
Available online at http://scik.org

Commun. Math. Biol. Neurosci. 2017, 2017:23

ISSN: 2052-2541

SEIS MODEL WITH MULTIPLE LATENT STAGES AND TREATMENT IN AN
EXPONENTIALLY GROWING POPULATION

STANISLAS OUARO ∗, DESIRE OUEDRAOGO

LAboratoire de Mathématiques et Informatique (LAMI), Université Ouaga I Pr Joseph Ki-Zerbo, Unité de
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Abstract. An SEnIS epidemiological model with vital dynamics in an exponentially growing population is dis-

cussed. Without treatment three threshold parameters R0,R1 and R2 determine the dynamic of compartments sizes

and that of the fractions. With the treatment the dynamics of the population and that of the epidemic depend on

three other threshold parameters RT ,R1T and R2T . We made a link between the models with one latent stage and

the models with multiple latent stages by defining and deriving the ”effective” activation rate and the ”effective”

treatment rate for the latent individuals. We defined the treatment force, the relative treatment force and deduced

the critical treatment force needed to eradicate the disease. The theoretical results are validated by numerical

simulations.
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1. Introduction

Bame et al. studied SEIS models with n Latent classes in [1] assuming that an infected indi-

vidual passes through n latent classes before becoming infectious. In [2] Bowong et al. studied a
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Tuberculosis model with two differential infectivity and n latent classes. Moualeu et al. studied

a Tuberculosis Model with n latent classes in [11]. For these models an individual can become

infectious from any latent class. Jabbari et al. studied a two-strain TB model with multiple

latent stages in [9]. In [10] Meng et al. studied the dynamics of an SEIS model with therapeutic

strategies. For these models the population has a constant recruitment rate and the incidence is

the simple mass action.

In this paper we study an SEIS model with n latent classes. The population has an individual

birth rate b and an individual death rate µ such that b > µ , that is the population is grow-

ing exponentially without the epidemic. With the introduction of the disease, the population

is split into n+ 2 compartments. The compartment S of susceptible individuals, the compart-

ments E1, ...,En of individuals in n different latent stages, and the compartment I of infectious

individuals. S,E1, · · · ,En, I denote the numbers of individuals in the corresponding compart-

ments. We consider serial latent stages that is individual pass successively in the compartments

E1,...,En. We assume that an individual in the latent class Em can become infectious with rate

km or be transferred into Em+1 with rate νm for m = 1, · · · ,n− 1. The contact rate is c and the

probability of infection during a contact of an infectious with a susceptible is β . Thus the ef-

fective contact rate is cβ and the incidence is cβSI/N, where N denotes the total population

size (N = S+E1 + ...+En + I). An infectious individual recovers with rate δ . In that case,

he becomes susceptible again. The disease induces an additive death rate d to the infectious

individuals. We assume afterward that there is a treatment for latent individuals and infectious

individuals. With the treatment a new compartment T of the individuals under treatment is

added. The treatment rate for an individual in the latent class Em is rm, m = 1, · · · ,n and that

for an infectious individual is r. A treated individual recovers with rate θ . All the parameters

listed above are positive. The summary of the notations used in this paper is given in Table

1. Our model is different from that listed above since we consider a population that grows ex-

ponentially in absence of the disease, instead of a population with a constant recruitment rate.

Furthermore we have a standard incidence instead of the simple mass incidence. This model

fits for tuberculosis.

Our paper is organized as follow. In Section 2 we study the dynamic of the model without

treatment. Section 3 is dedicated to the study of the model with treatment. We validate the
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N The population size

S Susceptible

Em Exposed people in the mth latent class, m = 1, ...,n

I Infectious

T People under treatment

S,E1, · · · ,En, I,T Compartments sizes

s,em, i Fractions of the population in the classes S,Em,I

β Probability of transmitting the disease during a contact

c Contact rate

b Birth rate

µ Natural death rate

d Disease induced death rate

km Transfer rate from Em into I

νm Transfer rate from Em into Em+1, m = 1, · · · ,n−1

rm Treatment rate of a latent in Em

r Treatment rate of an infectious

δ Natural recovering rate

θ Recovering rate of a treated individual

R0 Basic reproduction number

RT Initial reproduction number (with treatment)

Table 1. Summary of notations

theoretical results by simulations in Section 4. Thereafter we conclude the paper and discuss

some perspectives in Section 5.

2. The model without treatment

In this section we study the dynamic of the model without treatment. We give the system

of the model, then we derive its basic reproduction number and compare hence the multiple

latent stages model to the unique latent stage model, give conditions for endemic equilibria,
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therefore we study the dynamic of the fractions and hence deduce the asymptotic behaviour of

the compartments sizes. The diagram of the SEnIS model is given in Figure 1.

Figure 1. The transfer diagram of the SEnIS model with the susceptible class S, the n

exposed classes E1,...,En and the infectious class I

2.1. The model

The model without treatment is given by the following system of ordinary differential equa-
tions (ODE).

(2.1)



dS
dt

= bN +δ I− cβS
I
N
−µS,

dE1

dt
= cβS

I
N
− (k1 +ν1 +µ)E1,

dEm

dt
= νm−1Em−1− (km +νm +µ)Em,m = 2, · · · ,n−1,

dEn

dt
= νn−1En−1− (kn +µ)En,

dI
dt

=
m=n

∑
m=1

kmEm− (δ +µ +d)I,

N(t) = S(t)+
m=n

∑
m=1

Em(t)+ I(t),

S(0)> 0,E1(0)≥ 0, · · · ,En(0)≥ 0, I(0)≥ 0.
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Remark 2.1. By setting νn = 0 in System (2.1), the formula dEm/dt = νm−1Em−1− (km+νm+

µ)Em applies also for m = n. Thus to simplify the formulas we set νn = 0 in the following.

From System (2.1) we have dN/dt = (b− µ)N−dI = (b− µ −di)N, where i = I/N is the

fraction of the infectious. Then the population will go on growing whenever the fraction i of

infectious individuals is less than (b− µ)/d. But the population would decrease if i grows

beyond (b−µ)/d.

2.2. The basic reproduction number

The basic reproduction R0 is defined as the average number of new cases of an infection

caused by one typical infected individual, in a population consisting of susceptibles only [4].

Theorem 2.2. The basic reproduction number R0 of the epidemic defined by System (2.1) is

given by

(2.2) R0 =
cβ

µ +d +δ

m=n

∑
m=1

km

µ +νm + km

l=m−1

∏
l=1

νl

µ +νl + kl
.

Proof. R0 is the product of the contact rate c, the probability to transmit the disease during

a contact β , the average infectious time 1/(µ + d + δ ) and the probability for the newly ex-

posed individual to become infectious ∑
m=n
m=1

km
µ+νm+km

∏
l=m−1
l=1

νl
µ+νl+kl

. The latter is the sum of

the probabilities to become infectious from the different latent compartments. More precisely
km

µ+νm+km
∏

l=m−1
l=1

νl
µ+νl+kl

is the probability for the individual to become infectious while being

in the compartment Em. �

If R0 ≤ 1, then the epidemic cannot invade the population. But if R0 > 1, then the epidemic

will invade the population.

Theorem 2.3. If k1 = k2 = · · ·= kn = k then

(2.3) R0 =
kcβ

(k+µ)(µ +d +δ )
.

Proof. Let’s note first that if k1 = k2 = · · ·= kn = k then Equation (2.3) is equivalent to

cβ

µ +d +δ

m=n

∑
m=1

k
µ +νm + k

l=m−1

∏
l=1

νl

µ +νl + k
=

kcβ

(µ + k)(µ +d +δ )
.
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Then it is enough to show that

(2.4)
m=n

∑
m=1

k
µ +νm + k

l=m−1

∏
l=1

νl

µ +νl + k
=

k
µ + k

.

