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Abstract. In this paper, a three dimensional dynamical system incorporating non- linear harvesting effort for prey

is investigated. The Holling type-II functional response is considered for prey while predator is assumed to follow

Modified Leslie-Gower type dynamics. The steady states of the system are obtained and the local dynamics is

explored. The sufficient condition is derived for global stability of its positive interior equilibrium point. The

conditions for bionomic equilibrium and uniform persistence of the system have been investigated. It is also

observed that the system exhibits transcritical bifurcation for a threshold level of taxation. A taxation policy is

discussed with the help of Pontryagin’s Maximum Principle as an effective control instrument to preserve the prey

species from extinction and maintain a sustainable fishery.
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The classical ecological non-linear models of interacting population have been discussed

extensively by many authors. Predator- prey system is one of the most important population

model. In population dynamics, the functional response of predator to prey density refers the

attack rate per unit time w.r.t. prey density. Many researchers have analyzed mathematical

models using functional response (e.g., Holling type I, II, III or IV) by considering different

type of growth functions depending upon the species [4, 8, 10, 19]. A bio-economic modeling

concerns with optimal management of renewable resources. Harvesting has a strong impact

on the dynamics of biological resources. The severity of the impact depends on the nature of

implementation of the strategy. Basically, there are three types of harvesting strategies that

are being used mostly (i) a constant number of species are harvested per unit of time, (ii) pro-

portional harvesting given by Schaefer catch- effort relation H(x,E) = qEx. Here, the num-

ber of species harvested per unit of time is proportional to the population stock x, q is the

catch-ability coefficient and E is the effort applied to harvest, (iii) non-linear harvesting i.e.,

H(x,E) = qEx/(m1E +m2x), where m1 and m2 are positive constants.

Effects of harvesting on variety of predator-prey models have been discussed by many re-

searchers [2, 3, 4, 8, 19, 21, 22]. Mathematical modeling with harvesting of renewable resources

and the policies related to its bionomic exploitations have been discussed extensively by Clark

[3]. Brauer and Soudack [2] discussed the dynamical behavior of predator- prey system with

constant rate of harvesting in prey. The problem of combined harvesting of two ecologically

independent and logistically growing fish species was investigated by Clark [3]. Zhu and Lan

[22] considered a Leslie-Gower model with constant harvesting in prey and analyzed the local

dynamics of system in the neighborhood of predator free equilibrium point as well as interior

equilibrium point. Zhang [21] proposed a Leslie-Gower predator- prey model with proportional

harvesting in both prey and predator. He studied the persistence and global stability of this

system. The global stability of the unique interior equilibrium of the system shows that har-

vesting has no influence on the persistence of the system. Das and Mukharjee et al. [4] studied

a predator- prey model, where both species grow logistically and are subjected to a nonlinear

harvesting. Recently, Gupta and Banerjee[8] studied a predator- prey model with non-linear
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harvesting of prey, considering logistically growing prey and Modified Leslie-Gower type pre-

dation. They studied that the system has a complex dynamical behavior and exhibits several

local bifurcations.

Regulation of renewable resources is an essential and important part in the optimal management

of renewable resources.The over exploitation of biological resources is controlled by imposing

taxation and/or license fees. The extinction of species can also be controlled by creating reserve

zones for harvesting or limiting the harvesting period. In fishery resource management, many

investigations have been carried out with taxation as a control instrument. Harvesting problems

with taxation have been studied by Clark [3]. Dubey analyzed a non-linear mathematical model

to study a resource dependent fishery model with optimal harvesting policy by considering tax-

ation as a control instrument[5]. They also proved that the fishery resources can be protected

from over-exploitation by increasing the tax and discounted rate. Pradhan and Chaudhuri [17]

also proposed and analyzed a dynamical reaction model of two species fishery with taxation

as a control variable and then discussed its optimal harvesting policy. Recently, Huo et al.[9]

discussed a dynamic model for fishery resource with reserve area and taxation as a control pa-

rameter. The present paper deals with a dynamic reaction model in the case of a predator- prey

type fishery system, while the model considered here, is especially based on a modified version

of the Leslie-Gower scheme, where only the prey species is subjected to non- linear harvesting.

The harvesting effort is taken as a dynamical variable and taxation as a control instrument. This

imposition of tax helps to control over harvesting of prey species and in turn, it helps the preda-

tor population to grow. The main aim of this paper is to find the proper taxation policy which

gives the best possible benefit through harvesting.

2. The Mathematical Model And Its Qualitative Analysis

Let x(t) denote the population density of a logistically growing prey with Holling type-II

functional response and y(t) be the density of predator assuming Modified Leslie-Gower type

predation. Let the prey species be harvested with effort E and H(x,E) denote the harvesting
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function. The dynamics of system is governed by

dx
dt

= rx
(

1− x
k

)
− αxy

a+ x
−H(x,E), (1)

dy
dt

= sy
(

1− βy
a+ x

)
, (2)

The parameter r is the intrinsic growth rate and k is the environmental carrying capacity for

the prey. For the predator, s is the growth rate, α is its encounter rate with the prey and β

is maximum rate of the reduction of predator population. All these parameters are assuming

only positive values. The following more realistic non-linear harvesting function is considered

instead of constant and proportional harvesting.

