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Abstract. Leishmaniasis is one type of infectious diseases that is generated by different parasites of the Leishma-

nia. The disease spreads in mammals (both human and animal hosts) through the bites of various infected sand fly.

species. Leishmania parasites have two important developmental stages in their life cycle such as Promastigote (the

proliferative form found in the lumen of the female sand fly) and another one is Amastigote (the proliferative form

found inside several types of mammalian host cells). Here we have considered a mathematical model consisting

susceptible (uninfected) macrophage cell, early stage infected macrophage cell (Promastigote), late stage infected

macrophage cell (Amastigote) and parasite population. We have applied drugs like Sodium Stibogluconate and

Meglumine Antimoniate for reducing parasite population in impulsive way under mathematical framework. Our

analytical and numerical results justify that controlling parasite population by applying drugs in impulsive way

gives realistic outcome. Also we have established the efficiency of the drug dose that contributes a greater effect

on the system moving towards the healthy situation.
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1. Introduction

Leishmaniasis is a special type of diverse and complex vector borne diseases, which is caused

by intercellular protozoan parasite of the Leishmania genus. The disease is transmitted by the

bite of infected female Phlebotomous papatasi sand flies [1, 2]. Presently the disease is endemic

in more or less eighty eight countries. Mostly affected countries are Afghanistan, Algeria, Iran,

Iraq, Pakistan, Brazil and Peru that include more than ninety percent cases of the world. There

are approximated 12 million cases worldwide with 1.5 to 2 million fresh cases in every year

[3, 4]. There are generally four clinical prototypes for leishmaniasis and these are characterized

as Cutaneous Leishmaniasis (CL), Mucocutaneous Leishmaniasis (known as Espundia), Vis-

ceral Leishmaniasis (known as Kala-azar) and Post Kala-azar Dermal Leishmaniasis (PKDL).

The disease has four eco-epidemiological units such as zoonotic and anthroponotic cutaneous

leishmaniasis (CL) and visceral leishmaniasis (VL) respectively. In anthroponotic form, human

are only responsible for infection. Otherwise in zoonotic cycles, animals are reservoirs, which

carry the leishmania parasites [5, 6].

The infected female sand fly pushes the parasite’s motile and flagellated stage into the human

skin (termed as Promastigote). After entering the leishmania parasite into the human body, it’s

intention is to attack and reside in the macrophage tissues. Once the parasite enters into the

human host, it is phagocytosed by macrophages and then becomes Amastigote in nature. The

Amastigote form is then able to infect additional macrophages locally and distribute by different

tissue sites. When uninfected sand fly feeds blood from an infected host, then it becomes

infected with Amastigote. Next it transforms back into the Promastigote stage in the sand fly

gut depending upon leishmania species and also individual host immune factors [7].

One of the pioneer scientists Marcos [8] applied differential equations for describing the TH1/TH2

model in order to adapt leishmanial disease with respect to immune response of cutaneous leish-

maniasis. Das et al. [9] studied the dynamics of American Cutaneous Leishmaniasis with delay

effect. Roy et al. [10] analyzed the transmission dynamics of cutaneous leishmaniasis to study

the effects of delay based on disease transmission through the vector sand fly. Biswas et al.

[11] introduced the concept of awareness programs driven by social media for controlling the

disease cutaneous leishmaniasis. For reducing the transmission of leishmaniasis (in Morocco)
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and controlling the vectors, Mejhed et al. [12] proposed the mathematical model with the effect

of global climatic change. Langer et al. [13] recognized the biological issues that should be

changed to minimize the parasite population in the host. First line of drugs as Sodium Stiboglu-

conate (Pentostam) and Meglumine Antimoniate (Glucantime) are applied for treatment for this

disease [14]. Oral and topical treatments are also available. But the drug induced control and

impulsive therapies in the macrophage cell are yet to be explored.

In this research work, we have slightly changed the mathematical model of Nelson [15]. Mod-

ified model includes the early stage infection of macrophage cell (Promastigote) and late stage

infection of macrophage cell (Amastigote) with two drug induced control therapies. The major

target is to prevent the disease by controlling the parasite population in the macrophage cell

over drugs. Initially, we have applied the drugs through impulsive strategy in fixed time interval

to observe perfect adherence behavior of drugs. The model has been analyzed to find out the

threshold time interval and minimum effectiveness of drugs. We have also observed that the ef-

fect of impulsive strategy in the non-fixed time interval on the system provides better expected

result.