Let’s assume first that n = 2 then

k
µ +ν1 + k

+
k

µ + k
ν1

µ +ν1 + k
=

k
µ +ν1 + k

[
1+

ν1

µ + k

]
=

k
µ +ν1 + k

µ +ν1 + k
µ + k

=
k

µ + k
.

Thus Equation (2.4) is verified if n = 2. Let’s assume now that the result is true for n = p for a

given integer p≥ 2, that is

m=p

∑
m=1

k
µ +νm + k

l=m−1

∏
l=1

νl

µ +νl + k
=

k
µ + k

.

Thus we have

m=p+1

∑
m=1

k
µ +νm + k

l=m−1

∏
l=1

νl

µ +νl + k
=

k
µ +ν1 + k

+
ν1

µ +ν1 + k

m=p+1

∑
m=2

k
µ +νm + k

l=m−1

∏
l=2

νl

µ +νl + k

=

[
k

µ +ν1 + k
+

ν1

µ +ν1 + k
k

µ + k

]
=

k
µ + k

.

Thus we have shown by induction that R0 satisfies (2.3) when k1 = k2 = · · · = kn = k, for all

n≥ 2. �

Remark 2.4. kcβ/[(µ+k)(µ+d+δ )] is the basic reproduction number of the SEIS model with

one latent stage, where k is the activation rate (the transfer rate from the latent compartment E

into the infectious compartment I)[12].

Now to make a link between the model with multiple latent stages and the model with one

latent stage [12], we define the ”effective” activation rate as the rate ke that satisfies Equation

(2.3). The ”effective” activation rate is then the transfer rate from the latent stage to the infec-

tious stage of the model with one latent stage which has the same basic reproduction number
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as that of the model with n latent stages. By equations (2.2) and (2.3) one gets the following

result.

Theorem 2.5. The ”effective” activation rate of the epidemic defined by System (2.1) is given

by

(2.5) ke =

µ

m=n

∑
m=1

km

µ +νm + km

l=m−1

∏
l=1

νl

µ +νl + kl

1−
m=n

∑
m=1

km

µ +νm + km

l=m−1

∏
l=1

νl

µ +νl + kl

.

2.3. Equilibria

If I = 0 then dN/dt = (b− µ)N. Therefore the population will grow if the disease dies out

as we assume that b > µ . Thus, System (2.1) does not admit a disease free equilibrium. The

following result gives necessary and sufficient conditions for endemic equilibria.

Theorem 2.6. Let X(t) = (S(t),E1(t), · · · ,En(t), I(t)) be a solution of System (2.1). X(t) is

constant if and only if the parameters satisfy

(2.6)

(
bd

b−µ
+δ

)
1

δ +µ +d

(
kn +(kn +µ)

m=n−1

∑
m=1

km

νm

l=n−1

∏
l=m+1

kl +νl +µ

νl

)

−
(

1+
dµ

cβ (b−µ)

)(l=n−1

∏
l=1

kl +νl +µ

νl

)
(kn +µ) = 0

and the initial values satisfy

(2.7)

S(0) =
1

cβ

d
b−µ

(
l=n−1

∏
l=1

kl +νl +µ

νl

)
(kn +µ)En(0),

Em(0) =
1

νm

(
l=n−1

∏
l=m+1

kl +νl +µ

νl

)
(kn +µ)En(0),∀m = 1, · · · ,n−1,

I(0) =
1

δ +µ +d

(
kn +(kn +µ)

m=n−1

∑
m=1

km

νm

l=n−1

∏
l=m+1

kl +νl +µ

νl

)
En(0),

En(0)> 0.



8 STANISLAS OUARO, DESIRE OUEDRAOGO

Proof. By using successively the derivatives of En,En−1, · · · ,E1, I,S, one gets that En, · · · ,E1,

I,S are constant if and only if the parameters satisfy Equation (2.6) and the initial values satisfy

System (2.7). �

Remark 2.7. If the parameters values satisfy Equation (2.6) then for every positive number E0,

one gets an endemic equilibrium by setting E1(0) = E0 and deducing the other initial values

from System (2.7). Therefore, System (2.1) admits an infinite endemic equilibrium and there is

no stability.

2.4. The dynamic of the fractions

For epidemics in populations that grow exponentially in the absence of the disease, it is

common to study the fractions of individuals in the different compartments [3, 7, 12, 5]. Let’s

consider the fractions s = S/N, em = Em/N,m = 1, · · · ,n and i = I/N. By System (2.1), one

gets

(2.8)



ds
dt

= b−bs+δ i− (cβ −d)si,
de1

dt
= cβ si− (k1 +ν1 +b)e1 +die1,

dem

dt
= νm−1em−1− (km +νm +b)em +diem,m = 2, · · · ,n,

di
dt

=
m=n

∑
m=1

kmem− (b+δ +d)i+di2,

with s+
m=n

∑
m=1

em + i = 1,

s(0)> 0,e1(0)≥ 0, · · · ,en(0)≥ 0, i(0)≥ 0.

Remark 2.8. As for other models the natural death rate µ does not appear in System (2.8).

That is understandable since all the individuals of the population have the same natural death

rate. Thus the natural death does not affect the fractions.
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as s = 1− (∑m=n
m=1 em + i) one gets

(2.9)



de1

dt
= cβ i− (k1 +ν1 +b−di)e1−

m=n

∑
m=1

cβemi− cβ i2,

dem

dt
= νm−1em−1− (km +νm +b)em +diem,m = 2, · · · ,n,

di
dt

=
m=n

∑
m=1

kmem− (b+δ +d)i+di2,

s(0)> 0,e1(0)≥ 0, · · · ,en(0)≥ 0, i(0)≥ 0,

with s(t) = 1−∑
m=n
m=1 em(t)− i(t).

The suitable set is D = {(e1, · · · ,en, i)/e1 ≥ 0, · · · ,en ≥ 0, i≥ 0,∑n
1 em + i≤ 1} .

Theorem 2.9. The domain D is positively invariant for System (2.9).

Proof. If i(t) = 0 at a given time t ≥ 0, then
di
dt
(t) =

m=n

∑
m=1

kmem(t)≥ 0.

If e1(t) = 0 at a given time t ≥ 0, then
de1

dt
(t) = cβ

(
1−

m=n

∑
m=2

em(t)− i(t)

)
i(t)≥ 0.

If em(t) = 0 at a given time t ≥ 0, then
dem

dt
(t) = νm−1em−1(t)≥ 0,m = 2, · · · ,n.

If
m=n

∑
m=1

em(t)+ i(t) = 1 at a given time t ≥ 0, then
d(∑m=n

m=1 em + i)
dt

(t) =−b−δ i(t)≤ 0.

Thus all solution of System (2.9) starting in D remains in D for all t > 0. �

In the following we use the method of the next generation matrix described in [6] to derive

a threshold parameter R1 with threshold value equals 1 for System (2.9). It is obvious that

x0 = (0, · · · ,0,0) is the unique disease free equilibrium (DFE) of System (2.9). Let’s set

F (e1, · · · ,en, i) =



cβ i−∑
m=n
m=1 cβemi− cβ i2

0

...

0


,
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V (e1, · · · ,en, i) =



−a1e1 +die1

...

νm−1em−1−amem +diem

...

∑
m=n
m=1 kmem−an+1i+di2



,

with am = km+νm+b,m = 1, · · · ,n;an+1 = b+δ +d. Let F and V be the respective jacobians

at the DFE of F and V , that is F = DF (0, · · · ,0,0) and V = DV (0, · · · ,0,0) , and set R1 =

ρ(−FV−1). After some calculus, one gets

(2.10) R1 =
cβ

(b+δ +d)

m=n

∑
m=1

km

b+νm + km

l=m−1

∏
l=1

νl

b+νl + kl
.