H(x,E) =
qEx

m1E +m2x
.

The net economic revenue of fishermen from harvesting of prey species is given by

Net Revenue = T.R.−T.C.= E
(

qpx
m1E +m2x

− c
)
.

In order to control over exploitation of the species, the regulatory agencies impose a tax on

harvested species. Let p and c are price and cost per unit mass, η is stiffness parameter and

τ ∈ [τmin,τmax] be the imposed tax per unit harvested prey species. For a tax τ > 0, the revenue

of the fishermen will be reduced by (p− τ), assuming p > τ and E(t) is taken as a dynamic

harvesting effort at a time t. Thus, the effort dynamics is determined as follows[16]:

dE
dt

= ηE
(

q(p− τ)x
m1E +m2x

− c
)
. (3)

The coupled dynamical equations (1)-(3) constitute the model for the harvesting of prey. The

model with associated initial conditions is as follows:

dx
dt

= rx
(

1− x
k

)
− αxy

a+ x
− qEx

m1E +m2x
= x f (x,y,E),

dy
dt

= sy
(

1− βy
a+ x

)
= yg(x,y), (4)

dE
dt

= ηE
(

q(p− τ)x
m1E +m2x

− c
)
= Eh(x,E), .

x(0) = x0,y(0) = y0,E(0) = E0; (x0,y0,E0) ∈ R3
+.
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Theorem 1. All the solutions (x(t),y(t),E(t)) of the system (4) with positive initial condition

remain positive for all t > 0.

Proof. The solution of the system (4) is obtained as follows:

x(t) = x(0)exp
(∫ t

0
f (x(p),y(p),E(p))d p

)
> 0,

y(t) = y(0)exp
(∫ t

0
g(x(p),y(p),E(p))d p

)
> 0,

E(t) = E(0)exp
(∫ t

0
h(x(p),y(p),E(p))d p

)
> 0.

This shows that the solution of the system (4) is positive for all t > 0. �

Theorem 2. The system (4) has uniformly bounded solution.

Proof. Consider a function ψ(t) such that

ψ(t) = x(t)+ y(t)+
1

η(p− τ)
E(t),

dψ(t)
dt

= x′(t)+ y′(t)+
1

η(p− τ)
E ′(t),

= rx
(

1− x
k

)
− αxy

a+ x
− qEx

m1E +m2x
+ sy− β sy

a+ x
+

qEx
m1E +m2x

− cE
η(p− τ)

,

dψ(t)
dt

≤
(

rx− rx2

k

)
+ sy− β sy

a+ k
− cE

η(p− τ)
.

Introduce a positive constant N and rewrite the above equation as follows:

dψ(t)
dt

+Nψ(t) ≤
(
(r+N)x− r

k
x2
)
+

(
(s+N)y− sβ

a+ k
y2
)
− (c−N)

η(p− τ)
E.

For c > N, further simplification yields,

dψ(t)
dt

+Nψ(t) ≤ − r
k

(
x− k(r+N)

2r

)2

− sβ

a+ k

(
y− (s+N)(k+a)

2sβ

)2

+M,

dψ(t)
dt

+Nψ(t) ≤ M; M =

(
k2(r+N)2

4r2 +
(s+N)2(k+a)2

4s2β 2

)
.

Solution of above differential inequality gives,

ψ(t) ≤ M
N

(
1− e−Nt

)
+ψ(0)e−Nt ,

0 < lim
t→∞

ψ(t) ≤ M
N
.
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Accordingly, all the solutions of (4) initiating from R3
+ are confined in the region

R =

{
(x,y,E) ∈ R;0 < x(t)+ y(t)+

1
η(p− τ)

E(t)≤M+φ for any φ > 0
}

This proves the result. �

3. Existence, Stability and Bifurcation of Equilibria

The system has six feasible non-negative equilibrium states, namely

(i) P0(0,0,0) is a trivial equilibrium point.

(ii) P1(k,0,0) is the axial equilibrium point on x-axis.

(iii) P2(0,
a
β
,0) is the axial point on y-axis. Predator exists due to presence of alternate food

a > 0.

(iv) P3(x,y,0) is the boundary equilibrium point in xy-plane. The equilibrium level densities

x and y are the positive solution of the following equations:

r
(

1− x
k

)
− αy

a+ x
= 0,

1− βy
a+ x

= 0.

The positive solution is obtained as

x = k
(

1− α

rβ

)
and y =

1
β

(
a+ x

)
with rβ > α. (5)

(v) P4(x̂,0, Ê) is boundary equilibrium point in xE-plane. Here x̂ and Ê are the positive

solution of the following equations:

r
(

1− x̂
k

)
− qÊ

m1Ê +m2x̂
= 0,

q(p− τ)x̂
m1Ê +m2x̂

− c = 0.

