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Abstract. In this paper, we present an egg-juvenile-adult model, in which eggs and juveniles are structured by age,
while adults by size. The model consists of three first-order partial differential equations with initial and boundary

conditions. We derive sensitivity equations for the solutions with respect to the fecundity and mortality of adults.
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1. Introduction

Body size is manifestly one of the most important physical attributes of an individual in a
population. It is such a factor that determines an individual’s energetic requirements and ability

to exploit resources. It effects the nature of an individual’s interaction with individuals intra- and
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inter-species and the habitat, including predation competition and cooperation. Since the clas-
sical Sinko-Streifer model [1] appeared in 1967, size-structured population models have been
widely investigated. Most of these efforts have focused on well-posedness and stability analysis
(e.g., see [2-11]), optimal control problems(e.g., see [12-16]),and numerical schemes(e.g., see
[17-23]). However, there are only few results on the topic of sensitivity equations and related
analysis for size-structured population models(e.g., [24-25]).

Sensitivity analysis has been a long-standing and distinguished tool in population ecology. It
asks the question what is the linear response of some variable of interest to a change in some
parameter. The derivation of sensitivity equations for population models (especially for matrix
models) has drawn the attention of numerous researchers in the past few decades because the re-
sulting sensitivity functions can be used in many areas, such as optimization and design[26-28],
computation of standard errors [29-30]. Sensitivity functions can also be used in information
theory, control theory, parameter estimation and inverse problems [29-30, 32-36]. However,
little work has been done on the derivation of sensitivity equations for continuous structured
population models.

To the best of our knowledge, the work of Banks, Ernstberger and Hu in [24] is the first lit-
erature on sensitivity equations and related analysis for size-structured population models, they
considered the classical Sinko-Streifer size-structured population model and derived partial dif-
ferential equations for the sensitivities of solutions with respect to initial conditions, growth
rate, mortality and fecundity. Sample numerical results to illustrate use of these equations were
also presented. In [25], Ackleh, Deng and Yang examined a model describing the dynamics of
an amphibian population whose individuals were divided into juveniles and adults. They made
sensitivity analysis for the solutions to the reproduction and mortality of adults.

Since there are many species whose life history consists of more than two stages (e.g. frogs
and invertebrates), in this paper we propose an egg-juvenile-adult model. In the first two stages
we consider age difference while size in the last one. The remainder of the paper is organized as
follows. In Section 2, we present the model and state some assumptions. The existence result

for directional derivatives with respect to parameters are established in Section 3. Section 4
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derives sensitivity equations for the solutions with respect to reproduction and mortality. The

final section contains some remarks.
2. The model description

In this paper, We propose the following three-staged population model with age-size-structure:

Ine(x,t) N dne(x,t)

+ (e (x) +Y(xX)) e (x,8) =0, 0 < x < x1, 0 <t < T, (2.1)

ot dx
anja(;c’t) +ang(;’t) +ui()nj(x,t) =0, 0<x<x, 0<t<T, (2.2)
ani?(:’t) + a(g(s)gg(s’t)) + Ua(N())ng(s,8) =0, 51 <5<, 0<t <T, (2.3)
7,(0,1) = / P BN))na(s,t)ds,  0<i<T, (2.4)

s

n;(0,1) = /O L)y,  0<i<T, (2.5)
g(s)na(s1,t) =nj(x,t), 0<t<T, (2.6)
ne(x,0) =neo(x),  0<x<x, (2.7)
ni(6,0) =njo(x), 0<x<x, (2.8)
na(s,0) =nqo(s) ,  s1<s5<s, (2.9)

where n,(x,t), nj(x,t) and n,(s,t) denote the densities of eggs and juveniles of age x and adults
of size s, respectively, at time ¢. The parameters L., (; and U, are mortality for eggs, juveniles
and adults, respectively. The function y(x) is the rate an egg of age x becomes juvenile. The
functions B and g are the fertility and growth rates of adults, respectively. x| and x, denote the
maximum age of eggs and juveniles, respectively. Equation (2.6) says that x, is the age at which
juveniles mature into adults of minimum size s, and s, denotes the maximum size of adults.
Thus, N(t) = [;? na(s,t)ds denotes the total population of adults.