2. Mathematical Model with Basic Assumptions

Cytological behavior of macrophage has a great importance to study the disease cutaneous

leishmaniasis. Macrophage cells are classified as susceptible macrophage cell and infected

macrophage cell, where as the infected macrophage cell has two groups i.e., primary stage in-

fected macrophage cell and late stage infected macrophage cell. We have formulated here a

mathematical model with four components. They are susceptible macrophage cell (MS), early

stage infected macrophage cell, noted as Promastigote (MP), late stage infected macrophage

cell, named as Amastigote (MA) and parasite population (P). We have considered λ as a con-

stant source rate of macrophage and δ as the rate constant of change in macrophage status for

individual immunity factor. The rate constant of infectivity is denoted by σ . State change factor

from Promastigote to Amastigote stage is referred as Km and burst size of Amastigote is noted

as Nm. Finally α is the rate of loss of parasite population.
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Here our motivation is to reduce the rate of infectivity that involves the interaction between

susceptible macrophage and parasite. To do this task, we have introduced impulsive drug dose

strategy to control the parasite population. However, continuous application of drug dose is

neither possible nor desirable, so we shall assume drug dose occurs at distinct (not necessar-

ily fixed) times tk. At these times, the number of parasite in the macrophage are reduced by

some proportion r. Thus incorporating the above assumption into our previous work [16], the

mathematical model becomes:

dMS
dt = λ +δMP−σMSP−d1MS, t 6= tk

dMP
dt = σMSP−δMP−d2MP−KmMP, t 6= tk

dMA
dt = KmMP−d3MA, t 6= tk

dP
dt = Nmd3MA−d4P−αPMA, t 6= tk

∆P = −rP, t = tk,

(2.1)

with the initial conditions MS(0) > 0, MP(0) > 0 MA(0) > 0 and P(0) > 0. Moreover d1, d2,

d3 and d4 are the death rates of susceptible macrophage, macrophage in Promastigote form,

macrophage in Amastigote form and parasite population respectively. We have established the

system is bounded for the condition given below:

KmσλNm > d1d4(δ +d2)+Kmd1d4.

3. The System without Impulse

In this case, the model takes the following form:

dMS
dt = λ +δMP−σMSP−d1MS,

dMP
dt = σMSP−δMP−d2MP−KmMP,

dMA
dt = KmMP−d3MA,

dP
dt = Nmd3MA−d4P−αPMA,

(3.1)

with the initial conditions MS(0)> 0, MP(0)> 0, MA(0)> 0 and P(0)> 0.
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3.1. Existence Condition of Equilibria

The system (3.1) has two equilibrium points, given below as:

(i) Disease-free equilibrium E0(M̃S,M̃P,M̃A, P̃) and another is

(ii) Endemic equilibrium E?(M?
S ,M

?
P,M

?
A,P

?),

where M̃S = λ

d1
, M?

S=λ−M?
P(Km+d2)

d1
, M?

P= d3d4P?

Km(Nmd3−αP?) , M?
A = d4P?

(Nmd3−αP?) and

P? = σλKmNmd3−d1d3d4d2−d1d3d4δ−d1d3d4Km
σλαKm+σd3d4Km+ σd3d4d2

with the condition Nmd3 > αP?.

The endemic equilibrium E? is feasible if and only if d1d4(δ+d2)
Km(σλNm−d1d4)

> 1.

Remark 1: If the transmission factor of the disease (Km) lies under its threshold value, then

the system remains in disease-free situation. If we are able to control the parameter σ that is

directly related to the explosion of the disease, then system can achieve the disease-free state.

Similarly as Nm is directly related to the growth of parasite population, thus its lower value

would enable to make the system free from disease.

3.1.1. Stability Analysis of the System

For finding basic reproduction ratio, three compartments MP
′,MA

′ and P′ have been considered

here. we have 
MP
′

MA
′

P′

=


−d2−δ −Km 0 σMS

Km −d3 0

0 Nmd3−αP −d4




MP

MA

P

 .
According to [17] the square matrix above can be re-written as the subtraction of two matrices.