This gives

x̂ = k
(
(rm1−q)L+ rm2

r(m1L+m2)

)
and Ê = Lx̂, where L =

(p− τ)q− cm2

cm1
. (6)
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Accordingly, x̂ is positive provided one of the following conditions is satisfied as fol-

lows:

m1 ≥
q
r

and τ < p− cm2

q

or

m1 <
q
r

and 0 <
q
r
−m1 <

rm2

L
i.e.,τ > p−

(
cm2

q
+

r2cm1m2

q(q−m1r)

)
.

(vi) P5(x∗,y∗,E∗) is the unique interior equilibrium point of the system (4) and is obtained

by solving the following equations:

r
(

1− x∗

k

)
− αy∗

a+ x∗
− qE∗

m1E∗+m2x∗
= 0,

1− βy∗

a+ x∗
= 0,

q(p− τ)x∗

m1E∗+m2x∗
− c = 0.

These yield:

x∗ = k
(

1− α

rβ
− qL

r(m1L+m2)

)
, y∗ =

a+ x∗

β
and E∗ = Lx∗. (7)

The interior equilibrium point (x∗,y∗,E∗) is positive for the condition

p−
(

cm2

q
+

(r− α

β
)cm1m2

q(q−m1(r− α

β
))

)
< τ < p− cm2

q
. (8)

The condition (8) gives the range of tax for the existence of interior equilibrium and

this range of tax can be useful for regulatory agency at the time of formulation of tax

structure per unit biomass for controlling the fishery system.

From equation (7), the following can be derived:

dx∗

dτ
=

rm2q2

(m1L+m2)2 > 0, (9)

dy∗

dτ
> 0 and (10)

dE∗

dτ
= L

dx∗

dτ
− x∗

q
cm1

< 0 f or
dx∗

dτ
<

qx∗

Lcm1
. (11)

The equations (9) and (10) shows that as the value of taxation increasing, the prey

and predator densities are also increasing. However, the harvesting effort decreases
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with increasing taxation for (11). This concludes that with the increase of taxation, the

amount of effort will start decreasing. This means a fisherman’s interest for investment

in fishery will decrease and may be some of them will leave harvesting of species as

it is no longer profitable. In resultant, this must help prey and predator population to

grow. The enhance taxation can help in increasing higher equilibrium level of prey

and predator densities. It can be concluded that equilibrium level of prey, predator

populations can be increased by increasing value of taxation.

For the local stability, the Jacobian matrix of the system (4) at any point(x,y,E) is given by

J(x,y,E) =


f + x

(
− r

k
+

αy
(a+ x)2 +

qEm2

(m1E +m2x)2

)
− αx

a+ x
−m2q

(
x

m1E +m2x

)2

β sy2

(a+ x)2 g− β sy
a+ x

0

ηq(p− τ)m1E2

(m1E +m2x)2 0 h− ηq(p− τ)m1xE
(m1E +m2x)2



Using Routh- Hurwitz criterion [13, 14], the local stability analysis of all equilibrium states

is gives as follows:

(1) The origin P0(0,0,0) is a saddle point with unstable manifold in y direction. It has a

stable manifold in x as well as E direction.

(2) The equilibrium point (k,0,0) is a saddle point with unstable manifold in y-direction

and stable manifold in x-direction. The system has stable manifold in E-direction if

τ > p− cm2

q
. (12)

It may be noted that the equilibrium point P1(k,0,0) becomes non- hyperbolic and bi-

furcation may occur when

(p− τ)q
m2

= c. (13)

(3) The equilibrium point P2

(
0,

a
β
,0
)

is locally asymptotically stable provided

r− α

β
< 0. (14)
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When the above condition (14) is violated, then the point P2 is a saddle point with

unstable manifold in x- direction.

(4) The characteristic equation corresponding to the equilibrium point P3(x,y,0) yields the

eigen values:

λ1,2 =
1
2

[(
α

β
− r− s

)
+

αx
β (a+ x)

±

√((
α

β
− r− s

)
+

αx
β (a+ x)

)2

−4
rsx
k

]
and

λ3 = η

(
(p− τ)q

m2
− c
)
.

Accordingly, the following conclusions can be drawn regarding the local stability of P3:

(i) The equilibrium point P3 is locally asymptotically stable when

αx
β (a+ x)

< r+ s− α

β
and

(p− τ)q
m2

< c. (15)

(ii) The point P3 is a saddle point with an unstable manifold in E-direction provided

(p− τ)q
m2

> c. (16)

(iii) The bifurcation is possible when

(p− τ)q
m2

= c. (17)

(iv) If
(

α

β
− r− s

)
+

αx
β (a+ x)

= 0, then a pair of purely imaginary eigen values exists.

The transversality condition for Hopf bifurcation at the equilibrium point P3 is given by

d
ds

[(
α

β
− r− s

)
+

αx
β (a+ x)

]
=−1 6= 0 f or s =

(rβ −α)[k(α− rβ −αβ )−arβ ]

β (arβ + k(rβ −α))

Thus, the existence of periodic solutions around the equilibrium point P3 are possi-

ble. This will attract all small perturbations in the neighborhood of xy- plane when
(p− τ)q

m2
< c.