Throughout this paper the following assumptions hold:
(A1) : 7y, g, € L~(0,x1), U is nonnegative on (0,x1);
(A2): pj € L(0,x2), uj is nonnegative on (0,x2);
(A3) : u, is nonnegative, furthermore, U, and 8 are continuously differentiable with respect to

d Uy d )
a >0 and —ﬁ <0, respectively;
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(Ad): g€ C'(s1,s7) and g(s) > 0 for s < 57, g(s2) =0 for¢ € [0,T];
(AS5) 1 neo € L*(0,x1), njo € L=(0,x2), nao € L*(s1,52);
(A6) : All of variables and parameters are nonnegative in their domains and are extended by
zero outside their domains.
We first introduce the definition of the solution of problem (2.1)-(2.9) via the method of
characteristics.
Definition 2.1 A triple of integrable nonnegative functions (n.(x,t),n;(x,t),n.(s,t)) is said to

be a solution of system (2.1)-(2.9) if it satisfies the following equations:
Dne(x,1) = —(te(x) + (x))ne(x,1),

Dnj(x7t) = _uj(x)nj(xat)v

Dras.1) =~ [talN ) + 25 1),

with
ne(x+h,t +h) —ne(x,t)

Dn,(x,t) = }lllg(l)

h
; h,t+h)—n;(x,t
Dni(x,t):limn](x+ 9 + ) n](xv)
' h—0 h
D(t+h; 1), h) — ,
Dig(s.1) = tim " PO DL R =l
‘>

where ®(t;50,1) is the solution of the differential equation s'(z) = g(s(¢)) with initial condition
s(t) = so.

By (A4), the function & is strictly increasing, and therefore a unique inverse function I'(s; 5o, %)
exists. Let Z(s) =I'(s;51,0); then (s,Z(s)) represents the characteristic curve passing through
(s51,0), and this curve divides the (s,)-plane into two parts.

Let (ne(x,t),n;(x,t),nq(s,t)) be a solution of system (2.1)-(2.9). Using the method of char-

acteristics, we obtain

Meg(x — 1) bt BetV)(DdT -y <y
= ; i« (2.10)
B(N(t—x))N(t —x)e—fo (HAN(TT 4 o
Ay — 1) e~ i pi(T)dT
t x—1 FJ , 1 <x,
nj(x,t) = njo(x—t)e X o

e~ Jouj(r)de I v(o)ne(o,t —x)do, 1> x,
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98(®P(t35.t))

1a0(®(0; 5, 7))o~ JolHaW @)+ HTEHAT 7y
a0 =9 T (0158.0) - iy o)+ 280 (2.12)
8(s1) ’ '
Integration of (2.12) over (sy,s2) gives
4 t &) t
N(t) = / nj(xz,‘L')e_fT““(N(G))deT—I—/ 2nao(s)e_fo““(N(c’))des. (2.13)
0 51

Taking (2.11) and (2.12) into account, we have

toprx .
(2.15) + / / (o (x — T+ xp)e e e N(O)O g,
X2 0

e~ Jo? 1(0)d0 ,— [ ta(N(s))ds g ifxy <t <xp+x,
N(r) :/ 2njo(xz - 1)5(T)€_Jz”“(N(G))deT+/ 2na0(s)e_j8ua(N(G))d6ds
0 51

t rx .
210 [ [ HOBNGE 2 (e 2y = e SO
X2 0
x e Jo? i(0)40 o= [tHaNO)sqr  if s > xy 4 x,

where 6(7) = e fi3-<k5(0)do
3. Directional derivatives with respect to parameters

The main goal of this section is to prove the existence of the directional derivatives with
respect to parameters, which will be needed in the derivation of the sensitivity equations. To
do so, we introduce the directional derivative of a function f with respect to a parameter 0 (see
[24]):

Definition 3.1 Let ® be a convex subset in some topological vector space, and f: R, X ® — R.
Given 0 and ¥ in ©, we define the derivative fy(¢; 0,3 — 0) of a function f at 6 in the direction

¥ — 0 to be

Folt:0,0—8) = lim L1300 =6)=f(5:6) (3.1)

07T £
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provided this limit exists.