Remark 2.10. One gets R1 by substituting µ by b in the expression of R0 in Equation (2.2).

Thus as b > µ , we have R1 < R0.

Following Odo et al. [5, Page 89], we refer to R1 as the relative basic reproduction.

Theorem 2.11. The disease free equilibrium (0, · · · ,0,0) of System (2.9) is globally asymptoti-

cally stable (GAS) in D if R1 ≤ 1 and unstable if R1 > 1.

Proof. By Theorem 2 in [6], the disease free equilibrium is asymptotically stable if R1 < 1

and unstable if R1 > 1. To show its global stability, let L be the function defined on D by

L(e1, · · · ,en, i) = ∑
m=n
m=1 xmem + i, with xm defined by

(2.11) xm =
j=n

∑
j=m

k j

a j

l= j−1

∏
l=m

νl

al
,m = 1, · · · ,n.
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By Equation (2.11) we have xn = kn/an and xm−1 = (xmνm−1 + km−1)/am−1,m = 2, · · · ,n. The

time derivative of L evaluated along a solution of System (2.9) is

.
L (e1, · · · ,en, i) =

m=n

∑
m=1

xm
dem

dt
+

di
dt

= x1

[
cβ i− (a1−di)e1−

m=n

∑
m=1

cβemi− cβ i2
]

+
m=n

∑
m=2

xm [νm−1em−1−amem +diem]

+

[
m=n

∑
m=1

kmem−an+1i+di2
]

=

[
x1cβ −an+1 +

m=n

∑
m=1

(xmd− x1cβ )em +(d− x1cβ )i

]
i

= iW (e1, · · · ,en, i),

with, W (e1, · · · ,en, i) = x1cβ − an+1 + ∑
m=n
m=1 (xmd− x1cβ )em + (d − x1cβ )i. W is an affine

function. Thus, it reaches its maximum on the extreme points of the closed set D. We have

W (0, · · · ,0,0) = x1cβ −an+1 = an+1(R1−1),

W (0, · · · ,0,1) = x1cβ −an+1 +(d− x1cβ ) =−(an+1−d) =−(b+δ )< 0,

W (em = 1) = x1cβ −an+1+(xmd−x1cβ ) =−an+1+xmd =−b−δ −d(1−xm),m = 1, · · · ,n.

But, xn = kn/an = kn/(kn+b)< 1. Furthermore if we assume that for a given integer m∈ (1,n],

we have xm < 1, then xm−1 = (xmνm−1+km−1)/am−1 < (νm−1+km−1)/am−1 < 1, since am−1 =

νm−1+km−1+b. Thus, by backward induction we have proved that xm < 1, for all m = 1, · · · ,n.

Therefore, W (em = 1)< 0,m = 1, · · · ,n.

Then, W (e1, · · · ,en, i) ≤ 0,∀(e1, · · · ,en, i) ∈ D. Thus
.
L (e1, · · · ,en, i) ≤ 0,∀(e1, · · · ,en, i) ∈ D

when R1≤ 1. Therefore L is a Lyapunov function for System (2.9). Moreover, the only invariant

subset of the set {
.
L= 0} is {(0, · · · ,0,0)}. It follows from the Lasalle Invariance Principle [8,

p. 200] that, all paths in D approach the origin. Then the disease free equilibrium is globally

asymptotically stable in D when R1 ≤ 1. �

Remark 2.12. Biologically, Theorem 2.11 means that when R1 ≤ 1, the fraction of infected

individuals vanishes, but when R1 > 1 it will remain positive.
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When R1 > 1, the disease free equilibrium of System (2.9) is unstable. We conjecture that in

this case System (2.9) admits an endemic equilibrium that is globally asymptotically stable in

the interior of D. This conjecture is confirmed by simulations (Figure 4 (b) and (c)).

2.5. The asymptotic behaviour of the compartments sizes

For models with varying population size, the knowledge of the dynamic of the fractions is

not enough. In fact, if a fraction go to 0 or to a positive number, there are three possible cases

for the size. It may go to ∞, go to a positive number, or go to 0. Then it is important to study

also the dynamics of the compartments sizes. We consider first the situation where the fractions

disease free equilibrium is globally asymptotically stable in its feasible region, that is when

R1 < 1. In this case the fraction of infected individuals goes to zero, while that of susceptible

individuals goes to 1. Therefore dN/dt −→ (b−µ)N, and then N −→ ∞ when t −→ ∞. Thus,

S(t) −→ ∞ when R1 ≤ 1. Due to the results for the model with a unique latent class [12] and

the simulations results (figures 5, 6, 7), we made the following conjecture.

Conjecture 2.13. Let (S(t),E1(t), · · · ,En(t), I(t)) be a solution of System (2.1).

(1) If R0 < 1, then (S(t),E1(t), · · · ,En(t), I(t))−→ (∞,0, · · · ,0,0), when t −→ ∞;

(2) If R0 = 1, then (S(t),E1(t), · · · ,En(t), I(t)) −→ (∞,E∗1 , · · · ,E∗2 , I∗), when t −→ ∞, with

E∗1 > 0, · · · ,E∗n > 0, I∗ > 0;

(3) If R1 ≤ 1 < R0, then (S(t),E1(t), · · · ,En(t), I(t))−→ (∞,∞, · · · ,∞,∞),

when t −→ ∞.

The proof of Conjecture 2.13 for a unique latent stage (n = 1) is done in [12].

Now we consider the case where the fractions admits an endemic equilibrium that is globally

asymptotically stable in the interior of its feasible region.

Theorem 2.14. Let’s assume that R1 > 1 and that System (2.8) admits an endemic equilibrium

(s∗,e∗1, · · · ,e∗n, i∗) which is globally asymptotically stable in the interior of D and set

(2.12) R2 =
b

µ +di∗
.

Let (S(t),E1(t), · · · ,En(t), I(t)) be a solution of System (2.1).



SEIS MODEL WITH MULTIPLE LATENT STAGES AND TREATMENT IN A GROWING POPULATION 13

(1) If R2 > 1, then (S(t),E1(t), · · · ,En(t), I(t))−→ (∞,∞, · · · ,∞,∞), when t −→ ∞;

(2) If R2 = 1, then (S(t),E1(t), · · · ,En(t), I(t))−→ (S∗,E∗1 , · · · ,E∗2 , I∗), when t −→ ∞, with

S∗ > 0,E∗1 > 0, · · · ,E∗n > 0, I∗ > 0;

(3) If R2 < 1, then (S(t),E1(t), · · · ,En(t), I(t))−→ (0,0, · · · ,0,0), when t −→ ∞.

Proof. Let’s assume that R1 > 1 and System (2.9) admits and endemic equilibrium

(s∗,e∗1, · · · ,e∗n, i∗) which is globally asymptotically stable in the interior of D. Then we have

dN/dt −→ (b− µ − di∗)N. The asymptotic growth rate of the population is α = b− µ − di∗.

We have the sign relation sign(α) = sign(R2− 1). Therefore, if R2 > 1, then N(t) −→ ∞;

if R2 = 1, then N(t) −→ N∗ > 0; if R2 < 1, then N(t) −→ 0. As the fractions approach an

endemic equilibrium that is in the interior of D, the results follow. �

Remark 2.15. Biologically, R2 is the asymptotic reproduction number of the population, since

the birth rate is b and the asymptotic death rate is µ +di∗.

We have derived three threshold parameters R0,R1 and R2 that determine the dynamic of the

fractions and that of the compartments sizes. The summary of the results is given in Table 2.