(5) Corresponding to the equilibrium point P4(x̂,0, Ê), one of the eigen value is λ = s > o,

and the other two are obtained as eigenvalues of the following2×2 matrix

J∗4(x̂, Ê) =

 x̂
(
− r

k
+

qÊm2

(m1Ê +m2x̂)2

)
− qm2x̂2

(m1Ê +m2x̂)2

ηÊ2q(p− τ)m1

(m1Ê +m2x̂)2
−ηÊx̂q(p− τ)m1

(m1Ê +m2x̂)2


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It can be observed that

det(J∗4) =
rx̂
k
> 0 and

tr(J∗4) = x̂
(
− r

k
+

qÊm2

(m1Ê +m2x̂)2

)
+
−ηÊx̂q(p− τ)m1

(m1Ê +m2x̂)2

=

(
qL

m1L+m2
− r
)
+

qL(m2−ηm1(p− τ))

(m1L+m2)2 .

Accordingly, P4 is a saddle point when tr(J∗4) < 0. Further, if tr(J∗4) = 0, then it has

pair of purely imaginary roots. The transversality condition for Hopf bifurcation at the

equilibrium point P3 is given by

d(tr)(J∗4
dr

=−1 6= 0 f or r =
qL

m1L+m2
+

qL(m2−ηm1(p− τ))

(m1L+m2)2 .

Thus, there exists a family of an attracting periodic solutions through Hopf bifurcation

from P4 in the neighborhood of ’r’, keeping other parameters fixed.

The necessary and sufficient condition for local stability of (x∗,y∗,E∗) is given by the fol-

lowing theorem:

Theorem 3. The positive interior equilibrium point P5(x∗,y∗,E∗) is asymptotically locally sta-

ble provided condition (19) is satisfied.

Proof. Let the jacobian matrix of the system (4) evaluated at the equilibrium point P5 be

J5(x∗,y∗,E∗) = (ai j)3×3.

a11 = x∗
(
− r

k
+

αy∗

(a+ x∗)2 +
qE∗m2

(m1E∗+m2x∗)2

)
, a12 =

−αx∗

a+ x∗
> 0, a13 =

m2q(x∗)2

(m1E∗+m2x∗)2 > 0,

a21 =
β sy∗

(a+ x∗)2 > 0, a22 =
−β sy∗

a+ x∗
< 0; a22 =−a21(a+ x∗)< 0, a23 = a32 = 0,

a31 =
ηq(p− τ)m1(E∗)2

(m1E∗+m2x∗)2 > 0, a33 =−
ηq(p− τ)m1x∗E∗

(m1E∗+m2x∗)2 < 0, a33 =−a31
x∗

E∗
< 0.

Thus, the characteristics equation of the jacobian matrix at P5(x∗,y∗,E∗) is obtained as

λ
3 +A1λ

2 +A2λ +A3 = 0,
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A1 =−(a11 +a22 +a33),

A2 = a22a33 +(a11a33−a13a31)+(a11a22−a21a21),

A3 = a11a22a33−a12a21a33−a13a31a22.

Using Routh- Hurwitz criteria, the condition for local stability of the equilibrium point P5(x∗,y∗,E∗)

is

A1 > 0, A2 > 0 and A1A2−A3 > 0. (18)

Note that A1 > 0 if

M =
r
k
− αy∗

(a+ x∗)2 −
qE∗m2

(m1E∗+m2x∗)2 > 0. (19)

Also, A2 > 0 and A1A2−A3 > 0 for the condition (19). Thus, the interior equilibrium point

(x∗,y∗,E∗) is asymptotically stable provided M > 0. �

Theorem 4. The interior equilibrium point (x∗,y∗,E∗) of the system (4) is globally asymptot-

ically stable in the domain D = {(x,y,E) : m1E +m2x > M1,(x,y,E) ∈ R3
+}, where M1 =

Lqkaβ

(m1L+m2)(raβ −αk)
.

Proof. Consider a function V (x,y,E) for arbitrary chosen positive constants d0, d1 and d2 s.t:

V (x,y,E) = d0

[
(x− x∗)− x∗ log

x
x∗

]
+d1

[
(y− y∗)− y∗ log

y
y∗

]
+d2

[
(E−E∗)−E∗ log

E
E∗

]
;

where, V (x∗,y∗,E∗) = 0.
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Now differentiate V w.r.t. ′t ′,

dV
dt

= d0(x− x∗)
ẋ
x
+d1(y− y∗)

ẏ
y
+d2(E−E∗)

Ė
E
,

= d0(x− x∗)
(

r
(

1− x
k

)
− αy

a+ x
− qE

m1E +m2x

)
+d1(y− y∗)

(
s− β sy

a+ x

)
+ d2(E−E∗)η

(
q(p− τ)x

m1E +m2x
− c
)
.

dV
dt

=− d0(x− x∗)2
[

r
k
− αy∗

(a+ x)(a+ x∗)
− qE∗

(m1E +m2x)(m1E∗+m2x∗)

]
+

(x− x∗)(y− y∗)
a+ x

∗[
−d0αx∗+

d1sβE∗

a+ x∗

]
+

(−d0qx∗+d2q(p− τ)E∗)(x− x∗)(E−E∗)
(m1E +m2x)(m1E∗+m2x∗)

− d1sβ (y− y∗)2

a+ x

− d2q(p− τ)x∗(E−E∗)2

(m1E +m2x)(m1E∗+m2x∗)
.