Theorem 3.2 For 6 and ¢ in ®, suppose that y, and B each have a bounded directional
derivative U, q(N(2);60,9 —0) and Bg(N(7);0,% — 0) on [0,T], respectively, in the direction
¥ — 0. Furthermore, we assume that L, and By are continuously dependent on 6. Then the
directional derivative Ng(#;0,9% — 0) of N with respect to 6 in the direction ¥ — 6 exists and

satisfies the following equation

-/ ’ / [tay(N(6): 0)M(6) + ap (N(5): 8)]don jo(x2 — 7)

(3.2) x 8(t)e frkalN(@):0)do g7 /S2 ngo (s)e~ JoHa(N(0):6)do
51

< [ an(V():0)M(0) + tag (N(©): )]s

3.3)
r x -
B / e /o Y00 (x — T+ xp)e e 100
X2
t . t
e N0 [, (N(6):0)M(6) + Hag (V(0):6) dod
ifxo <t <xp+x,

3.4)

M) == [ njoloa = 0)3(0)e SRV [t (N(6);0)M(0) + Hag(N(0):0)]dode
— [ nao(s)e B0 [ (N(6);0)M(0) + tag (N (0); 0)ldords
[ [ H0B 0N -2 =0 0)M (7o e il TN

w o~ Jo? 1(0)d0 ,— [1 1ta(N(5):0)ds 4 ¢

_|_// N(T—x2—x);0)M(T—x —x)+ Bo(N(T —x — x);0)]

N(T — x5 — x)e~ i (et D(@)40 gy o= 5% (0140 = [ a(N(s):0)ds g 7
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topx §
_//1Y(x)ﬁ(N(T—)Q—x);G)N(r—x2_x)e—lo(ue+7)(6)d6dx
xp J0
t

w o~ o 11(0)40 = [{ 1a(N(5):0)ds / [tay(N(G); 0)M(G) + fap (N(5): 8)]dodT
T

ift >xy+x,

where N(t) = N(t;0) and M(t) = Ng(;0,9 — ).

Proof Note that there exists a positive constant R* such that N(z) given by (2.14)-(2.16) is
bounded by R* on [0,c0) (see Lemma 4.3 in [11]). Therefore, by assumptions (A2)-(A3), the
vital rates U , B and their derivatives are uniformly bounded. Thus, one can find that Eq. (3.2)
is a linear equation of M(¢) and Egs. (3.3)-(3.4) are linear equations with delay, which implies
that there exists a unique solution M(r) of Egs. (3.2)-(3.4). The boundedness of M(¢) can be
derived by Gronwall’s inequality.

We then claim that N(z;0) is continuously dependent on 6. For any 7 € [0,T] with T < x,
let B(;0,9—0) =N(t;0+¢€(¥ —6)) —N(t;0). From the assumptions (A1)-(A6) and relation
(2.14), we have
B(1:0,5—6)|

< 1a0(s2—51) Jo |ta(N(0;0 + (0 — 6));0 + €(¥ — 0)) — wu(N(0:0);0)|do
+1jo Jo J111a(N (020 + £(5 — 8)):0 + £(8 — 8)) — pa(N(0:6): 6)|dodz
< fao(s2—51) Jo |Hav(B(0): 6 + (8 — 0))|B(5: 0, — 8)|do
+a0(s2 — 1) Ji | tao (N(0:0):0)]|e(8 — 0)|do
+iij0 [ f2 1 (N (0); 0+ £(5 — 8))]|B(0: 0,8 — 0)|dodr
+ij0 i I |Hao (N (53 0): 8) (9 — 0)]dodr,
where 714 i o are the supremum of n49 and n jo, respectively. N(c) ,N (o) are between N(o;6)
and N(0;60 + (1 — 0)). 0, 6 are between 6 and 6 + &(9 — 0). Because Ly (N();:0,9 — )
is bounded on [0, T], thus the second term and the fourth term on the right side of the above
inequality converge to zero as € — 0. Hence, we obtain that 81% |B(t;0,9 — 6)| =0 via Gron-
wall’s inequality. Making use of (2.15)-(2.16) and proceeding analogously, we can prove the
claim for ¢ € [0,T] whit T > x,.