Thus, above matrix can be expressed as Z′ = (F −V )Z. Here F is a non-negative matrix that

contains the elements related to the generation of new infections and V is a diagonal non-

negative matrix, which consists the elements related to the loss of infections. Considering that F

corresponds to the infectivity function of an infected macrophage and V−1 is a diagonal matrix

indicate loss of infected macrophage. Now at the trivial equilibrium point, (M̃S = λ

d1
,M̃P =

M̃A = P̃ = 0), the matrix Next Generation Operator is, NGO= FV−1,

where

F=


0 Km 0

0 0 Nmd3

σλ

d1
0 0
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and

V =


d2 +δ +Km 0 0

0 d3 0

0 0 d4

.

This leads to

FV−1=


0 Km

d3
0

0 0 Nmd3
d4

σλ

(d2+δ+Km)d1
0 0

 .
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FIGURE 1. Population densities of the model variables for R0 > 1 and other

parameters are as in Table.

From above matrix, we can calculate the basic reproduction ratio from det(NGO−ξ I) = 0. The

basic reproduction ratio is the dominant eigenvalue of the matrix. It follows the corresponding

basic reproduction number (R0) = σλKmNm
(δ+d2+Km)d1d4

. If R0 < 1, then the infection-free equilibrium is

stable, while if R0 > 1, then the infection-free equilibrium is unstable and infected equilibrium

state exists.

Now the characteristic equation for the infected equilibrium state E∗ is given below:

κ
4 + c1κ

3 + c2κ
2 + c3κ + c4 = 0,
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where

c1 = σP?+αM?
A +d1 +δ +d2 +Km +d3 +d4 > 0,

c2 = d4(σP?+d1 +δ +d2 +Km +d3)+d3(δ +d2 +Km +αM?
A +σP?+d1)

+d2(d1 +αM?
A +σP?)+(αM?

A +Km)(d1 +σP?)+δ (d1 +αM?
A)+αM?

AKm > 0,

c3 = d3d4(σP?+d1 +δ +d2 +Km)+d3d1(d2 +αM?
A +Km +δ )

+d3αM?
A(σP?+δ +d2 +Km)+(σP?Km +σP?d2)(d4 +αM?

A +d3)

+(d1d2 +d1Km)(d4 +αM?
A)+δd1(αM?

A +d4)−σM?
SKm(Nmd3−αP?)> 0 ,

c4 = d1d3(d2d4 +d2αM?
A +Kmd4 +KmαM?

A +δd4 +δαM?
A)

+(d3d4σP?+d3αM?
AσP?)(d2 +Km)−d1σM?

SKm(Nmd3−αP?)> 0.

From Routh-Hurwitz criterion, the necessary and sufficient condition for local asymptotical

stability of the state are c1c2− c3 > 0 and c1(c2c3− c1c4)− c2
3 > 0 are satisfied.

4. System with Impulsive Drug Dose

In this section, we have tried to see the effect of impulse with fixed drug dose to control the

parasite in the macrophage cell. We have assumed the distinct time interval for applying the

drug. As we are unable to distinguish the susceptible and infected parasite population in the

macrophage cell, so when we apply the drug in the host cell, it affects both susceptible and

infected macrophage cell population conjugately. During the drug management, the number

of parasites (both susceptible and infected) in the macrophage cell are made less by some pro-

portion r. The drug has not any fatal impact on human host population. Now the impulsive

differential equation takes the form :

dP
dt = NmKmλ

d2
−
(

Kmαλ

d2d3
+d4

)
P(t), t 6= tk,

∆P = −rP, t = tk.
(4.1)

Here for single impulsive cycle tk ≤ t ≤ tk+1, the general solution is given by,
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P(t) = NmKmλd3
Kmαλ+d2d3d4

+ e

(
Kmαλ

d2d3
+d4

)
(tk−t)

P(t+k )− NmKmλd3
Kmαλ+d2d3d4

e

(
Kmαλ

d2d3
+d4

)
(tk−t)

