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Abstract: In this paper, an epidemiological model with delay and media coverage is proposed and analyzed. Both

the disease-free and endemic equilibria are found and their stability are studied by using the theory of differential

equations. It is proved that the time delay may cause a stable equilibrium to become unstable, and Hopf bifurcation

about endemic equilibrium can occur under certain conditions. The report ability of the media coverage plays an

important role in the spreading of the diseases.
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1. Introduction

Infectious disease is a serious problem not only in public health but also in social life. S-

ince Kermack and Makendrick constructed a SIRS mathematical model to study epidemiology

in 1927, more and more scientists have begun to investigate epidemiological models, such as

cholera [1-2], SARS[3-4], chickungunya epidemic, bird flu, HIV infection, and so on.

∗Corresponding author

E-mail address: xjwang@bucea.edu.cn

Received October 19, 2014

1



2 X. J. WANG, C. Q. WU, Y. X. PAN

When a severely infectious disease takes place in a region, it will cause a large number of

illness. If the suspected people know nothing about the disease, they will be lack of protecting

measures, and so the disease will spread quickly. In fact, media coverage and education can

help people to take preventive measures in time, and so reduce the contact rate of human beings

as we have observed during the spreading of severe acute respiratory syndrome(SARS) during

2002 and 2004. How does the media coverage affect the prevalence and control of the epidemic

like SARS? Recently, this subject has attracted the attentions of many researchers [3-9]. Liu et

al.first emphasized media impact in an EIH model, where H denotes hospitalized individuals,

and assumed a transmission coefficient of the exponential form in [3]. Cui et al. constructed

an SEI model with logistic growth, in which another contact transmission rate with exponential

form µe−mI was proposed to describe the media impact on the infectious diseases. When the

basic reproduction number R0 > 1, it was shown that there exists a unique endemic equilibrium

and a Hopf bifurcation can occur under the less media impact (m > 0 is sufficiently small) while

the model may have up to three endemic equilibria if the media impact is stronger enough in

[6]. It is well known that time delays are inevitable in population interactions and tend to be

destabilizing in the sense that longer delays may destroy the stability of positive equilibria. One

often introduces time delays in the variables being modeled, this often yields delay differential

models [10-14, 17-18].

In this paper, our main concern is the effect of delay on the transmission of infectious dis-

eases. For this purpose, we consider a time delay mathematical model with a constant period of

temporary immunity according to the occurrence and spread law of epidemic as follows:

dS
dt = A−dS− (β1−

β2I
m+ I

)SI + γe−dτ I(t− τ),

dI
dt = (β1−

β2I
m+ I

)SI− (d + γ + ε)I,

dR
dt = γI−dR− γe−dτ I(t− τ),

(1)

where the density of the total population denoted by N(t) is divided into three disjoint classes

of individuals, namely the susceptible, infected and temporarily recovered ones, with densities

denoted by S(t), I(t) and R(t), respectively. The time delay τ means that a recovered individual

is immunized against the disease for this fixed time period, but the model allows death to occur
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for other reasons. Immunity wanes and individuals still alive return to the susceptible class after

time τ .

Here, A is the recruitment rate of susceptible population, d is the natural death rate and ε is

the disease related death rate, γ is constant recovery rate. We use β1 and β (I) = β1−
β2I

m+ I

to denote the contact rate before and after media alert, respectively. The term
β2I

m+ I
reflects

the decrease of the transmission rate due to the media coverage after infectious individuals

appear and are reported. When I → ∞, the decrease of the transmission rate approaches its

maximum β2, and the decrease of the transmission rate equals half of the maximum when the

reported infective number arrives at m. Because the coverage report cannot prevent disease

from spreading completely, we assume β1 > β2. The parameter m reflects the reactive velocity

of people and media coverage to the disease [9]. All parameters are assumed to be positive

except ε and τ , which are nonnegative.

If β2 = 0 and τ = 0, the transmission rate is constant β1, (1) has been discussed. If τ = 0, the

system (1) reduces to an SIS model, and if τ → ∞, the system (1) reduces to an SIRS model.