Now we show that Ny (z; 0,1 — 0) exists and satisfies equations (3.2)-(3.4). For any ¢ € [0, T]

with T < xp, let D(t;0, 0 — 0) = MEOFEO-0)-NE6) _ 14y From (2.14) and (3.2), we find

€
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that there exists a positive constant C such that
L1D(:6,9 - 0)| <f5fé|uaN<~< ):6+ (8 — 6))[|D(c:6,0 - 0)|dodr
+f f |“a 8):0+e(d— 9)) ““(N(G;G);eﬂ—u o(N(0;0);0)dodr
+ [i le= J:Ral)90 [1 1y (N (0); 0 +€(0 — )M (0)do
— ¢ JeHa(N(0:6):6 o 1" n(N(030);8)M(o)do|dt
b e RO — o RO [ (V(0:6):6)dode
+f5|liaN(A( );0 +€(8—0))[|D(0;6,9 - 0)|do
+ |#a 10):0+€(v— 9)) Ha(N(0:0):6)| — 110 (N(030);6)do
+ e~ Jehalo d“fr NN (0):0 +&(d - 6))M(0)do
— e JelN(@0)0)do [Ty (N(0:6):0)M(0)do|
e (NS o SN0 11 (N(5:6); 0)do],
where N(o), N(o) are between N(c;0) and N(0:60 + &(® — 0)), and i (o), {i,(c) are be-

tween U, (N(0;0);0) and u,(N(o;0 +¢&(%—0));0 +&( —0)). Because both N and L9
are continuously dependent on 6, the third term, the fourth term, the seventh term, and the
eighth term on the right side of the above inequality converges to zero as € — 0. Moreover,
Hag(N(t);0,9 — 0) is bounded on [0,7] implies that the second term and the sixth term on
the right side of the above inequality converges to zero as € — (0. Hence, we obtain that
g% |D(t;6,9% — 0)| = 0 by virtue of Gronwall’s inequality. Making use of (2.15)-(2.16) and
(3.3)-(3.4), we can obtain the same existence result for ¢ € [0, 7] whit T > x; in a similar man-

ner, and thus the theorem follows. [
4. Sensitivity equations

In this section, we derive equations for the sensitivities of the solution (n,,n,n,) with respect
to B and u,. To simplify the notation, we use & to denote a given direction in the corresponding
parameter space. We first want to derive the sensitivity of (n,,nj,n,) with respect to 3. Let

(me,mj,mg) be the unique solution (guaranteed by results in [11]) of the initial boundary value
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problem
‘9’"3(:’[) + ‘9’”3(;’” (e () + Y me(x, 1) =0, 0 < x < x1, 0 <1 <T,
amg(tx’t) + amg(;c’t) +uj(x)mj(x,t) =0, O0<x<xp, 0<t<T,
Omalsst) | SGIGSA) | (N 1) ma(s.6) = (V)N (s,

S1<8§<$,0<t<T,

@1 me(0,1) = [By(N(2))Np (1) + h(B)IN(t) + B(N(1))Np(t), 0<t<T,
m;(0,1) :/Oxl Y(@)nep (x,1)dx 0<i<T,
g(s1)ma(s1,t) =mj(xa,t) , 0<r<T,
me(x,0) = 0, x €10,x1],
m;j(x,0) =0, x € [0,x],
my(s,0) =0, s € [s1,52].

Our aim here is to characterize the unique solution to (4.1) and to argue that m, = Nep, Mj =
njg and m, = n, B> which implies that system (4.1) can be used to solve for the sensitivity of
(ne,nj,ng) with respect to 3.