Choosing d0 = 1,d1 =
αx∗(a+ x∗)

sβE∗
and d2 =

x∗

(p− τ)E∗
> 0 for p > τ , the above equation

becomes,

dV
dt

= −d0(x− x∗)2
[

r
k
− αy∗

(a+ x)(a+ x∗)
− qE∗

(m1E +m2x)(m1E∗+m2x∗)

]
− d1sβ

a+ x
(y− y∗)2

− d2q(p− τ)x∗

(m1E +m2x)(m1E∗+m2x∗)
(E−E∗)2,

dV
dt
≤ −(x− x∗)2

[
r
k
− αy∗

a(a+ x∗)
− qE∗

(m1E +m2x)(m1E∗+m2x∗)

]
α1(a+ x∗)x∗(y− y∗)2

(a+ x)E∗

− qx2∗(E−E∗)2

(m1E +m2x)(m1E∗+m2x∗)
.

dV
dt

< 0 if
r
k
− αy∗

a(a+ x∗)
− qE∗

(m1E +m2x)(m1E∗+m2x∗)
> 0.

Substituting the values of y∗ and E∗ in the above expression, a plane is obtained as follows:

(m1E +m2x)>
Lqkaβ

(m1L+m2)(raβ −αk)
= M1(say). (20)

If raβ <αk, the inequality (20) is trivially true and for raβ >αk, a bound of plane (m1E+m2x)

is obtained in positive octant. This shows that
dV
dt

is negative definite for the condition (20).

Thus, the interior equilibrium point (x∗,y∗,E∗) is asymptotically globally stable for the suf-

ficient condition (20). �
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Theorem 5. The system (4) exhibits a transcritical bifurcation around the axial equilibrium

point P1(k,0,0) if

τc = p− cm2

q
. (21)

Proof. The Jacobian of system (4) at equilibrium point P1(k,0,0) has a zero eigenvalue for the

condition τ = p− cm2

q
and therefore, the equilibrium point (k,0,0) becomes non-hyperbolic.

So there is a chance of bifurcation around this equilibrium point. The threshold value of the

bifurcation is τc = p− cm2

q
.

The eigenvectors of J(k,0,0) and (J(k,0,0))T corresponding to zero eigenvalue are obtained as

V =

(
1,0,
−rm2

q

)T

and W = (0,0,1)T , respectively. (22)

Compute ∆1, ∆2 and ∆3 as follows:

∆1 =W T Fτ(P1,τc) = 0, F = (F1,F2,F3)T = (x f ,yg,Eh)T .

∆2 =W T [DFτ(P1,τc)V
]
= rη 6= 0,

where

DFτ(P1,τ
tc) =


0 0 0

0 0 0

0 0
−ηq
m2


.

∆3 =W T [D2Fτ(P1,τc)(V,V )
]
=

ηm1r2

qk
6= 0

. Since, ∆1 = 0, there is no chance of saddle- node bifurcation.

Thus, by the Sotomayor’s theorem, the system (4) undergoes a transcritical bifurcation around

the axial equilibrium point (k,0,0) for the condition (23).

�

Remark 0.1. Similarly, the system (4) exhibits a transcritical bifurcation around the axial equi-

librium point (0,
a
β
,0) if r =

α

β
.

Further, the system (4) has a transcritical bifurcation around the boundary equilibrium point

(x,y,0) for τ = p− cm2

q
.
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4. Persistence

Persistence ensures the long term co-existence of all species. The system is investigated near

the boundaries of the positive octant. According to the approach of Freedman and Waltman

[6][section-4], consider the system (4) along with the following assumptions:

(B1): fy =
−α

a+ x
< 0, fE =

−m2qx
(m1E +m2x)2 < 0,

gx =
sβy

(a+ x)2 > 0,

hx =
η(p− τ)m1E
(m1E +m2x)2 > 0,

g(0,y,E) = 1− β

a
y < 0 if y >

a
β

,

h(0,0,E) =−ηc < 0.

(B2): The prey species x grows to the carrying capacity in the absence of predator i.e.,

f (0,0,0) = r > 0 and f (k,0,0) = 0.

While, due to the intra-specific competition within prey species, it is observed

∂ f
∂x

(x,0,0) =− r
k
< 0.

(B3): There is no equilibrium point on yE plane.

(B4): In the absence of harvesting (E = 0) and predator (y = 0), there exist equilibrium

points

(x,y,0) and (x̂,0, Ê) respectively, such that

f (x,y,0) = g(x,y,0) = 0,

f (x̂,0, Ê) = h(x̂,0, Ê) = 0.

Therefore, the following results represent the conditions for persistence of the system (4).

Theorem 6. Let the hypotheses [B1]-[B4] hold. The system (4) persists in the absence of

periodic solutions in the boundary planes provided

h(x̂,0, Ê) =
(p− τ)q

m2
− c > 0. (23)

g(x,y,0) = s > 0. (24)



NON-LINEAR HARVESTING OF PREY WITH DYNAMICALLY VARYING EFFORT 15

Proof. For the boundary equilibrium point P3(x,y,0) in xy− plane, the eigen value in E- direc-

tion is obtained as λ3 =
(p− τ)q

m2
− c. The point P3(x,y,0) is unstable provided (23) holds.