R1 R0 R2 (s,e1, · · · ,en, i)−→ (S,E1, · · · ,En, I)−→

< 1 < 1 (1,0, · · · ,0,0) (∞,0, · · · ,0,0)

< 1 = 1 (1,0, · · · ,0,0) (∞,E∗1 , · · · ,E∗n , I∗)

≤ 1 > 1 (1,0, · · · ,0,0) (∞,∞, · · · ,∞,∞)

> 1 > 1 > 1 (s∗,e∗1, · · · ,e∗n, i∗) (∞,∞, · · · ,∞,∞)

> 1 > 1 = 1 (s∗,e∗1, · · · ,e∗n, i∗) (S∗E∗1 , · · · ,E∗n , I∗)

> 1 > 1 < 1 (s∗,e∗1, · · · ,e∗n, i∗) (0,0, · · · ,0,0)

Table 2. Summary of the results for SEnIS model

3. The model with treatment

Now we consider the model with treatment. To the n+2 compartments of the model above,

we add the compartment T of the individual under treatment. We assume that the individuals
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in T are not infectious and have not an additive death rate as those in I. The model diagram is

given in Figure 2.

Figure 2. The transfer diagram of the SEnITS model with the susceptible class S, the n

exposed classes E1, E2,...,En, the infectious class I and the treatment class T

3.1. The model

The model with treatment is given by the following ODE system.

(3.1)



dS
dt

= bN +δ I +θT − cβS
I
N
−µS,

dE1

dt
= cβS

I
N
− (r1 + k1 +ν1 +µ)E1,

dEm

dt
= νm−1Em−1− (rm + km +νm +µ)Em,m = 2, · · · ,n,

dI
dt

=
m=n

∑
m=1

kmEm− (r+δ +µ +d)I,

dT
dt

=
m=n

∑
m=1

rmEm + rI− (θ +µ)T,

N(t) = S(t)+
m=n

∑
m=1

Em(t)+ I(t)+T (t),

S(0)> 0,E1(0)≥ 0, · · · ,En(0)≥ 0, I(0)≥ 0.
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3.2. The initial reproduction number

Theorem 3.1. The initial reproduction number RT of the epidemic defined by System (3.1) is

given by

(3.2) RT =
cβ

µ +d +δ + r

m=n

∑
m=1

km

µ +νm + km + rm

l=m−1

∏
l=1

νl

µ +νl + kl + rl
.

Proof. RT is the product of the contact rate c, the probability to transmit the disease during a

contact β , the average infectious time 1/(r + µ + d + δ ) and the probability for the exposed

individual to become infectious ∑
m=n
m=1

km
rm+µ+νm+km

∏
l=m−1
l=1

νl
rl+µ+νl+kl

. The latter is the sum of

the probabilities to become infectious from the different latent compartments. More precisely
km

rm+µ+νm+km
∏

l=m−1
l=1

νl
rl+µ+νl+kl

is the probability for the individual to become infectious while

being in the compartment Em. �

Remark 3.2. One gets RT from the formula that gives R0 (Equation (2.2)) by substituting µ +

d+δ , µ +νm+km,m = 1, · · · ,n, respectively by µ +d+δ + r, µ +νm+km+ rm,m = 1, · · · ,n.

Thus, we have RT < R0, the treatment reduces the reproduction number.

Let τ1, · · · ,τn,τi be the respective fractions of the treated individuals in the compartments

E1, · · · ,En, I. Thus we have

cβ

µ +d +δ + r
=

µ +d +δ

µ +d +δ + r
cβ

µ +d +δ
= (1− τi)

cβ

µ +d +δ
,

km

µ +νm + km + rm
=

µ +νm + km

µ +νm + km + rm

km

µ +νm + km
= (1− τm)

km

µ +νm + km
,m = 1, · · · ,n;

νl

rl +µ +νl + kl
=

µ +νl + kl

rl +µ +νl + kl

νl

µ +νl + kl
= (1− τl)

νl

µ +νl + kl
, l = 1, · · · ,n.

Therefore RT can be written as follow

RT = (1− τi)
cβ

µ +d +δ

m=n

∑
m=1

(1− τm)
km

µ +νm + km

l=m−1

∏
l=1

(1− τl)
νl

µ +νl + kl

= (1− τi)
cβ

µ +d +δ

m=n

∑
m=1

km

µ +νm + km

l=m

∏
l=1

(1− τl)
l=m−1

∏
l=1

νl

µ +νl + kl
.

RT is the sum of n terms. (1− τi) and (1− τ1) are factors of all the n terms. While (1− τm)

is factor of n−m+ 1 terms, m = 2, · · · ,n. For instance 1− τn is a factor of the last term only.
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The biological meaning of this is that the treatment of an infectious individual or an individual

in the latent class E1 has an impact on all the infected compartments. While the treatment

of an individual in the latent class Em has a direct impact on Em and the infected classes that

come after Em only. Therefore, for an optimal strategy of treatment, the priority is to treat the

infectious individuals and the people in the earliest stage of latency.

Let’s define the treatment force γ by setting γ = 1−RT/R0. We have RT = (1− γ)R0, thus

RT ≤ 1⇐⇒ γ ≥ 1− 1
R0

.

The critical treatment force to eradicate the epidemic is γc := 1− 1/R0. If γ > γc, then the

epidemic will dies out. But if γ < γc, then the epidemic will go on in spite of the treatment.

Theorem 3.3. If k1 = k2 = · · ·= kn = k and r1 = r2 = · · ·= rn = re then

(3.3) RT =
kcβ

(µ + k+ re)(µ +δ +d + r)
.

Proof. The proof of Theorem 3.3 is similar to that of Theorem 2.3. �

Remark 3.4. The RHS of Equation (3.3) is the basic reproduction number of the SEIS model

with one latent stage and treatment where k and re denote respectively the activation rate and

the treatment rate of the latent individuals [12].

Let ke be the ”effective” activation rate given by Equation (2.5). We define the effective

”treatment” rate for latent individuals as the treatment rate re for the treatment model with one

latent stage with activation rate ke that has the same treatment initial reproduction number as

that of the treatment model with n latent stages. By equations (3.2) and (3.3), one gets the

following result.

Theorem 3.5. The effective treatment rate of the latent individuals is

(3.4) re =

ke− (µ + ke)
m=n

∑
m=1

km

µ +νm + km + rm

l=m−1

∏
l=1

νl

µ +νl + kl + rl

m=n

∑
m=1

km

µ +νm + km + rm

l=m−1

∏
l=1

νl

µ +νl + kl + rl
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3.3. Equilibria

As we assume that the population is growing in absence of the disease (b > µ), System (3.1)

has no disease free equilibrium. The following result give the conditions for endemic equilibria.

Theorem 3.6. Let X(t) = (S(t),E1(t), · · · ,En(t), I(t)) be a solution of System (3.1). X(t) is

constant if and only if the parameters satisfy

(3.5)

(
bd

b−µ
+δ

)
1

r+δ +µ +d

(
kn +(rn + kn +µ)

m=n−1

∑
m=1

km

νm

l=n−1

∏
l=m+1

rl + kl +νl +µ

νl

)

+
θ

θ +µ

[
(rn + kn +µ)

m=n−1

∑
m=1

(
rm +

rkm

r+δ +µ +d

)
1

νm

l=n−1

∏
l=m+1

rl + kl +νl +µ

νl

+rn +
rkn

r+δ +µ +d

]
−
(

1+
dµ

cβ (b−µ)

)
(rn + kn +µ)

l=n−1

∏
l=1

rl + kl +νl +µ

νl
= 0

and the initial values satisfy

(3.6)



S(0) =
1

cβ

d
b−µ

(
l=n−1

∏
l=1

rl + kl +νl +µ

νl

)
(rn + kn +µ)En(0),

Em(0) =
1

νm

(
l=n−1

∏
l=m+1

rl + kl +νl +µ

νl

)
(rn + kn +µ)En(0),m = 1, · · · ,n−1,

I(0) =
1

r+δ +µ +d

(
kn +(rn + kn +µ)

m=n−1

∑
m=1

km

νm

l=n−1

∏
l=m+1

rl + kl +νl +µ

νl

)
En(0),

T (0) =
1

θ +µ

[
(rn + kn +µ)

m=n−1

∑
m=1

(
rm +

rkm

r+δ +µ +d

)
1

νm

l=n−1

∏
l=m+1

rl + kl +νl +µ

νl

+rn +
rkn

r+δ +µ +d

]
En(0),

En(0)> 0.