By the solution representation formula (2.10)-(2.12) and the definition (3.1), we obtain that

0, r<nx,
neg(x,t:8,h) = ¢ {[Bv(N(t —x;B,1); B,h)Np(t —x; B, h) + h(B)IN(t —x; B, h) (4.2)
+B(N(t —x;B,h); B, h)Ng(t —x;B,h) e holketn(o)do -y

0, <x,
njB(x,t;ﬁ,h): { (4.3)

e o K(DT [N y(GYn 5 (0, —x; B, h)do, 1> x,

—1a(s,8B,h) Jo Hay (N(T: B, 1) B, )Ng (T: B, )dT . 1 < Z(s),
L R R
8(s1)

_na(sat;ﬁah) fli(s];s,t) .uaN<N(T;B>h);B7h)Nﬁ(T;ﬁ7h)dr7 t> Z(S).
(4.4)

naﬁ(s7t;ﬁ7h) =
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Using the method of characteristics, we find that the implicit representation form for solution

to (4.1) is given as follows:

0, t<x,
me(x.0) = {[B(N(t —))Ng(t —x) + h(B)N(t — ) (4.5)
FBN(G —x))N3(t —x)}e fernieno ;o
=" P (46)
T e hmma lg' v(o)neg(o,t —x)do, t>x, ‘

— e W)+ HEEFS N (1))Ng (2 ((ti5,1), T)AT , £ < Z(s),

mj(x2,1'(s1;5,1)) e—ff(sl;s,r)[.Ua(N(T)H‘ag@(g?s’tfw]dT _ /t na(®(T;5,1), 7)
8(s1) oo L(siis.1)
X ttay (N (7))Ng (1)e JelkaV@N+ 5555 o > 7(s).

mg(s,t) =

(4.7)
Comparing (4.5)-(4.6) with (4.2)-(4.3), we find that m, = n.g and m; = njg. In what follows
we show that m, = n,g. From equation (4.7), we conclude that for t < Z(s)

dg(P(o;s,1))

t t
ma(s,1) = — /0 ¢ SN+ SEF0 Y N (2))Ng (2)ng(D(:5,1), T)d T

oSt

t 8 t
4.8) g (D(0:5,1))e~ N (o)) + HLETE D do /O Han(N(2))Ng (1)d7

= —nls.1) [ Han (N ()N (717

and for 1 > Z(s)
mj (2, L(s138,8)) = fre s IHaV () + 25050 e
8(s1)
dg(P(os,1))

! t
- / sy PES L) Dby (N (1)) N (T)e [elka® @)+ 75570 4
[(sy;s,t

my(s,t) =

g(s1) g(s1)

¢ 9g(®(0s,1)) t
s o sy lHa(V(0)) + 22220 o /F - Loy (N(2))Ng(T)d7
S158,

_ mj(Xz,F(sus,t))e—fgmm[MMdHW}dT nj(x2,I(s13s,1))

4.9)

B njﬁ (-x27 F(SIQSJ)) eff1£<s1;s,t)[”a(N(T)HW}dT
g(s1)

~ a(s,1) /r t(l , Ha(N(E)Np (2)dz
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Putting (4.8)-(4.9) and (4.4) together, it yields that for any (s,7) € [sq,s2] X [0,T], the relation

Mg = Nap holds ture. Thus, the system (4.1) can be used to solve for the sensitivity of (n¢,n;,71,)
with respect to 3.

Now, we consider the sensitivity of (r,,n;,n,) with respect to . Let (I, },1,) be the unique

solution (also guaranteed by results in [11]) to the equation

Ont) | OS] | )+ Yl =0, 0 < x <, 0 <1 < T,

ot ox
dlj(x,t)  dlj(x,1) o B

o + p +uj(x)j(x,1) =0, 0<x<x, 0<t<T,
Alg(s,t) | I(g(s)la(s,1)) _

P + Js ‘|‘.ua<N(t))la(sat> =

— [Han (N())Ny, (1) +h(la)|na(s,t) , 51 <s<s2, 0<t<T,

1e(0,0) = [BN(N(#))N(1) + B(N(1))INy, (1), 0<t<T,

(4.10)
1,(0,6) = /0 e, (. 1)dx 0<i<T,
g(s1)la(s1,1) = 1j(x2,1) 0<t<T,
I,(x,0) =0, x € [0,x1],
1j(x,0) =0, x € [0,x7],
l,(s,0) =0, s € [s1,52].

