the assumption that function 2 one sign and nonincreasing function on the interval

vi,6land O< QW )<L(HW)<JHW)—-R(¥)
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it follows that

[1200) - 20030 - 2012w + [ 200 - 200 Na0 59
; 20— 200088 + / " D) — 2008 AW (3.33)

- / 208014

Also since 2 one sign and nonincreasing function on intervals [a,u;| and [uy,v;), it follows that

/ (W) = D(w)| (W) AW + / D(u2) — 2N F ) = LW AW
/ D) — D) | (W)Y + / D) — 20| R AW (3.34)
= [Tle0r) - 2w)pm)a

using inequality (3.33) equation (3.4) can be written as

/u " oIy A — / R I / o) — 2L AW

b
> / [2(7) — 2087 )| AW

uj

and using inequality (3.34) equation (3.6) can be written as

[ eomaoniaw - [ ooy - [Caor -xm)emn) - 2wiar

> / P2 = 20| AW
(3.36)

By the combination of the inequalities (3.35) and (3.36) the inequality (3.32) is proved.
Remark 3.8. Inequality (3.32) reduces to inequality (3.4), when £2(%#) = 0.

Remark 3.9. A special case of inequality (3.32) can be found, if we put =3 and J =1, so

/ 2 o) nw - / j (D(u2) — 2N E(H) AW+ / 2 2(#) - 2(w))| AW

20w+ [ ") 200) - 206 -3 / 6 1200) - 20))| AW
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where uy,uz,vi,v2 € [a,6lrand 0 <3 < L(#') <1 -G forall # € [a, b]r.
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