Proof. We have dN/dt = (b− µ)N− dI. Thus, N(t) is constant if and only if I(t) is constant

and N = (b−µ)−1dI.

By the derivative of I, I(t) is constant if and only if I = (δ + µ + d)−1
∑

m=n
m=1 kmEm. By using
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successively the derivative of En,En−1, · · · ,E1, I,T and S, one gets that X(t) is constant if and

only if the initial values satisfy System (3.6) and the parameters satisfy Equation (3.5). �

Remark 3.7. When the parameters satisfy Equation (3.5), System (3.1) admits infinite equilibria

and there is no stability.

3.4. The dynamic of the fractions

Now we consider the fractions of the populations in the different compartments, s= S/N,e1 =

E1/N, · · · ,en = En/N, i = I/N and τ = T/N. By System (3.1) one gets

(3.7)



ds
dt

= b−bs+δ i+θτ− (cβ −d)si,
de1

dt
= cβ si− (r1 + k1 +ν1 +b)e1 +die1,

dem

dt
= νm−1em−1− (rm + km +νm +b)em +diem,m = 2, · · · ,n,

di
dt

=
m=n

∑
m=1

kmem− (r+b+δ +d)i+di2,

dτ

dt
=

m=n

∑
m=1

rmem + ri− (θ +b)τ +diτ,

with s+
m=n

∑
m=1

em + i+ τ = 1,

s(0)> 0,e1(0)≥ 0, · · · ,en(0)≥ 0, i(0)≥ 0,τ(0)≥ 0.

As τ = 1− (s+∑
m=n
m=1 em + i), it is enough to consider

(3.8)



ds
dt

= b+θ − (b+θ)s+(δ −θ)i−θ

m=n

∑
m=1

em− (cβ −d)si,

de1

dt
= cβ si− (r1 + k1 +ν1 +b)e1 +die1,

dem

dt
= νm−1em−1− (rm + km +νm +b)em +diem,m = 2, · · · ,n,

di
dt

=
m=n

∑
m=1

kmem− (r+b+δ +d)i+di2,

with s+
m=n

∑
m=1

em + i≤ 1,

s(0)> 0,e1(0)≥ 0, · · · ,en(0)≥ 0, i(0)≥ 0,τ(0)≥ 0.

The feasible region is

∆ =

{
(s,e1, · · · ,en, i)/s≥ 0,e1 ≥ 0, · · · ,en ≥ 0, i≥ 0,s+

m=n

∑
m=1

em + i≤ 1

}
.
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It is obvious that (1,0, · · · ,0,0) is the unique disease free equilibrium of System (3.8). The

dynamic of System (3.8) depends on the threshold parameter R1T given by

(3.9) R1T =
cβ

b+d +δ + r

m=n

∑
m=1

km

b+νm + km + rm

l=m−1

∏
l=1

νl

b+νl + kl + rl
.

Theorem 3.8. The disease free equilibrium (1,0, · · · ,0,0) of System (3.8) is globally asymptot-

ically stable in ∆ if R1T ≤ 1 and unstable when R1T > 1.

Proof. The proof of Theorem 3.8 is similar to that of Theorem 2.11 �

Biologically Theorem 3.9 means that if the relative treatment reproduction number R1T is

below one then the fraction of infected individuals will be negligible, while it will persist if R1T

is larger than one. Let’s define the relative treatment force γ1 by setting γ1 = 1−R1T/R1. We

have

R1T ≤ 1⇐⇒ γ1 ≥ 1−1/R1.

The critical relative treatment force is γ1c = 1− 1/R1. If γ1 ≥ γ1c then the fraction of infected

individuals in the population vanishes, while it persists if γ1 < γ1c.

When R1T > 1 the disease free equilibrium of System (3.8) is unstable. The simulations that

we made show that in this case there is one endemic equilibrium that is globally asymptotically

stable in the interior of ∆ (Figure 12 (c) and (d)).

Conjecture 3.9. If R1T > 1, then System (3.8) admits one and only one endemic equilibrium

that is globally asymptotically stable in the interior of ∆.

3.5. The asymptotic behaviour of the sizes

For the asymptotic behaviour of the compartments sizes we have similar results as that of the

model without treatment. The treatment compartment size T have the same behaviour as that

of the infected compartments sizes.

Conjecture 3.10. Let (S(t),E1(t), · · · ,En(t), I(t),T (t)) be a solution of System (3.1).

(1) If RT < 1, then (S(t),E1(t), · · · ,En(t), I(t),T (t))−→ (∞,0, · · · ,0,0,0).

(2) If RT = 1, then (S(t),E1(t), · · · ,En(t), I(t),T (t))−→ (∞,E∗1 , · · · ,E∗n , I∗,T ∗),

with E∗1 > 0, · · · ,E∗n > 0, I∗ > 0,T ∗ > 0.
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(3) If R1T < 1 < RT , then (S(t),E1(t), · · · ,En(t), I(t),T (t))−→ (∞,∞, · · · ,∞,∞,∞).

Now let’s assume that R1T > 1 and that System (3.8) admits an endemic equilibrium that

is globally asymptotically stable in the interior of ∆. In this case as the fractions approach an

endemic equilibrium, the sizes of all the compartments have the same behaviour as that of the

population size N(t).

Theorem 3.11. Let’s assume that R1T > 1 and that System (3.8) admits an endemic equilibrium

(s∗,e∗1, · · · ,e∗n, i∗,τ∗) that is globally asymptotically stable in the interior of ∆ and set

R2T = b/(µ +di∗). Let (S(t),E1(t), · · · ,En(t), I(t), T (t)) be a solution of System (3.1).

(1) If R2T > 1, then N(t)−→ ∞;

(2) If R2T = 1, then N(t)−→ N∗ > 0;

(3) If R2T < 0, then N(t)−→ 0;

Proof. The proof of Theorem 3.11 is similar to that of Theorem 2.14 �

In this section we have studied the dynamic of the SEIS model with n latent classes with treat-

ment (SEnITS model). The dynamic of the epidemic and that of the population depend on three

threshold parameters RT ,R1T and R2T . If RT < 1 then the disease cannot invade the population.

If RT = 1 then the number of infected stabilizes. RT > 1 then the epidemic will invade the pop-

ulation and the dynamic of the proportions depends on R1. If R1T ≤ 1, then the proportion of

infected individuals remains negligible. If R1T > 1, then the proportion of the infected individu-

als will be important and the epidemic will affect the dynamic of the population. We defined the

treatment force γ and the relative treatment force γ1. They satisfy respectively RT = (1− γ)R0

and R1T = (1− γ1)R1. The critical treatment force γc := 1− 1/R0 is the minimal treatment

force needed to eradicate the disease. The relative critical treatment force γ1c := 1− 1/R1 is

the minimal relative treatment force needed to eradicate the disease in term of the proportions.