By the solution representation formula (2.10)-(2.12) and the definition (3.1), we have

0, t <x,
Moy, (%15 ay 1) = § { BN (N (2 = x; ks )5 s DN (1 = X3 o ) + B(N (2 = x5 las )3 Mas ) }
Nlla (t — X ,ua,h)e_ Jg(ﬂe+7)(6)d6, > x,
(4.11)
0, t<x,
nj“a(x,t;ua,h) = (4.12)

e~ Jo j(T)dr f(;“ Y(O)ney, (0,8 —x; g, h)do,  t>x,
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(

— J§ [y (N (T3 o ) phay )Ny, (T3 pa, 1) + () dT

Xna(s,t;,u«a,h), téZ(S),
naﬂa(sat;.u“a7h) - {njﬂa(x27r(sl;s7t);ua7h) /t [ (N(T. h). h) (413)
nj(x2,r<sl;S,t);,ua,h) F(Sl;s,t) ‘uaN sUa, ) Ha,

XNy, (T; tas ) —I—h(,ua)]df}na(s,t;ua,h), 1>Z(s).

Using the method of characteristics, we obtain that

0, t<x,
lo(x,1) = . T (as)
{BN(N(t = x))N(t —x) + B(N(£)) }Np, (1 — x)e~ Joetno)da -y >
0, r <x,
lj(x,t) = . (4.15)
e~ (& (51 y(5)n,, (0,1 —x)do, > x,

Moreover, as in (4.8) we have that

d5(®(0is1))

t 't
la(s,1) = — / ¢~ JelaN () +Z5500d0 1y (N (7)) N, (7) + B(Wa) na (@(155,1), T)dT
0

(416) = —ngg(@(0:s,1))e BltuVo) 2T do /0 [y (N (2))Ny, (1) + h(ta) 7
t
= —na(s.0) [ [y (V(2)) Ny, (2) + (o). if < Z(s)

and as in (4.9) we have that

la(s,t) — lj(Xz,F(S];S,t))ef flz'(xl;s,t) Lud(N(T))‘I’W]dT

g(s1)
’ — [ [a(N (o)) + 2D g
—/( )na@(f;s,t),T) [ty (N(T))Ny, (T) + h(a)]e” e 7 dr
T(syss,t
_ L Dlsis 1)) - bave)+ 28 1y, Disiis 1)
g(s1) g(s1)
¢ 9g(P(o38,1)) t
X eifr(slis-ﬁ[u“(N(O-))JFgT]dG /F( _ t)[nu’aN(N(T))Nﬂa(T> +h(.ua)]df
4.17) e
_ ju, (x2,T(s1 ;S7t))e_ flz(sl;w) [ua(N(T))—i—‘95’(@;;””))}&
g(s1)
t
~na(s.t) [ o [Bon (NN () 4 3t
5158,

_ {njﬂa(xz,f‘(sl;s,t))

nj(x2,T(s155,1)) ‘/ (V)N () 4 pra (s,1)

D(s138,0)

ift > Z(s)
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where we have used the relation n; b = [;, which is come from comparing (4.12) and (4.15).
Putting (4.10)-(4.17) together, we conclude that ne, = L, n; e = lj and ngy, = l,. That is the

system (4.10) can be used to solve for the sensitivity of (n,,n;,n,) with respect to L.
5. Concluding remarks

Motivated by the fact that many species own a multi-staged, we address an age-size-structured
model describing the dynamics of a population composed of eggs, juveniles and adults. In real
ecological situations, the maturation age of different individuals, with different life histories,
may be different, depending on forage, genetic heredity and so on. Hence we assume the mat-
uration function is age-dependent rather than a fixed maturation age.

The key object in this paper is the establishment of the sensitivity equations with respect to
the fecundity and mortality for adults. We believe that the results obtained will be helpful to the
understanding of interactions of population evolution and vital parameters.
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