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Abstract. In this paper, we propose and study a heroin epidemic model considering the effect of incarceration of

users due to criminal actions. We prove the occurrence of backward bifurcation and compute the threshold quantity

Rc
0 by a new method. Furthermore the global stability of the equilibrium points of the model is investigated using

Lyapunov functions and geometric stability method.
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1. INTRODUCTION

As far as usage of illicit drugs damage the physical, mental and social well being of individ-

uals, their families and societies, illicit drugs usage turn into a worldwide, critical public and

social health problem. Literature shows expanded researches undertaken to explore the corre-

lation between illicit drugs and criminals, which is critically examined, reliably obtained, and

accepted relationships within the criminological and social science research, see [22, 2, 24, 30].

According to, [8], statistics indicate that 60 percent to 80 percent of all crimes is drug-related.
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To decrease the accessibility and the level of use of illicit drugs, most governments rely heavily

upon incarceration. Incarceration has been shown to have the impact on controlling drug-related

crimes. ”Research in the US on the correlation between community crime rates and imprison-

ment rates found that crime tended to fall with mild increases in imprisonment rates. This

approach is based on the idea that incarceration will deter potential users and dealers from be-

coming involves in the illicit drug market”, see [3].

Among various drug users, heroin users are at high risk of addiction and criminal actions. As

indicated in [16], ”the number of heroin users increased from 166,000 in 2002 to 335,000

in 2012, and the death rate of drug-poisoning involving heroin increased from 0.7 to 2.7 per

100,000 persons during 200-2013 in the USA. The heroin addiction was first defined as an epi-

demic in 1981-1983 in Ireland.” White and Comiskey, in [29], have introduced the following

epidemic model for the dynamics of heroin users,

(1)



dS
dt

= Λ− β1SU1
N −µS

dU1

dt
= β1SU1

N + β3U1U2
N − (µ +δ1 + p)U1

dU2

dt
= pU1− β3U1U2

N − (µ +δ2)U2

in which S(t),U1(t) and U2(t), denotes the number of susceptible individuals, drug users and

drug users in treatment, respectively. Their model was revisited by Mulone and Straughan, [17].

After White and Comiskey’s work, the epidemiology of drugs has been studied by several au-

thors. For example, Nyabadza and Hove-Muskava, in [20], modified (1.1) to a model of the

dynamics of methamphatamine use in a South African province. Njagarah and Nyabadza, in

[18], have studied the impact of rehabilitation, amelioration and relapse on drug epidemics.

Nyabadza, Njagarah and Smith, in [19], have studied the epidemiology of crystal in South

Aferica. The reader can see also, [9, 13, 16].

In this paper, we will propose and analyze a modified form of White-Comiskey’s model by

considering a new compartment, which includes incarcerated drug users due to drug-related

crimes. We will investigate dynamical behaviors of the model such as steady states, backward

bifurcation and local and global stability.
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The paper is organized as follows. In section 2, we present the model and some preliminaries

such as, positivity, boundedness and the basic reproduction number of the system. In section

3, we study the existence of endemic equilibrium points and show that backward bifurcation

leading to bistability occurs, and we compute the quantity Rc
0 by a new method. We prove the

occurrence of backward bifurcation, both directly and by using the theorem of Castillo-Chavez

and Song. In section 4, we obtain sufficient conditions for the local and global stability of

both drug-free and endemic equilibrium points by Lyapunov functions and compound matrices,

i.e. geometric stability method. In the application of geometric method, we use a new matrix

function P and a hence new proof of its related lemma, lemma 4.5. Finally, we present some

numerical simulations for further illustration of our analytical results.

2. MODEL FORMULATION AND BASIC PROPERTIES

S U T

Q

↓Λ
←−
µS

β1SU
↑(µ+α)U

−→
µT

p3Q

↓(µ+α)Q

β3UT

β2U

p2U
p1Q

Our proposed model is based on dividing the community into four compartments: S suscep-

tible individuals at risk of using drugs, U drug users, T drug users in treatment/rehabilitation

and Q drug users incarcerated due to criminal actions and we denote the number of this com-

partments by S(t),U(t),T (t) and Q(t), respectively. We assume that, new recruits (including

travalers, newborns,...) enter the susceptible population at a constant rate Λ, and susceptible

individuals become drug users at rate β1U . Drug users under treatment/rehabilitation relapse

to the class of untreated drug users at rate β3U . We also assume that infected individuals

(users), become under treatment/rehabilitation at rate β2, and drug users with criminal actions,

imprisoned at rate p1. On the other hand incarcerated drug users who have completed their

term of imprisonment and become susceptible again have rate p1, and incarcerated drug users

referred to treatment/rehabilitation centers at rate p3. Finally, we assume that there can be

drug-related death and define α to be the rate of drug-related death, while µ is the natural death

rate.
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TABLE 1. Description of parameters used in the model

Symbol Description

Λ Recruitment rate into the susceptible population

µ The natural death rate of the general population

β1 The probability of becoming a drug user per unit time

β2 The rate at which drug users recruited into treatment

β3 Rate of relaps of drug users in treatment to use

p1 The rate at which offenders complete sentences and back to susceptibles

p2 The rate at which those in drug-related crimes are sentenced

p3 The rate at which offenders are referred to treatment

α The removal rate due to drug use and drug-related crimes

Since the transmission of infection in drug problems is a type of imitation or social learning,

drug relevant contact increases with an increase in population size, hence mass action incidence

is more suitable than standard incidence.