,

P−k+1 = NmKmλd3
Kmαλ+d2d3d4

{1− e
−
(

Kmαλ

d2d3
+d4

)
(tk+1−tk)}+P+

k e
−
(

Kmαλ

d2d3
+d4

)
(tk+1−tk)

,

(4.2)

where P(t+k ) = P+
k ,P(t−k ) = P−k . Now,

P−1 =
NmKmλd3

Kmαλ +d2d3d4
,P+

1 = (1− r)
NmKmλd3

Kmαλ +d2d3d4
,

P−2 = (1− r)
NmKmλd3

Kmαλ +d2d3d4
e
−
(

Kmαλ

d2d3
+d4

)
(t2−t1)

+
NmKmλd3

Kmαλ +d2d3d4
{1− e

−
(

Kmαλ

d2d3
+d4

)
(t2−t1)},

P+
2 = (1− r)P−2 = (1− r)2 NmKmλd3

Kmαλ +d2d3d4
e
−
(

Kmαλ

d2d3
+d4

)
(t2−t1)

+(1− r)
NmKmλd3

Kmαλ +d2d3d4
{1− e

−
(

Kmαλ

d2d3
+d4

)
(t2−t1)},

P−3 =
NmKmλd3

Kmαλ +d2d3d4
[(1− r)2e

−
(

Kmαλ

d2d3
+d4

)
(t3−t1)

+(1− r)e
−
(

Kmαλ

d2d3
+d4

)
(t3−t2)

+1− (1− r)e
−
(

Kmαλ

d2d3
+d4

)
(t3−t1)− e

−
(

Kmαλ

d2d3
+d4

)
(t3−t2)

],

P−4 =
NmKmλd3

Kmαλ +d2d3d4
[(1− r)3e

−
(

Kmαλ

d2d3
+d4

)
(t4−t1)

+(1− r)2e
−
(

Kmαλ

d2d3
+d4

)
(t4−t2)

+(1− r)e
−
(

Kmαλ

d2d3
+d4

)
(t4−t3)

+1− (1− r)2e
−
(

Kmαλ

d2d3
+d4

)
(t4−t1)

−(1− r)e
−
(

Kmαλ

d2d3
+d4

)
(t4−t2)− e

−
(

Kmαλ

d2d3
+d4

)
(t4−t3)

].

Therefore the general solution becomes,

P−n = NmKmλd3
Kmαλ+d2d3d4

[(1− r)(n−1)e
−
(

Kmαλ

d2d3
+d4

)
(tn−t1)

+(1− r)(n−2)e
−
(

Kmαλ

d2d3
+d4

)
(tn−t2)

+...+(1− r)e
−
(

Kmαλ

d2d3
+d4

)
(tn−tn−1)

+1− (1− r)(n−2)e
−
(

Kmαλ

d2d3
+d4

)
(tn−t1)

−(1− r)(n−3)e
−
(

Kmαλ

d2d3
+d4

)
(tn−t2)− ...− e

−
(

Kmαλ

d2d3
+d4

)
(tn−tn−1)

].

(4.3)

This is the general solution for the maximal number of parasite present in the macrophage cell

before drug dosing application. For fixed time interval the solution does not depend on time.
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FIGURE 2. The system behavior for r = 20% (denoted by - - -) and for r = 80%

(denoted by —).

4.1. Drug Dose for Fixed Time Interval

For fixed time period, i.e., τ = tn+1− tn is constant, then we have,

P−n = NmKmλd3
Kmαλ+d2d3d4

[1+(1− r)e
−
(

Kmαλ

d2d3
+d4

)
τ

+(1− r)2e
−2
(

Kmαλ

d2d3
+d4

)
τ

+...+(1− r)(n−1)e
−
(

Kmαλ

d2d3
+d4

)
(n−1)τ

− e
−
(

Kmαλ

d2d3
+d4

)
τ

{1+(1− r)e
−
(

Kmαλ

d2d3
+d4

)
τ

+...+(1− r)(n−2)e
−
(

Kmαλ

d2d3
+d4

)
(n−2)τ

}]

= NmKmλd3
Kmαλ+d2d3d4

[
1−(1−r)ne

−

(
Kmαλ

d2d3
+d4

)
nτ

1−(1−r)e
−

(
Kmαλ

d2d3
+d4

)
τ

−e
−
(

Kmαλ

d2d3
+d4

)
τ 1−(1−r)(n−1)e

−

(
Kmαλ

d2d3
+d4

)
(n−1)τ

1−(1−r)e
−

(
Kmαλ

d2d3
+d4

)
τ

]
.