Model (1) is a system of functional differential equations(FDES), the associated initial con-

dition take the form:

S(θ) = ϕ1(θ), I(θ) = ϕ2(θ),R(θ) = ϕ3(θ),

ϕ1(θ)≥ 0,ϕ2(θ)≥ 0,ϕ3(θ)≥ 0,θ ∈ [−τ,0], (2)

ϕ1(0)> 0,ϕ2(0)> 0,ϕ3(0)≥ 0,

where (ϕ1(θ),ϕ2(θ),ϕ3(θ)) ∈ C([−τ,0],R3
+0), and C([−τ,0],R3

+0) is the Banach space of

continuous functions mapping from the interval [−τ,0] into R3
+0 = {(x1,x2,x3) : xi ≥ 0, i =

1,2,3}. By the fundamental theory of FDES [15], we know that there exists a unique solution

(S(t), I(t),R(t)) to system (1) satisfying initial conditions (2).

The remainder of this paper is organized as follows: In section 1, we prove the positivity and

the boundedness of solutions. We will investigate the local stability by analyzing the associated

characteristic equation in section 2. In the third section, the Hopf bifurcation is studied. Finally,

an ecological significance will be discussed.
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2. Positivity and boundedness of solutions

Since N(t) = S(t)+ I(t)+R(t), we get the following system from (1)


dI
dt = (β1−

β2I
m+ I

)(N−R− I)I− (d + γ + ε)I,

dR
dt = γI−dR− γe−dτ I(t− τ),

dN
dt = A−dN− εI.

(3)

Theorem 2.1. Let (I(t),R(t),N(t)) be the solution of system (3) satisfying conditions(2), then

I(t),R(t) and N(t) are all nonnegative.

Proof. From the first equation of system (3), we have I′(t) ≥ −(d + γ + ε)I, which yields

I(t)≥ I(0)e−(d+γ+ε). And the third equation of system(1) gives R = γ
∫ t

t−τ
I(s)e−(d−s)ds. Hence

I(t) and R(t) are positive.

By the third equation of system (3), we obtain A
d+ε
≤ liminfN(t) ≤ A

d , which implies that

S(t)> 0 for all t. This completes the proof.

Next, we will prove the boundedness of solutions.

Theorem 2.2. Any positive solutions of system (3) with initial conditions (2) are ultimately

bounded.

Proof. From the third equation of system (3), we obtain

A
d + ε

≤ liminfN(t)≤ A
d
.

Since N(t)> 0 for all t ≥ 0, N(t) can not blow up to infinity in finite time, and so any solutions

are bounded. Hence, the solution exists for all t > 0 in the invariant and compact set

Ω = {(I,R,N) ∈ R3
+0 : 0≤ I,R≤ N ≤ A

d
+η},

which is a region of attraction for any arbitrary small constant η > 0. This completes the proof.

3. Analysis of equilibria
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In this section, we study the existence and stability of equilibria of system (3). Setting the

right hand side of the model (3) to zero, we get the following biologically relevant equilibria.

(a) Disease-Free Equilibrium E0 = (0,0, A
d ),

(b) Interior Equilibrium E∗(I∗,R∗,N∗),

where

(β1−
β2I∗

m+ I∗
)(N∗−R∗− I∗)I∗− (d + γ + ε)I∗ = 0, (4)

I∗ =
A−dN∗

ε
,R∗ =

γ(A−dN∗)(1− e−dτ)

dε
. (5)

The interior equilibrium E∗ is positive if and only if 0 < N∗ < A
d . Substituting (5) into (4), we

obtain

F(N) = [mβ1 +(β1−β2)
A−dN

ε
][N− A−dN

ε
(
γ(1− e−dτ)

d
−1)]− (d + γ + ε)(m+

A−dN
ε

).

(6)

If β1A > d(d+γ +ε), from equation (6), we note that F( A
d+ε

)< 0 and F(A
d ) =

mβ1A
d −m(d+

γ +ε)> 0. This implies that there exists at least a positive root N∗ of F(N) = 0 in A
d+ε

< N < A
d .

Knowing the value of N∗, the value of I∗ and R∗ can be calculated from equation (5). Hence E∗

exists and remains positive if β1A > d(d + γ + ε).

Theorem 3.1. The disease-free equilibrium E0 is locally asymptotically stable if β1A < d(d +

γ + ε) holds. Again E0 is unstable if β1A > d(d + γ + ε) holds.

Proof. The variational matrix V0 for the system (3) corresponding to the equilibrium E0(0,0, A
d )

is the following:

V0 =


β1A

d − (d + γ + ε) 0 0

γ(1− e−(λ+d)τ) −d 0

−ε 0 −d

 .

The characteristic equation of equilibrium E0 is

(λ +d)2(λ − β1A
d

+d + γ + ε) = 0.