The recovery rate θ of the treated individuals does not intervene in the thresholds parameters

RT and R1T .
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4. Simulations

In this section we make numerical simulations to validate the theoretical results. We set

n = 3,µ = 1, that is we assume that there are 3 latent classes and the life expectancy is the time

unit. The other parameters and the initial values are chosen arbitrary to cover all the different

scenarios that we have in the previous section. We use the software R and particularly the

package deSolve [13] to integrate the ODE systems.

4.1. Simulations of the model without treatment

Let’s consider first the case with constant solution for System (2.1). For Figure 3, the pa-

rameters values satisfy equation (2.6), and the initial values satisfy System (2.7). In fact for the

initial values we have deduced S(0),E1(0),E2(0) and I(0) from E3(0), by System (2.7). In (a)

as in (b) the sizes of all the compartments are constant. This confirms Theorem 2.6.

(a) Dynamics of compartments sizes (b) Dynamics of compartments sizes

Figure 3. SE3IS curves with b= 3,µ = 1,cβ = 60,ν1 = 30,ν2 = 20,k1 = 5,k2 = 3,k3 =

1,δ = 2,d = 10. By Equation (2.6) we deduce k3 = 5.367041. For (a) the initial values

satisfy System (2.7) with E3(0) = 200. For (b) the initial values satisfy System (2.7)

with E3(0) = 1000. In (a) and in (b) the sizes of the 5 compartments are constant.

We simulate now cases with varying population sizes. We start by integrating the fractions

system. In Figure 4 we have in each case 10 solutions paths of System (2.8) starting at different
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initial values. In (a) and (b) where R1 ≈ 0.58 and R1 ≈ 0.98 respectively, all the 10 solutions

paths approach the disease free equilibrium. This validates that when R1 ≤ 1, the fractions

disease free equilibrium is globally asymptotically stable in its feasible region. For (d) and (c),

where R1 ≈ 2.88 and R1 ≈ 4.32, respectively, all the 10 solutions paths approach an endemic

equilibrium. These results confirm that when R1 > 1, the disease free equilibrium is unstable

and that there is an endemic equilibrium that is globally asymptotically stable in the interior of

the feasible region. The endemic equilibrium in (c) is different of that in (d). Thus, the endemic

equilibrium depends on the parameters values.

Now we integrate System (2.1) to validate the results on the asymptotic behaviour of the

compartments sizes. We set (S(0),E1(0),E2(0),E3(0), I(0)) = (1000,200,100,200,100) for

the initial values.

In Figure 5 we have the best scenario, the epidemic dies out, while the population goes on

growing exponentially. The parameters values satisfy R0 ≈ 0.82. It confirm that the epidemic

cannot invade the population when the basic reproduction number is below one (R0 < 1). It

validates also Conjecture 2.13 (1).

In Figure 6 we have the case with R0 = 1. We get R0 = 1 by deducing cβ from the other

parameters and using equation (2.2). The population grow exponentially, while the infected

compartments sizes go to positive numbers. This simulation confirms Conjecture 2.13 (2).

In Figure 7 all the compartments grow exponentially. But the population growth rate is

larger. Therefore, the fractions approach the disease free equilibrium. we have R0 ≈ 1.24 and

R1 ≈ 0.84. Thus this result confirms Conjecture 2.13 (3).

In Figure 8 all the compartments grow exponentially, while the fractions approach an endemic

equilibrium. We have R0 ≈ 3.55 and R1 ≈ 2.35. The asymptotic reproduction number of the

population is R2 ≈ 1.50. Thus this result complies with Theorem 2.14 (1).

In Figure 9 we have a case with R0 ≈ 6.18 and R1 ≈ 3.84. The fraction approach an endemic

equilibrium such that the asymptotic growth rate of the population R2 = 1. To get this, we have

chosen the parameters values such that they satisfy Equation (2.6). All the compartments sizes

stabilize. The epidemic has stopped the growth of the population. Thus Theorem 2.14 (2) is

confirmed.
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In Figure 10 we have the worse scenario, the population vanishes. The fraction approach

an endemic equilibrium such that the asymptotic growth rate of the population is below one

(a) R1 ≈ 0.58 (b) R1 ≈ 0.98

(c) R1 ≈ 2.88 (d) R1 ≈ 4.32

Figure 4. In each case we have 10 solutions paths of System (2.8) with different initial

values. The parameters values are b = 3,µ = 1,ν1 = 30,ν2 = 20,k1 = 5,k2 = 3,k3 =

1,δ = 4,d = 6. For (a) cβ = 20, that gives R1 ≈ 0.58. For (b) cβ = 34, that gives

R1 ≈ 0.98. In (a) and in (b) all the solutions approach the disease free equilibrium

(1,0,0,0,0). For (c) cβ = 100, that gives R1 ≈ 2.88; all the solutions approach the same

endemic equilibrium (s∗,e∗1,e
∗
2,e
∗
3, i
∗) ≈ (0.31,0.07,0.09,0.46,0.08). For (d), we have

cβ = 150 that gives R1 ≈ 4.32; all the solutions approach the same endemic equilibrium

(s∗,e∗1,e
∗
2,e
∗
3, i
∗)≈ (0.20,0.08,0.09,0.53,0.10).
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(a) Dynamics of the compartments sizes (b) Dynamics of the compartments sizes

Figure 5. SE3IS curves with b= 3,µ = 1,cβ = 10,ν1 = 10,ν2 = 5,k1 = 15,k2 = 8,k3 =

4,δ = 4,d = 6, that gives R0 ≈ 0.82. The infected compartments vanish, while the

population goes on growing exponentially. In (b) we made a zoom to show the dynamics

of the sizes of the infected compartments.

(a) Dynamics of compartments sizes (b) Dynamics of the compartments sizes

Figure 6. SE3IS curves with b = 3,µ = 1,cβ = 14.10429,ν1 = 10,ν2 = 5,k1 = 8,k2 =

5,k3 = 1,δ = 4,d = 6, that gives R0 ≈ 1 and R1 ≈ 0.66. The population grow ex-

ponentially, while the sizes of the infected compartments approach positive values

(E∗1 ,E
∗
2 ,E

∗
3 , I
∗) ≈ (61,55,137,81). In (b) we made a zoom to show the dynamics of

sizes of the infected compartments.
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(a) Dynamics of compartments sizes (b) Dynamics of the fractions

Figure 7. SE3IS curves with b = 3,µ = 1,cβ = 25,ν1 = 20,ν2 = 5,k1 = 8,k2 = 5,k3 =

1,δ = 4,d = 10, that gives R0 ≈ 1.24 and R1 ≈ 0.84. All the compartments grow expo-

nentially. But the fractions approach the disease free equilibrium (1,0,0,0,0).

(a) Dynamics of compartments sizes (b) Dynamics of the fractions

Figure 8. SE3IS curves with b = 3,µ = 1,cβ = 50,ν1 = 10,ν2 = 5,k1 = 8,k2 = 5,k3 =

1,δ = 4,d = 6, that gives R0 ≈ 3.55 and R1 ≈ 2.35. All the compartments grow ex-

ponentially, while the fractions approach an endemic equilibrium (s∗,e∗1,e
∗
2,e
∗
3, i
∗) ≈

(0.35,0.15,0.12,0.21,0.17). The asymptotic reproduction number of the population

is R2 ≈ 1.50 and its asymptotic growth rate is α ≈ 0.99.
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(R2≈ 0.86). The epidemic has turned the exponential growth of the population to an exponential

decay. This result confirms Theorem 2.14 (3).

In this subsection we have integrated numerically System (2.1) and System (2.8) for different

values of the parameters. The numerical results comply with the theoretical ones.

4.2. Simulation of the model with treatment

Now we simulate the model with treatment to illustrate and validate the theoretical results of

Section 3.