Similarly, λ2 = s > 0 is eigen value in y-direction corresponding to the boundary equilibrium

point (x̂,0, Ê) in xE plane, which is unstable provided (24) holds. Also, the points (0,0,0) and

(k,0,0) are unstable. This shows that all trajectories are bounded away from all boundaries of

the system. Hence, if there are no limit cycles on the boundary planes and the conditions(23)

and (24) are satisfied , then the system(4) persists. �

Theorem 7. Let there be a finite number of periodic solution in xy and xE planes. Then, for each

limit cycle (u(t),v(t)) in the xy plane and (ω1(t),ω2(t)) in xE plane, the persistence conditions

for the system would take the form:∫
ξ

0
h(u(t),v(t),0)dt > 0 and

∫
ω

0
g(û(t),0, v̂(t))dt > 0,

where ξ and ω are the limit periods of the limit cycle.

Proof. Assume that there exists a limit cycle in the in the xy− plane , then the variational matrix

about the limit cycle x(t) = u(t),y(t) = v(t),z(t) = 0 take the form

V (u(t),v(t),0) =


u(t)

(
− r

k
+

αv(t)
(a+u(t))2

)
−αu(t)
a+u(t)

− q
m2

sβ (v(t))2

(a+u(t))2
−sβv(t)
a+u(t)

0

0 0 η

(
(p− τ)q

m2
− c
)


Consider the solution of given system with the initial condition (t,a1,a2,a3) sufficiently close

to the limit cycle. From the above variational matrix, it can be obtained that

dE
dt

= η

(
(p− τ)q

m2
− c
)

with E(0) = a3,

E = a3exp
[∫

ξ

0
η

(
(p− τ)q

m2
− c
)

dt
]
,

∂E
∂a3

= exp
[∫

ξ

0
η

(
(p− τ)q

m2
− c
)

dt
]
.

Using Taylor’s expansion theorem:

E(t,a1,a2,a3)−E(t,a1,a2,0)w a3
∂E
∂a3
w a3exp

[∫ ξ

0 η

(
(p− τ)q

m2
−c
)

dt
]
w a3exp

[∫ ξ

0 h(u(t),v(t),0)dt
]

.
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Then E increases or decreases according to
∫ ξ

0 h(u(t),v(t),0)dt is positive or negative. Hence

the trajectories go away from the xy− plane under the assumptions of the theorem.

Similarly, result can be proved for xE− plane.

�

5. Bionomic Equilibrium and Optimal Harvesting Policy

The net economic revenue to the society is represented as the sum of net economic revenue

to the fishermen and net economic revenue to the regulatory agency, i.e.,

P(t,x,y,E,τ) =
(

q(p− τ)x
m1E +m2x

− c
)

E +
qτxE

m1E +m2x
=

(
qpx

m1E +m2x
− c
)

E. (25)

Clark [3] defined the bionomic equilibrium point as the point of intersection of the interior

equilibrium of the system (4) along with zero net economic revenue. The bionomic equilibrium

PBE(xBE ,yBE ,EBE) is obtained as the positive solution of the system

dx
dt

=
dy
dt

=
dE
dt

= P = 0.

It gives

xBE =
k

m1r

[(
r− α

β

)
m1−q+

cm2

p

]
, yBE =

a+ xBE

β
and EBE =

(pq− cm2)

cm1
xBE ,

for

cm2

p
< q <

(
r− α

β

)
m1 +

cm2

p
. (26)

Next, an optimal harvesting policy for the system (4) is investigated to maximize the total

discounted net revenue using taxation as a control instrument. The optimal control problem

over an infinite time horizon is given by

max
τmin<τ(t)<τmax

I =
∫

∞

0
e−δ t

(
qpx

m1E +m2x
− c
)

dt. (27)

The constant δ is the instantaneous annual rate of discount decided by harvesting agencies. Let

X = (x,y,E) and X∗ = (x∗,y∗,E∗) are the positions such that there exist a tax policy τ(t). The
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system (4) with X(t1) = X∗ has a positive solution for t > t1 under the policy τ(t).

Therefore, the taxation policy[10] is assumed as follows:

τ(t) =

τ(t) f or t ∈ [0, t1]

τ∗ f or t > t1.

The objective is to determine an optimal taxation policy τ = τ(t) to maximize (27) subject to

the state equations in the system (4) and the control constraints τmin < τ(t)< τmax. Pontryagin’s

Maximum Principle is used to obtain the optimal level of the solution of the problem (27). Let

λ1(t),λ2(t) and λ3(t) are adjoint variables w.r.t. the time ’t’ corresponding to the variables x,y

and E, respectively. The associated Hamiltonian function is given by

H(t,x,y,E,τ) = e−δ t
(

qpx
m1E +m2x

− c
)
+λ1

[
rx
(

1− x
k

)
− αxy

a+ x
− qEx

m1E +m2x

]
+λ2

[
sy
(

1− βy
a+ x

)]
+λ3

[
ηE
(

q(p− τ)x
m1E +m2x

− c
)]

. (28)

Notice that Hamiltonian is linear in control variable τ . The optimal control problem involves

singular and bang-bang controls. Also, the optimal control must satisfy the following conditions

to maximize ’H’:

τ =

τmax ∀t ∈ [0, t1] with dH
dτ

> 0

τmin ∀t ∈ [0, t1] with dH
dτ

< 0.