The eigenvalues of V0 are λ1 =−d,λ2 =−d,λ3 =
β1A

d −(d+γ +ε). Since all the model param-

eters are assumed to be nonnegative, it follows that the disease-free equilibrium E0 is locally
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asymptotically stable if β1A < d(d+ γ +ε) holds, and the disease-free equilibrium E0 is unsta-

ble if β1A > d(d + γ + ε) holds. This completes the proof.

To show the locally asymptotically stability of the equilibrium E∗ for all τ ≥ 0, we introduce

the following lemma.

Lemma 3.1. [16] A set of necessary and sufficient conditions for the positive equilibrium E∗ to

be asymptotically stable for all τ ≥ 0 is the following:

(I) E∗ is stable in absence of time delay τ .

(II) There is no purely imaginary root of the characteristic equation (7).

Lemma 3.2. [17] Let g(z) = z3 +ν1z2 +ν2z+ν3,4= ν2
1 −3ν2,z1 =

−ν1+
√
4

3 , then

(1) Equation g(z) = 0 has at least one positive root if ν3 < 0.

(2) Equation g(z) = 0 has no positive root if both ν3 ≥ 0 and4< 0 hold.

(3) If ν3 ≥ 0, then equation g(z) = 0 has a unique positive root if and only if both z1 > 0 and

g(z1)≤ 0 hold.

Theorem 3.2. suppose that both β1A > d(d + γ + ε) and (d2 +B2
1− 2B2)

2 < 3(d2B2
1 +B2

2−

2d2B2−B2
3) hold, then the positive equilibrium E∗ exists and is locally asymptotically stable

for all τ ≥ 0.

Proof. The characteristic equation for the system (4) corresponding to E∗ is given by

φ(λ ,τ) = (λ +d)(λ 2 +B1λ +B2−B3e−λτ) = 0, (7)

where

B1 =
β2mI∗(N∗−R∗− I∗)

(m+ I∗)2 +
(d + γ + ε)I∗

N∗−R∗− I∗
+d,

B2 = d[
β2mI∗(N∗−R∗− I∗)

(m+ I∗)2 +
(d + γ + ε)I∗

N∗−R∗− I∗
]+

I∗(ε + γ)(d + γ + ε)

N∗−R∗− I∗
,

B3 =
γe−dτ I∗(d + γ + ε)

N∗−R∗− I∗
.

The assumption (I) and (II) of Lemma 3.1 require real parts of roots of φ(λ ,0)= 0 to be negative

and φ(iω,τ) 6= 0 (where i2 =−1 ) for any real ω and τ . When τ = 0,φ(λ ,0) = (λ +d)(λ 2 +

B1λ +B2−B3) = 0, since B1 > 0,B2−B3 > 0, all the roots of φ(λ ,0) = 0 have negative real
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parts, and so E∗ is locally asymptotically stable in the absence of delay, the assumption (I) of

Lemma 3.1 is satisfied.

Now, we verify the assumption (II) of Lemma 3.1. Firstly, when ω0 = 0, we have φ(0,τ) =

d(B2−B3)> 0. Secondly, when ω0 6= 0, we have

φ(iω0,τ) =−iω3
0 −B1ω

2
0 + iB2ω0− iB3ω0e−iω0τ −dω

2
0 +dB1ω0i+dB2−dB3ω0e−iω0τ = 0.

(8)

Separating the real and imaginary parts of equation (8), we obtain

−dω
2
0 −B1ω

2
0 +dB2 = dB3cosω0τ +ω0B3sinω0τ, (9)

−ω
3
0 +B1dω0 +B2ω0 = ω0B3cosω0τ−dB3sinω0τ. (10)

Squaring and adding equation (9) and (10), we have

ω
6
0 +ν1ω

4
0 +ν2ω

2
0 +ν3 = 0, (11)

where

ν1 = d2 +B2
1−2B2,ν2 = d2B2

1 +B2
2−2d2B2−B2

3,ν3 = d2(B2
2−B2

3)> 0.

Let z = ω2
0 . Equation (11) becomes

g(z) = z3 +ν1z2 +ν2z+ν3 = 0. (12).

Obviously, φ(iω,τ) 6= 0 if and only if equation (12) has no positive root. From the Lemma 3.2,

we can conclude that if

ν
2
1 −3ν2 = (d2 +B2

1−2B2)
2−3(d2B2

1 +B2
2−2d2B2−B2

3)< 0

holds, the assumption (II) of Lemma 3.1 is satisfied, and so the positive equilibrium E∗ is locally

asymptotically stable for all τ ≥ 0. This completes the proof.