Let’s consider first the case with constant solution for System (3.1). For Figure 11, the

parameters values satisfy Equation (3.5), and the initial values satisfy System (3.6). In fact for

the initial values we have deduced S(0),E1(0),E2(0) , I(0) and T (0) from E3(0) by System

(3.6). In (a) as in (b) the sizes of all the compartments are constant. Thus simulation confirms

Theorem 3.6.

(a) Dynamics of compartments sizes (b) Dynamics of the fractions

Figure 9. SE3IS curves with b = 3,µ = 1,cβ = 100,ν1 = 50,ν2 = 40,k1 = 5,k2 =

3,δ = 4,d = 10. By Equation (2.6) we get k3 = 4.107866, that gives R0 ≈

6.18 and R1 ≈ 3.84. The sizes of the compartment approach an endemic equilib-

rium (S∗,E∗1 ,E
∗
2 ,E

∗
3 , I
∗)≈ (331,118,134,1051,408).The fractions approach an endemic

equilibrium (s∗,e∗1,e
∗
2,e
∗
3, i
∗)≈ (0.16,0.06,0.07,0.51,0.20). The asymptotic growth rate

of the population is α = 0 and its asymptotic reproduction number is R2 = 1.
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(a) Dynamics of compartments sizes (b) Dynamics of the fractions

Figure 10. SE3IS curves with b = 3,µ = 1,cβ = 50,ν1 = 20,ν2 = 5,k1 = 15,k2 =

8,k3 = 4,δ = 4,d = 10, that gives R0 ≈ 2.98 and R1 ≈ 2.21. The fractions approach an

endemic equilibrium (s∗,e∗1,e
∗
2,e
∗
3, i
∗) ≈ (0.31,0.11,0.16,0.18,0.25). The asymptotic

growth rate of the population is α ≈ −0.48 and its asymptotic reproduction number is

R2 ≈ 0.86. Thus it vanishes.

(a) Dynamics of compartments sizes (b) Dynamics of compartments sizes

Figure 11. SE3IS curves with b = 6,µ = 1,cβ = 200,ν1 = 100,ν2 = 50,k1 = 40,k2 =

35,δ = 4,d = 25,θ = 5,r1 = 10,r2 = 7,r3 = 4,r = 5. By Equation (2.6) we deduce

k3 = 31.55076. For (a) the initial values satisfy System (3.6) with E3(0) = 200. For (b)

the initial values satisfy System (2.7) with E3(0) = 100. In (a) and in (b) the sizes of the

6 compartments are constant.
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We simulate the fractions system (3.7) to validate the results on the dynamic of the fractions.

In Figure 12 we have in each case 10 solutions paths of System (3.7) starting at different initial

values. In (a) and in (b) where we have respectively R1T ≈ 0.45 and R1T ≈ 0.99, all the 10

solutions approach the disease free equilibrium. these simulations confirm that if R1T < 1 or

equivalently if γ1 ≥ γ1c then the fractions disease free equilibrium is globally asymptotically

stable in ∆. In (c) and (d) where R1T > 1 the 10 solutions approach an endemic equilibrium.

Thus it confirm that if R1T > 1 or equivalently if γ1 < γ1c then the fractions disease free equilib-

rium is unstable and there is an endemic equilibrium which is globally asymptotically stable in

the interior of the feasible set ∆. These simulations validate Theorem 3.8 and Conjecture 3.9.

In Figure 13 we have the best scenario, the epidemic dies out, while the population goes on

growing exponentially. The parameters values satisfy R0 ≈ 3.55 and RT ≈ 0.92. It confirm that

the epidemic cannot invade the population when RT < 1. It validates Conjecture 3.10 (1).

In Figure 14 all the compartments grow exponentially. But the population growth rate is

larger. Therefore, the fractions approach the disease equilibrium. We have R0 ≈ 4.25 and

R1 ≈ 2.81. With the treatment we have RT ≈ 1.11 and R1T ≈ 0.91. Thus this result confirms

Conjecture 3.10 .

In Figure 15 all the compartments grow exponentially, while the fractions approach an en-

demic equilibrium. We have R0 ≈ 7.09,R1 ≈ 4.69,RT ≈ 1.85 and R1T ≈ 1.52. The asymptotic

reproduction number of the population is R2T ≈ 2.37. Thus this result complies with Theorem

3.11 (3).

In Figure 16 the fractions approach an endemic equilibrium such that R2T = 1. The sizes of

all the compartments stabilize. In spite of the treatment, the epidemic has stopped the growth

of the population. Thus this result complies with Theorem 3.11 (1).

In Figure 17 the fractions approach an endemic equilibrium such that R2T = 0.97. The popu-

lation vanishes. In spite of the treatment, the epidemic has turned the exponential growth of the

population to an exponential decay. Thus this result complies with Theorem 3.11 (3).

Now we simulate two epidemics with two different recovery rate θ for the treated individuals

in order to check its impact on the epidemic. In Figure 18 we have two cases where all the

parameters have the same values except that we set respectively θ = 15 and 150 in (a) and in
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(a) R1T ≈ 0.45 (b) R1T ≈ 0.99

(c) R1T ≈ 3.03 (d) R1T ≈ 1.52

Figure 12. In each case we have 10 solutions paths of System (3.7) with different

initial values. The parameters values are b = 3,µ = 1,ν1 = 10,ν2 = 5,k1 = 8,k2 =

5,k3 = 1,δ = 4,d = 6,θ = 10,r1 = 10,r2 = 7,r3 = 4,r = 10. For (a) cβ = 30,

that gives R1T ≈ 0.45. For (b) cβ = 65, that gives R1T ≈ 0.99. In (a) and in

(b) all the solutions approach the disease free equilibrium (1,0,0,0,0,0). For (c)

cβ = 200, that gives R1T ≈ 3.03; all the solutions approach the same endemic equi-

librium (s∗,e∗1,e
∗
2,e
∗
3, i
∗,τ∗)≈ (0.31,0.17,0.09,0.06,0.08,0.28). For (d), we have cβ =

100 that gives R1T ≈ 1.52; all the solutions approach the same endemic equilibrium

(s∗,e∗1,e
∗
2,e
∗
3, i
∗,τ∗)≈ (0.64,0.09,0.05,0.03,0.04,0.14).
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(a) Dynamics of the compartments sizes (b) Dynamics of the compartments sizes

Figure 13. SE3ITS curves with b = 3,µ = 1,cβ = 50,ν1 = 10,ν2 = 5,k1 = 8,k2 =

5,k3 = 1,δ = 4,d = 6,θ = 10,r1 = 10,r2 = 7,r3 = 4,r = 10, that gives R0 ≈ 3.55,R1 ≈

2.35,RT ≈ 0.92 and R1T ≈ 0.76. The infected compartments vanish, while the popula-

tion goes on growing exponentially. In (b) we made a zoom to show the dynamics of the

infected compartments.

(a) Dynamics of compartments sizes (b) Dynamics of the fractions

Figure 14. SE3ITS curves with b = 3,µ = 1,cβ = 60,ν1 = 10,ν2 = 5,k1 = 8,k2 =

5,k3 = 1,δ = 4,d = 6,θ = 10,r1 = 10,r2 = 7,r3 = 4,r = 10, that gives R0 ≈ 4.25,R1 ≈

2.81,RT ≈ 1.11 and R1T ≈ 0.91. All the compartments grow exponentially. But the

fractions approach the disease free equilibrium.
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(b). In each case the fractions approach an endemic equilibrium. The asymptotic infectious

fraction is respectively 0.05 and 0.8. The asymptotic reproduction number of the population

is respectively R2 ≈ 2.273 and R2 ≈ 2.06. The asymptotic fraction of infectious individuals

increases then with the recovery rate of the treated individuals.