The Hamiltonian in (28) must be maximized for τ ∈ [τmin,τmax]. Assume that the control con-

straints are not binding (i.e., the optimal solution does not occur atτmin or τmax ). Thus, the

considered control problem admits a singular solution on the control set(τmin,τmax) if

∂H
∂τ

= 0,

i.e.,
−qxλ3

m1E +m2x
= 0 ⇒ λ3(t) = 0. (29)

In order to find a singular control, Pontryagin’s Maximum Principle [15] is utilized and the

adjoint variables must satisfy the adjoint equations given by

dλ1

dt
=−∂H

∂x
,

dλ2

dt
=−∂H

∂y
,

dλ3

dt
=−∂H

∂E
. (30)

The optimal equilibrium point is the equilibrium point corresponding to the optimal tax. Such

a path is called the optimal path and is a solution of the system (4). Now, the adjoint equations
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are

dλ1

dt
= −∂H

∂x
=−

[
e−δ t

(
pqm1E2

(m1E +m2x)2

)
+λ1

(
− rx

k
+

αxy
(a+ x)2 −

qExm2

(m1E +m2x)2

)
+λ2

(
sβy2

(a+ x)2

)]
, (31)

dλ2

dt
= −∂H

∂y
=−

[
−λ1

(
αx

a+ x

)
−λ2

(
sβy
a+ x

)]
, (32)

dλ3

dt
= −∂H

∂E
=−

[
e−δ t

(
pqm2x2

c(m1E +m2x)2

)
+

(
−qm2x2

c(m1E +m2x)2

)]
= −

[
e−δ t

(
p− c(m1E +m2x)2

qm2x2

)
−λ1

]
. (33)

Also, the considered control problem admits a singular solution on the control set [0,Emax] if
∂H
∂E

= 0,

⇒ λ1(t) = e−δ t
(

p− c(m1E +m2x)2

qm2x2

)
. (34)

Let λi(t) = µi(t)e−δ t , where µi(t) = λi(t))eδ t for i = 1,2,3 are known as the shadow

prices and they should remain constant over time. Solving (32), a linear differential equation is

obtained in λ2 and in the interior equilibrium (x∗,y∗,E∗) such that

dλ2

dt
−A1λ2 =−e−δ tA2, (35)

where

A1 =
sβy∗

a+ x∗
and A2 =

αx∗

a+ x∗

(
p− c(m1E∗+m2x∗)2

qm2x∗2

)
.

Solving equation (35),

λ2(t) =
A1

A2 +δ
e−δ t . (36)

To solve (31), put the value of λ2(t) using (36) in (31),

dλ1

dt
= −e−δ t

(
pqm1E∗2

(m1E∗+m2x∗)2

)
+λ1

(
rx∗

k
− αx∗y∗

(a+ x∗)2 +
qE∗x∗m2

(m1E∗+m2x∗)2

)
− A1

A2 +δ
e−δ t

(
sβy∗2

(a+ x∗)2

)
.

dλ1

dt
−B1λ1 =−e−δ tB2, (37)
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where

B1 =
rx∗

k
− αx∗y∗

(a+ x∗)2 +
qE∗x∗m2

(m1E∗+m2x∗)2 and B2 =
pqm1E∗2

(m1E∗+m2x∗)2 +
A1

(A2 +δ )

sβy∗2

(a+ x∗)2 .

Solving equation (37),

λ1(t) =
B1

B2 +δ
e−δ t . (38)

Using (34) and (38),

p− c(m1E∗+m2x∗)2

qm2x∗2
=

B1

B2 +δ
. (39)

Thus,(39) gives us desired singular path. Now, for the optimal level of this singular solution,

Arrow Sufficiency condition for infinite time horizon [7] is applied. It is observed that

∂ 2H
∂x2 =

−rλ1

k
− m1E∗2

(m1E∗+m2x∗)x∗2

[
∂H
∂E

+ ce−δ t
]
−

m2
2qE∗x∗

(m1E∗+m2x∗)3 −
αy∗(a− x∗)λ1

(a+ x∗)3 − sβλ2y∗2

(a+ x∗)3 .

For
∂ 2H
∂x2 < 0, it is observed that λ1 > 0,λ2 > 0 and x∗< a with the singular control i.e.,

∂H
∂E

= 0

and
∂ 2H
∂y2 =

−λ2sβ

a+ x∗
< 0.

Therefore,
∂ 2H
∂x2 < 0 and

∂ 2H
∂y2 < 0 for all t ∈ [0,∞) This shows that the Hamiltonian ’H’ is

concave in both x and y for all t ∈ [0,∞) provided the required conditions are satisfied. Hence,

the arrow sufficiency condition for infinite time horizon shows that the singular solution is the

part of optimal solution.