4. Hopf bifurcation analysis

In the following, by using the time delay τ as the bifurcation parameter, the criteria for Hopf

bifurcation are given.
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Substituting λ = a(τ) + ib(τ) into the characteristic equation (7) and separating real and

imaginary parts, we obtain the following equations:

(a3−3ab2+a2d−db2)+(a2+ad−b2)B1+(a+d)B2−e−aτB3(a+d)cosbτ−e−aτbB3sinbτ = 0,

(13)

(2abd +3a2d−b3)+(2ab+bd)B1 +bB2 + e−aτB3(a+d)sinbτ− e−aτbB3cosbτ = 0, (14)

where a and b are functions of τ . Since the change of stability of E∗ will occur at any values of

τ for which a = 0 and b 6= 0. Let τ̂ satisfy a(τ̂) = 0, and b(τ̂) = b̂ 6= 0. Then equations (13) and

(14) reduce to

−b̂2(d +B1)+dB2−dB3cosb̂τ̂−bB3sinb̂τ̂ = 0, (15)

−b̂3 + b̂(dB1 +B2)+dB3sinb̂τ̂−bB3cosb̂τ̂ = 0. (16)

Squaring and adding the both sides of equations (15) and (16), we have

b̂6 +ν1b̂4 +ν2b̂2 +ν3 = 0, (17)

where ν1,ν2,ν3 are the same as in equation (11). In order to establish Hopf bifurcation at

τ = τ̂ , we need to show that da
dτ
|τ=τ̂ 6= 0. Differentiating (13) and (14) with respect to τ , and

then setting τ = τ̂,a = 0 and b = b̂, we obtain

L1
da(τ̂)

dτ
+L2

db(τ̂)
dτ

= Y1, (18)

−L2
da(τ̂)

dτ
+L1

db(τ̂)
dτ

= Y2, (19)

where

L1 =−3b̂2 +dB1 +B2 +dB3τ̂cosb̂τ̂−B3cosb̂τ̂ +B3b̂τ̂sinb̂τ̂,

L2 =−2db̂−2B1b̂+dB3τ̂sinb̂τ̂−B3b̂τ̂cosb̂τ̂−B3sinb̂τ̂, (20)

Y1 = B3b̂2cosb̂τ̂−dB3b̂sinb̂τ̂,

Y2 =−dB3b̂cosb̂τ̂−B3b̂2sinb̂τ̂.

Solving (18) and (19), we get
da(τ̂)

dτ
=

L1Y1−L2Y2

L2
1 +L22

. (21)
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Clearly, da(τ̂)
dτ

has the same sign as L1Y1−L2Y2. From (20), we obtain

L1Y1−L2Y2 = b̂2[3b̂4 +2b̂2(−2B2 +d2 +B2
1)+(d2B2

1 +B2
2−2d2B2−B2

3)]. (22)

Let

G(z) = z3 +ν1z2 +ν2z+ν3, (23)

where ν1,ν2,ν3 are defined in equation (11). Then, from (17) and (23), we have G(b̂2) = 0 and

da(τ̂)
dτ

=
b̂2

L2
1 +L22

dG(b̂2)

dz
. (24)

Hence, we can describe the criterion for instability (stability) as follows:

(H1) If the polynomial G(z) has no positive roots, there can be no change of stability.

(H2) If G(z) is increasing (decreasing) at all of its positive roots, instability (stability) is

preserved. Here, G(0) = ν3 > 0. If ν1 > 0, then G(z) has either two positive roots or no positive

root.

(H3) If ν1 > 0 and ν2 ≥ 0, then G(z) ≥ G(0) = ν3 > 0 for all z > 0, and so the assumption

(H1) holds, the stability or instability of the positive equilibrium E∗ will be preserved in this

case.

(H4) If ν1 > 0 and ν2 < 0, since ν3 > 0, then the minimum of G(z) will exist at zmin =

−ν1+
√

ν2
1−3ν2

3 and (H1) will hold if G(zmin)> 0, i.e.,

2ν
3
1 −9ν1ν2 +27ν3 > 2(ν2

1 −3ν2)
3
2 . (25)

Therefore, we have the following theorem.