(4.1.1)

Therefore,

lim
n→∞

P−n = NmKmλd3
Kmαλ+d2d3d4

[
1

1−(1−r)e
−

(
Kmαλ

d2d3
+d4

)
τ

−e
−
(

Kmαλ

d2d3
+d4

)
τ 1

1−(1−r)e
−

(
Kmαλ

d2d3
+d4

)
τ

]

= NmKmλd3
Kmαλ+d2d3d4

[
1−e

−

(
Kmαλ

d2d3
+d4

)
τ

1−(1−r)e
−

(
Kmαλ

d2d3
+d4

)
τ

]
.

(4.1.2)
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This gives the maximum value of the infected macrophage cell. To keep this under the threshold

value P̃ we have,

NmKmλd3

Kmαλ +d2d3d4

[ 1− e
−
(

Kmαλ

d2d3
+d4

)
τ

1− (1− r)e
−
(

Kmαλ

d2d3
+d4

)
τ

]
< P̃,

which implies τ < 1(
Kmαλ

d2d3
+d4

) ln{
NmKmλd3

Kmαλ+d2d3d4
−P̃(1−r)

NmKmλd3
Kmαλ+d2d3d4

−P̃
}= τmax(r) (say).

Remark 2: If the time interval τ be always less than some predetermined quantity i.e., τmax,

then we are able to control the parasite population in the macrophage cell under the threshold

value P̃.

4.2. Drug Dose for Non-Fixed Time Interval

Limited resources and inadequate infrastructure is the major challenge in the process of the

regular disease control. Thus applying drug at fixed intervals may be a difficult task. Thus for

non fixed drug dose, we try to find out the most possible “next best” drug applying time interval

to keep under control the parasite population below P̃. We assume that two most recent drug

dose event is known.

Then, e
−
(

Kmαλ

d2d3
+d4

)
(tn−tk) ≈ 0, for k > 2.

Thus we have,

P−n ≈ NmKmλd3

Kmαλ +d2d3d4

[
(1− r)2e

−
(

Kmαλ

d2d3
+d4

)
(tn−tn−2)

+(1− r)e
−
(

Kmαλ

d2d3
+d4

)
(tn−tn−1)

+1− (1− r)e
−
(

Kmαλ

d2d3
+d4

)
(tn−tn−2)− e

−
(

Kmαλ

d2d3
+d4

)
(tn−tn−1)

]
< P̃,

⇒ 1− r(1− r)e
−
(

Kmαλ

d2d3
+d4

)
(tn−tn−2)− re

−
(

Kmαλ

d2d3
+d4

)
(tn−tn−1)

< Kmαλ+d2d3d4
NmKmλd3

P̃,

Hence, the “next best” drug dosing time satisfies,

tn < 1(
Kmαλ

d2d3
+d4

) ln
[

r(1−r)e

(
Kmαλ

d2d3
+d4

)
tn−2

+re

(
Kmαλ

d2d3
+d4

)
tn−1

1−Kmαλ+d2d3d4
NmKmλd3

P̃

]
.

For r = 1, we have tn− tn−1 = τ̃, (say)

⇒ τ̃ < 1(
Kmαλ

d2d3
+d4

) ln
[

NmKmλd3
NmKmλd3−(Kmαλ+d2d3d4)

]
≈ τmax(1).

Thus to compare for fixed and non-fixed drug dose when r = 1, the two options are equivalent.
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If r = 0 for non-fixed drug dosing interval,

P−n ≈ NmKmλd3

Kmαλ +d2d3d4

[
e
−2
(

Kmαλ

d2d3
+d4

)
τ̃

+ e
−
(

Kmαλ

d2d3
+d4

)
τ̃

+1− e
−2
(

Kmαλ

d2d3
+d4

)
τ̃

− e
−
(

Kmαλ

d2d3
+d4

)
τ̃

]

=
NmKmλd3

Kmαλ +d2d3d4
.