The simulations of the treatment model agree with the theoretical results found in Section 3.

In this section we have integrated numerically the different system studied in the previous

section. The simulations results validate the theoretical results. Beyond the validations of the

theorems, the conjectures are confirmed.

5. Discussions and conclusion

We have studied an SEIS model with n serial latent classes with a standard incidence in a

population that grows exponentially before the introduction of the disease. The disease induces

an additive death rate d for the infectious, affecting hence the dynamic of the population. We

(a) Dynamics of compartments sizes (b) Dynamics of the fractions

Figure 15. SE3ITS curves with b = 3,µ = 1,cβ = 100,ν1 = 10,ν2 = 5,k1 = 8,k2 =

5,k3 = 1,δ = 4,d = 6,θ = 10,r1 = 10,r2 = 7,r3 = 4,r = 10, that gives R0 ≈

7.09,R1 ≈ 4.69,RT ≈ 1.85 and R1T ≈ 1.52. All the compartments grow exponen-

tially, while the fractions approach an endemic equilibrium (s∗,e∗1,e
∗
2,e
∗
3, i
∗,τ∗) ≈

(0.64,0.09,0.05,0.03,0.04,0.14). The asymptotic reproduction number of the popu-

lation is R2 ≈ 2.37 and its asymptotic growth rate is α ≈ 1.73.
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have studied first the model without treatment and thereafter we have considered the model with

treatment.

We derived the basic reproduction number R0, the relative basic reproduction number R1.

When R0 < 1 then the epidemic cannot invade the population that go on growing exponentially.

If R0 > 1 then the epidemic will invade the population and the behaviour of the fraction infected

is determined by R1. If R1 < 1, then the fraction of infected remains negligible. If R1 > 1 then

the infected fraction persists and the asymptotic behaviour of the population relies on a third

threshold parameter R2. If R2 > 1, then the population goes on growing exponentially with a

lower rate than its initial rate. If R2 = 1, then the population stabilizes. If R2 < 1, then the

population vanishes.

The dynamic of the model with treatment is determined by three threshold parameters RT ,R1T

and R2T . The treatment reduces the threshold parameters, that is RT < R0 and R1T < R1. We

(a) Dynamics of compartments sizes (b) Dynamics of the fractions

Figure 16. SE3ITS curves with b = 6,µ = 1,cβ = 200,ν1 = 100,ν2 = 50,k1 =

40,k2 = 35,k3 = 31.55076,δ = 4,d = 25,θ = 5,r1 = 10,r2 = 7,r3 = 4,r = 5, that

gives R0 ≈ 6.48,R1 ≈ 4.88,RT ≈ 4.69 and R1T ≈ 3.66. The compartments sizes

approach an endemic equilibrium (S∗,E∗1 ,E
∗
2 ,E

∗
3 , I
∗,T ∗) ≈ (255,67,73,99,239,462),

while the fractions approach an endemic equilibrium (s∗,e∗1,e
∗
2,e
∗
3, i
∗,τ∗) ≈

(0.21,0.06,0.06,0.08,0.2,0.39). The asymptotic reproduction number of the

population is R2 = 1.
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have defined the treatment force γ and the relative force γ1. Hence we deduced the critical treat-

ment force γc and the relative critical treatment force γ1c. If γ > γc the epidemic dies out. But if

γ < γc then the epidemic will continue in spite of the epidemic. An optimal treatment strategy is

to treat in priority the infectious individuals and the individuals in the earliest stage of latency.

All the theoretical results are validated by numerical simulations.

The recovery rate θ of the individuals in the compartment T does not intervene in the thresh-

old parameters RT and R1T . One may think that a high recovery rate (or equivalently a short

period of treatment) is better for tackling the epidemic. But in fact when people recover from

disease, they join the susceptible compartment increasing hence the number of new infectious

contacts. The simulations we made confirm that in the case of endemicity, the fraction of infec-

tious individuals increases with θ . But a long period of treatment means also more expenses,

more places, and more personal in hospitals.

Some authors assume that the disease induces additive death rates for latent individuals and

treated individuals [1, 2]. If we assume that the disease induces an additive death rate dm

for individuals in the latent compartment Em, m = 1, · · · ,n and an additive death rate dT for

(a) Dynamics of compartments sizes (b) Dynamics of the fractions

Figure 17. SE3ITS curves with b = 6,µ = 1,cβ = 190,ν1 = 100,ν2 = 50,k1 = 40,k2 =

35,k3 = 30,δ = 4,d = 25,θ = 5,r1 = 10,r2 = 7,r3 = 4,r = 5, that gives R0≈ 5.27,R1≈

4.04,RT ≈ 3.89 and R1T ≈ 3.08. The fractions approach an endemic equilibrium

(s∗,e∗1,e
∗
2,e
∗
3, i
∗,τ∗) ≈ (0.25,0.06,0.06,0.09,0.17,0.37). The asymptotic reproduction

number of the population is R2 = 0.97. The population goes extinct.
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individuals in the compartment T, then the results are similar to that above. The difference is

that the formula of the thresholds change as follow. One gets the new expressions of R0 and RT

by substituting km+νm+µ,m = 1, · · · ,n respectively by km+νm+µ +dm,m = 1, · · · ,n in their

expressions. For the fractions threshold parameters R1 and R1T , one gets them by substituting

µ by b in the preceding formulas. Therefore, the thresholds parameters for the models with

disease induced death rates to latent individuals and treated individuals are given by

R0 =
cβ

µ +d +δ

m=n

∑
m=1

km

µ +νm + km +dm

l=m−1

∏
l=1

νl

µ +νl + kl +dl
,

R1 =
cβ

b+δ +d

m=n

∑
m=1

km

b+νm + km +dm

l=m−1

∏
l=1

νl

b+νl + kl +dl
,

RT =
cβ

µ +d +δ + r

m=n

∑
m=1

km

µ +νm + km + rm +dm

l=m−1

∏
l=1

νl

µ +νl + kl + rl +dl
,

R1T =
cβ

b+d +δ + r

m=n

∑
m=1

km

b+νm + km + rm +dm

l=m−1

∏
l=1

νl

b+νl + kl + rl +dl
.

(a) Dynamics of the fractions (b) Dynamics of the fractions

Figure 18. se3its curves with b = 6,µ = 1,cβ = 150,ν1 = 10,ν2 = 5,k1 = 8,k2 =

5,k3 = 1,δ = 10,d = 6,r1 = 10,r2 = 7,r3 = 4,r = 10, that gives R1T ≈ 1.80. In

(a) θ = 15 the fractions approach an endemic equilibrium (s∗,e∗1,e
∗
2,e
∗
3, i
∗,τ∗) ≈

(0.54,0.14,0.07,0.05,0.05,0.15) and the asymptotic reproduction number of the pop-

ulation is R2 ≈ 2.273. In (b) θ = 150 the fractions approach an endemic equilibrium

(s∗,e∗1,e
∗
2,e
∗
3, i
∗,τ∗) ≈ (0.53,0.20,0.10,0.07,0.08,0.02) and the asymptotic reproduc-

tion number of the population is R2 ≈ 2.06.
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Similarly to the recovery rate of the treated individuals, the additive death rate dT induced by

the disease to the treated individuals does not intervene in these formula.

Our model ignore the limitations of the means of treatment. We have studied the epidemic

using only a deterministic model. But a deterministic model fits only when we have a large

number of individuals. Therefore, the situation where the population vanishes must be taken

with caution. Because when the number of individuals in the population become small, the

deterministic setting does not fit anymore. What happens then is very stochastic. The most

realistic scenario is that the epidemic dies out first, and the population regrows thereafter.
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