6. Numerical Simulations

In this section, numerical simulations are carried out for suitable choices of parameters to

investigate the dynamical behavior of the system, keeping all the parameters fixed except τ .

Hence, τ is known as bifurcation parameter. Let the value of parameters r = 0.3, k =

100, α = 0.005, m1 = 0.5, m2 = 0.5, q = 0.15, a = 3, s = 1, β = 0.15, η =

1, p = 5, c = 1 in appropriate units.

As a regulatory is always interested in the interior states. So, for the above set of parameters,

examine the condition of existence and the stability of the steady state P5(x∗,y∗,E∗). To en-

sure the existence of the non- trivial steady states P5, the value of taxation τ can be obtained
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FIGURE 1. (a), (b) and (c) represent Solution curves of the prey population,

predator population and Effort as a function of time for different low values of

tax τ , for a fixed initial level (70,550,5) and (d) represents phase plane trajecto-

ries of species x,y and effort E with the different initial levels for τ = 1.5.

as −0.7329 < τ < 1.667. For τmin < 0, there is a case of subsidies provided by government

to the fishermen at the time of fishing. If there is no case of subsidy, then take τmin = 0

and τmax = 1.6(say). For the τmin = 0 and τmax = 1.6, the steady states can be obtained as

(55.557,390.4073,27.7777) and (86.7306,598.3166,1.8993). It can be observed that when a

fisherman have to pay no tax, he uses maximum amount of efforts to obtained the maximum

benefits from fishery as compared in the case of taxation. The parameter values also satisfy

the condition (19), which shows that steady state P5(x∗,y∗,E∗) is locally asymptotically sta-

ble. In the figure-1, diagrams (a), (b) and (c) give long term behavior of trajectories of prey-

predator population and effort ’E’ w.r.t. time ’t’ for the different low values of tax τ . This

shows that for the fixed initial level (70,550,5), all the trajectories converges to its interior

equilibrium point in the positive octant. Also, it can be observed that as the value of taxation

τ increases, the harvesting effort decreases. In resulted, prey population increases which helps

predator population to grow. Figure-1(d) represents phase plane trajectories of species x,y and

effort E with the different initial levels and it represents that the interior point (x∗,y∗,E∗)=

(84.1232,580.8527,4.2091) is globally stable corresponding to τ = 1.5 for different initial lev-

els in positive octant.

In figure-2, diagrams (a), (b) and (c) gives long term behavior of trajectories of prey- predator

population and effort ’E’ w.r.t. time ’t’ for the different high values of taxation τ . This shows
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FIGURE 3. Phase plane trajectories of different biomasses with the different

initial levels corresponding to τ = 1.9 provided τ > 1.667.

that the population densities for the prey ’x’ and predator ’y’ increase as the tax rates increase,

where as the density of harvesting effort (E) decreases as the tax rates increase. After a time, a

level of taxation i.e.,τ = 1.667 is obtained where effort level will tends to zero.

The figure-3, represents phase plane trajectories of different biomasses with the different initial

levels at the interior, which converge to the point (88.8892,612.6444,0.0000) on the boundary

plane i.e., x-y plane corresponding to τ = 1.9, keeping other parameters fixed. Therefore, for

the condition τ > 1.667, it shows that, for the every different initial levels on the xyE space
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converge to a point on xy plane which means that if a threshold level of taxation i.e.,τ = 1.667

is crossed, then it is not profitable to continue harvesting of prey species. In resultant, They

have to stop harvesting of species.

7. Conclusion

This paper is concerned with the study of a Modified Leslie- Gower type predator in a

predator- prey system with nonlinear harvesting of prey population. The harvesting effort is

taken as a dynamic variable and taxation as a control instrument. The conditions for existence

of steady states and their stability behavior have been examined by using Eigen Value Method,

Routh- Hurwitz criteria and Lyapunov method. The existence of interior steady state strongly

depends on range of tax. This range of tax may be useful for the regulatory agency for for-

mulating a tax structure. The bionomical equilibrium of the system has been derived and it

provides the range of harvesting co-efficient (or catch ability of harvest) that can be useful for

a harvesting agency to get the profitable yields. The sufficient condition for global stability

of unique interior equilibrium point provides a domain for global solution. The conditions of

persistence for the system is derived. It is also investigated that the coexistence of prey and

predator population depends upon the proper harvesting strategies such that the risk of extinc-

tion (or over exploitation) of the species can be avoided. The optimal taxation policy for the

control problem has been studied by using Pontryagin’s Maximum Principle. The optimum so-

lution and optimum path has been derived. The impact of taxation on the system shows that the

population densities for the prey(x) and predator(y) increased as the tax rates increased, where

as the density of harvesting effort(E) decreased as the tax rates increased. It can be concluded

that the equilibrium level of predator-prey system can be increased by increasing tax level. This

observations gives the idea to obtain optimal level of taxation corresponding the optimal equi-

librium level of prey, predator population and effort dynamics. Thus, the objective of this work

includes, both ecological and economic aspects. The economic objective is to maximize the net

economic revenue and ecologically, want to keep the prey and predator from extinction.
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