For P̃ < P−n , and if τ̃max = 0, then

r = 1− Kmαλ +d2d3d4

NmKmλd3
P̃,

r = 1+
Kmαλ +d2d3d4

NmKmλd3
P̃.

It follows that first root is greater than zero and second root is larger than one. Hence the

minimum degree of effectiveness is required for non-fixed drug dose only when r1 < r ≤ 1,

where

r1 ≡ 1− Kmαλ +d2d3d4

NmKmλd3
P̃.

Remark 3: Thus, by assuming two previous drug dosing times are known for non-fixed time

interval, we can conclude the “next best” drug applying time. For non-fixed case, there is an

additional requirement of minimum efficacy, but both can control the disease.
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FIGURE 3. The system behavior for non-fixed interval for r = 20% (denoted by

- - -) and for r = 80% (denoted by —).
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5. Sensitivity Analysis

Definition: The normalized forward sensitivity index [20] of a variable say x, that depends

continuously on a parameter say y, is denoted by,

ϒ
x
y =

∂x
∂y
× y

x
.
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1
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d
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d
2

d
4

δ

K
m

FIGURE 4. Tornado plot of sensitivity analysis of all eight parameters that in-

fluence R0.

The sensitivity analysis is introduced to study the strength of the basic reproductive ratio R0

for the model parameters. This analysis assists us to classify the parameters, which preserves

the high influence on the diseases transmission, i.e., to the reproductive number. We have here

developed a sensitivity index by applying the partial derivatives, whenever the variable is a

differentiable function of the model parameter.

σSen =
∂R0

∂σ
× σ

R0
=

λKmNm

(δ +d2 +Km)d1d4
× σ

R0
.

In the same way we can find sensitivity indices with respect to the other model parameters.
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6. Numerical Simulation

Table. List of parameters used in the model (2.1)
Parameter Range Default Value Reference

λ 10 – 20mm3day−1 10 [15]

δ 0.25 – 0.36day−1 0.35 [15]

σ 0.18 – 0.29 day−1 0.21 Assumed

Km 0.25 – 0.43 day−1 0.28 [15]

Nm 0.18 – 0.36mm3day−1 0.28 Assumed

α 0.15 – 0.23 day−1 0.15 [15]

d1 0.04 – 0.08 day−1 0.05 [15]

d2 0.03 – 0.052 day−1 0.04 [15, 21]

d3 0.02 – 0.24 day−1 0.14 [15, 21]

d4 0.12 – 0.25 day−1 0.2 [15]

In this section, we have studied the mathematical model with impulsive behaviour in (4.1)

through numerical simulation. The values of parameters for numerical simulations are given in

the Table. From the existence and stability analysis for the system, Km, σ and Nm seem to be

important parameters. System dynamics of the model without drug is shown in Figure 1. Here,

it is observed that when state change factor Km > 0.28 with σ = 0.21 and Nm = 0.24, the system

goes to infected state condition. But if Km < 0.28, the system moves to infection-free state and

the disease does not persist.

The impacts of drug dose are exhibited in Figure 2. Here we have considered r = 0.2 and

r = 0.8 with time interval τ = 4. It is clearly observed that in presence of drug dose with

perfect adherence (keeping four days interval), the infected system moves to infection-free state.

Also if we increase the power of drug dose, the system moves towards better outcome. If the

effectiveness of drug dose is 20%, the system achieves better result after 30 days or more than

that. But if we increase the effectiveness to 80%, the system gives more better output (i.e.,

uninfected cell population increases more quickly). Thus effectiveness of the drug dose gives a

superior impact on the model to move the system towards its disease-free situation. Evidently
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form Figure 2, it is clear that infected macrophage cell goes to zero level by proper choosing

frequency and strength.

The effects of non-fixed drug dose are represented in Figure 3. Here we have considered r = 0.2

and r = 0.8. It is clearly observed that in presence of drug dose with perfect adherence, the in-

fected system moves to infection-free state. Moreover, if the power of drug dose is increased,

the system moves towards more healthy situation. If the effectiveness of drug dose is 20%,

the system achieves better position after 4 days or more than that. But if we increase the ef-

fectiveness to 80%, much more enhanced situation is attained. In other words, uninfected cell

population is increased more rapidly. Thus effectiveness of the drug dose provides a superior

effect on our proposed system moving towards the healthy situation.