Theorem 4.1. suppose that one of the following conditions holds:

(i) ν1 > 0 and ν2 ≥ 0;

(ii) ν1 > 0,ν2 < 0, and the inequality (25) is satisfied,

then if the positive equilibrium E∗ is stable (unstable) at τ = 0, it will remain stable (unstable)

for all τ > 0.

Theorem 4.2. Assume that the inequality (25) unsatisfied, and one of the following conditions

holds:

(1) ν1 ≤ 0 and ν2 ≤
ν2

1
3 ;
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(2) ν1 > 0,ν2 < 0,

if E∗ is asymptotically stable for τ = 0, and b̂0
2

is the first positive root of equation (23), then

a Hopf bifurcation occurs as τ passes through τ̂0.

Proof. Since ν3 > 0, if one of the conditions (1) and (2) holds, we can conclude that z1 =

−ν1+
√

ν2
1−3ν2

3 > 0. Furthermore, (25) is unsatisfied that means G(z1)≤ 0, from the Lemma 3.1,

we obtain that G(z) has a unique positive root denoted by b̂0
2
.

On the other hand, since G(z) is a cubic in z and G(z)→ ∞ as t → ∞, G(z) must increase at

the positive root b̂0
2
, from (H2), we know it impossible for E∗ to remain stable. Hence, there

exists a τ̂0 such that E∗ is asymptotically stable for τ < τ̂0, and is unstable for τ > τ̂0. As τ

passes through τ̂0, E∗ bifurcates into small amplitude periodic solutions of Hopf type. From

(15) and (16), we can determine τ̂0, which is of the form

τ̂0 =
1
b̂0

arcsin
−b̂0B1

B3
.

It follows from (24) that

da(τ̂0)

dτ
=

b̂0
2

L2
1 +L22

dG(b̂0
2
)

dz
> 0,

and from the Hopf bifurcation theorem [19], we obtain the conclusion. This completes the

proof.

5. Numerical simulation

In this section, based on the theoretical study of system (3), selecting parameters and initial

value which meet the conditions:

A = 5,β1 = 0.002,γ = 0.005,ε = 0.1,m = 30,d = 0.02,

E = (S, I,R) = (130,25,30).

We used MATLAB to obtain the numerical simulation of the system (3), which illustrates the

correctness and feasibility of the theoretical study. In Figure 1, we mainly study the impaction

from media reports, so we assume that τ = 0. The value of endemic equilibrium clearly reduces

when we change the value of β2 from 0 to 0.0018 . In Figure 2, we fix the value of β2 = 0 to
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study the impaction of time-delay. By changing the value of τ , we further validate the correct-

ness of
dI∗

dτ
< 0.

Figure 1:The time-series curve compared β2 = 0 with β2 = 0.0018, where red line is a curve

when β2 = 0 and black line is a curve when β2 = 0.0018. And τ is 0.

Figure 2:The time-series curve of I(t) based on the value of τ . And β is 0.
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6. Discussion

In this paper, we have considered an epidemiological model with delay and media coverage.

Firstly, stability and Hopf bifurcation for system (3) with delay are investigated by using the

theory of characteristic value. Theorem 4.1 showed that the delay τ is locally harmless. Fur-

thermore, regarding the delay τ as a parameter, the stable equilibrium E∗ may lose its stability

due to large time delay, which implies that there exists Hopf bifurcations. Conditions of the

existence of Hopf bifurcation and bifurcation value are obtained.

Secondly, the effective media coverage greatly influences how people perceive the threat of

infectious diseases, which can lower infection and postpone the arrival of the infection peak. In

fact, from β (I) = β1−
β2I

m+ I
, we have ∂β (I)

∂m = β2I
(m+I)2 > 0, we know that the transmission rate

will become smaller as m decreases. That suggests the department of media need to track and

report the latest situation as soon as possible, and tell people how to protect themselves from

infection when the disease begins to spread. On the other hand, from ∂β (I)
∂β2

= − I
m+I < 0, we

have that the transmission rate will decrease as β2 increases. It is really critical for the media

coverage to give people the facts and so objective reporting about diseases.

Thirdly, the time delay τ is a fixed time period, of which the recovered individual is in sus-

ceptible people again. Time delay really impacts the peak value of infection. In Figure 2, we

know that the higher value of τ will yield a lower peak value of infection. So a measure with

extended time delay is better than others to control the spreading of infectious diseases by med-

ical intervention. In a word, time delay plays an important role in the prevention and control of

infectious diseases.
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