Figure 3 illustrates for non fixed drug dose, where we try to find out the most possible “next

best” drug dosing time interval to control the parasite population below P̃. Keeping the drug

dose interval effectiveness from 20% to 80%, it is observed that suitable “next best” drug dosing

interval can support us giving much better outcomes compared to the fixed spraying.

Tornado plot of the normalized sensitivity index for different parameters is represented in Figure

4. If the sensitivity index is positive, then R0 increases along with increasing value of parameter.

But if sensitivity index is negative, then with decreasing value of parameter, R0 is decreased.

State change factor Km (from Promastigote to Amastigote stage), σ and Nm are the crucial

parameters that have significant effects on the system. So from the Figure 4, it is concluded that

the basic reproduction ratio depends on the state change factor of macrophage cell (Km) more

scientifically. Simultaneously, the parameters σ and Nm are more sensitive rather the other

parameters. The parameter λ i.e., the constant rate of source of macrophage cell (uninfected) is

positively sensitive but we do not take into account the parameter because our study is mainly

based on infected macrophage cells. Moreover death rates of susceptible macrophage cell (d1)

and parasite population (d4) are negatively sensitive. The change of the behavioral pattern

of the system dynamics depends on rate constant of infectivity, state change factor and burst

size of infected macrophage cell more effectively. So if we can reduce the infectivity rate of

macrophage cell, the disease can automatically be kept under control.
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7. Discussion

Control of the parasite population is one of the efficient approaches to exterminate the disease

cutaneous leishmaniasis. In this connection, dosing of drug performs a responsible function for

controlling the disease. For R0 > 1, the infection-free state drops its stability and the system

tends towards the infected condition. Susceptible macrophage cell is sharply decreased up to 17

days (approx.) and early stage infected macrophage cell population is gradually increased up to

more or less 35 days (approx.), when the disease exists. The threshold values of time interval

with minimum degree of effectiveness is obligatory for drug dose for fixed time interval. For

non-fixed case, there is an additional requirement of minimum efficacy, but both can control the

disease. So the disease can be restricted by suitable drug dose with moderate frequency and

strength. Also, infectivity rate, burst size and the state change factor from Promastigote stage

to Amastigote stage of infected macrophage cell is considered to be more sensitive.

8. Conclusion

The disease transmission can be terminated with regulated drug dosing of judicious strength

and moderate frequency. For drug dose applying in a four days interval, the infected cells move

to uninfected state. The system reaches towards healthy state, if the drug dose concentration

is enhanced. Hence the effectiveness of the drug dose motivates the system moving towards

the infection-free healthy state. Drug administration through impulsive mode is much better as

the dose is not one time application. It can be used repeatedly for better outcome to control

the disease. Although complete eradication of cutaneous leishmaniasis is too much tough and

difficult in realistic scenario but if our research findings can be applied to infected topographical

region, then we can enlighten a new horizon to combat against cutaneous leishmaniasis in global

perceptive.

Conflict of Interests

The authors declare that there is no conflict of interests.



16 P. K. ROY, X. LI, D. BISWAS, A. DATTA

Acknowledgements

Research is supported by the NSF of China (No.11271314) and Innovation Scientists and Tech-

nicians Troop Construction Projects of Henan Province (No.144200510021) and PURSE DST,

Govt. of India, Jadavpur University, India.

REFERENCES

[1] L. F. Chaves and M. J. Hernandez, Mathematical modelling of American Cutaneous Leishmaniasis: inciden-

tal hosts and threshold conditions for infection persistence, Acta Tropica, 92 (2004), 245 - 252.

[2] I. M. ELmojtaba, J. Y. T. Mugisha and M. H. A. Hashim, Mathematical analysis of the dynamics of visceral

leishmaniasis in the Sudan, Applied Mathematics and Computation, 217 (2010), 2567 - 2578.

[3] K. Park, Preventive and Social Medicine, 2005.

[4] R. Reithinger, J. C. Dujardin, H. Louzir, C. Pirmez, B. Alexandera and S. Brooker, Cutaneous leishmaniasis,

Lancet Infect Dis, 7 (2007), 581 - 596.

[5] D. Biswas, D. K. Kesh, A. Datta, A. N. Chatterjee and P. K. Roy, A Mathematical Approach to Control

Cutaneous Leishmaniasis Through Insecticide Spraying, Sop Transactions on Applied Mathematics, 1 (2)

(2014), 44 - 54.

[6] N. Bacaer and S. Guernaoui, The epidemic threshold of vector-borne diseases with seasonality The case of

cutaneous leishmaniasis in Chichaoua, Morocco, Journal of Mathematical Biology, 53 (2006), 421 - 436.

[7] U. Sharma and S. Singh, Immunobiology of leishmaniasis, Indian Journal of Experimental Biology, 47

(2009), 412 - 423.

[8] C. D. Marcos, Almeida and H. N. Moreira, A Mathematical Model of Immune Re-sponse in Cutaneous

Leishmaniasis, Journal of Biological Systems, 15 (3) (2007), 313 - 354.

[9] P. Das, D. Mukherjee and A. K. Sarkar, Effect Of Delay on the Model of American Cutaneous Leishmaniasis,

J. Biol. Syst., 15 (2) (2007), 139 - 147.

[10] P. K. Roy, D. Biswas, F. A. Basir, Transmission Dynamics of Cutaneous Leishmaniasis: A Delay-Induced

Mathematical Study, Journal of Medical Research and Development, 4 (2) (2015), 11 - 23.

[11] D. Biswas, A. Datta, P. K. Roy, Combating Leishmaniasis through Awareness Campaigning: A Mathematical

Study on Media Efficiency, International Journal of Mathematical, Engineering and Management Sciences, 1

(3) (2016), 139 - 149.

[12] H. Mejhed, S. Boussa and N. E. H. Mejhed, Development of Mathematical models predicting the density of

vectors: Case of sandflies vectors of leishmaniasis, Proceedings of the 10th WSEAS International Conference

on Mathematics and Computers in Biology and Chemistry, 2009.



A MODEL OF CUTANEOUS LEISHMANIASIS WITH DRUG DOSE 17

[13] B. M. Langer, C. P. Barreto, C. G. Alcon, B. Valladares, B. Wimmer and N. V. Torres, Modeling of leishma-

niasis infection dynamics: novel application to the design of effective therapies, BMC Systems Biology, 6

(1) (2012), 1 - 14.

[14] S. L. Croft, K. Seifert and V. Yardley, Current scenario of drug development for leishmaniasis, Indian J Med

Res, 123 (2006), 399 - 410.

[15] P. Nelson and J. X. V. Hernandz, Modeling the immune response to parasitic infections: Leishmaniasis and

Chagas disease, Com. Theor. Biol, 179 (2001), 1 - 19.

[16] D. Biswas, P. K. Roy, Xue-Zhi Li, F. Al Basir, J. Pal, Role of macrophage in the disease dynamics of cu-

taneous leishmaniasis: a delay induced mathematical study, Communications in mathematical biology and

neuroscience 2016 (2016), Article ID 4.

[17] L. F. Lopez, F. A. B. Coutinho, M.N. Burattini, E. Massad, Threshold conditions for infection persistence in

complex host-vectors interactions, C. R. Biologies, 325 (2002), 1073 - 1084.

[18] A. A. Lashari and G. Zamanb, Optimal control of a vector borne disease with horizontal transmission, Non-

linear Analysis: Real World Applications, 13 (2012), 203 - 212.

[19] D. Kirschner, S. Lenhart and S. Serbin, Optimal control of the chemotherapyof HIV, Journal of Mathematical

Biology, 35 (1997), 775 - 792.

[20] G. J. Abiodun, N. Marcus, K. O. Okosun, P. J. Witbooi, A Model for Control of HIV/AIDS with Parental

Care, International Journal of Biomathematics, 6 (2) (2013), Article ID 1350006.

[21] K. Bathena, A Mathematical model of Cutaneous leishmaniasis, Rochester Institute of Technology, 2009.