Based on the flow diagram of the model depicted in the above figure, we have the fol-

lowing system of ordinary differential equations:

(2)



dS
dt

= Λ−β1SU−µS+ p1Q

dU
dt

= β1SU +β3UT − (µ +α +β2 + p2)U

dT
dt

=−β3UT +β2U + p3Q−µT

dQ
dt

= p2U− (p3 + p1 +µ +α)Q

At first we prove the positivity of solutions of (2).

Theorem 2.1. If initial data S(0) > 0, U(0) > 0, T (0) > 0 and Q(0) > 0, then the solution

(S(t),U(t),T (t),Q(t)) of (2) is positive for all t ≥ 0.
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Proof: Let (S(t),U(t),T (t),Q(t)) be the solution of the system (2) with initial data S(0)> 0,

U(0)> 0, T (0)> 0 and Q(0)> 0. Suppose that the conclusion is not true, then there is a t∗ > 0

such that,

min{S(t∗),U(t∗),T (t∗),Q(t∗)}= 0

and

min{S(t),U(t),T (t),Q(t)}> 0

for all t ∈ [0, t∗). If min{S(t∗),U(t∗),T (t∗),Q(t∗)}= S(t∗), then we have,
dS
dt
≥−β1SU −µS,

for all t ∈ [0, t∗). Hence, 0 = S(t∗) ≥ S(0)exp(−
∫ t∗

0 (β1U(t) + µ)dt) > 0, which leads to a

contradiction. Similarly, we can obtain contradictions when, min{S(t∗),U(t∗),T (t∗),Q(t∗)}, is

equal to other variables of the system. This completes the proof.

The total population N(t) = S(t) + U(t) + T (t) + Q(t), satisfies the relation dN
dt =

Λ− µN(t)− αU(t)− αQ(t) ≤ Λ− µN(t), hence limsupt→∞ N(t) ≤ Λ

µ
. This shows that

the set,

Ω = {(S,U,T,Q) | S+U +T +Q≤ Λ

µ
,S≥ 0,U ≥ 0,T ≥ 0,Q≥ 0}

is a positively invariant set for (2). Thus the dynamics of the model can be studied only in Ω.

It is easy to see that (2) has a unique drug-free equilibrium (DFE), P0 = (
Λ

µ
,0,0,0).

The Jacobian matrix of the system, have the following form:

(3) J =
∂ f
∂x

=



a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44


in which,

a11 =−β1U−µ,a12 =−β1S,a13 = 0,a14 = p1,a21 = β1U

a22 = β1S+β3T − (µ +α +β2 + p2),a23 = β3U,a24 = 0
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a31 = 0,a32 =−β3T +β2,a33 =−β3U−µ,a34 = p3

a41 = 0,a42 = p2,a43 = 0,a44 =−(p3 + p1 +µ +α).

and at DFE,

(4) J(P0) =



−µ −β1
Λ

µ
0 p1

0 β1
Λ

µ
− (µ +α +β2 + p2) 0 0

0 β2 −µ p3

0 p2 0 −(p3 + p1 +µ +α)


Which has the eigen values −µ,−(p3 + p1 +µ +α),β1

Λ

µ
− (µ +α +β2 + p2). Now we define

the basic reproduction number by,

R0 =
β1Λ

µ(µ +α +β2 + p2)
.

It is clear that β1
Λ

µ
− (µ +α +β2 + p2)< 0 if and only if R0 < 1, and we obtain the following

result on the local stability of the drug-free equilibrium.

Theorem 2.2. The drug-free equilibrium P0 is asymptotically stable when R0 < 1 and unstable

when R0 > 1.

3. ENDEMIC EQUILIBRIUM AND BACKWARD BIFURCATION

The endemic equilibrium point P = (S∗,U∗,T ∗,Q∗) of 2 is determined by the following

equations: 

Λ−β1S∗U∗−µS∗+ p1Q∗ = 0

β1S∗U∗+β3U∗T ∗− (µ +α +β2 + p2)U∗ = 0

−β3U∗T ∗+β2U∗+ p3Q∗−µT ∗ = 0

p2U∗− (p3 + p1 +µ +α)Q∗ = 0

Let q1 =
p2

p1+p3+µ+α
; the above equations lead to

Q∗ = q1U∗,T ∗ = (β2 + p3q1)
U∗

β3U∗+µ
,
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and β1S∗+β3T ∗− (µ +α +β2 + p2) = 0. By using the sum of four equations, we see that U∗

is the positive root of the following quadratic equation:

(5) F(U∗) = AU∗2 +BU∗+C = 0

where

(6) A =−β3(µ +α)(1+q1)

(7) B = β3Λ(1− 1
R0

)+µ(β2 + p3q1)(
β3

β1
−1)−µ(µ +α)(1+q1)

(8) C = Λ(1− 1
R0

)µ

Since F ′′(U∗) = 2A < 0, The quadratic polynomial F(U∗) is a concave parabola and has a

maximum point U∗max =− B
2A with F(U∗max) =

4AC−B2

4A .

If R0 > 1, since F(0) =C > 0, ∆= B2−4AC > 0 and A< 0, the equation F(U∗) = 0 has exactly

one positive solution (an endemic equilibrium).

For the occurrence of backward bifurcation, we must have U∗max > 0 and F(U∗max) ≥ 0, which

are equivalent to B > 0 and ∆≥ 0.

When R0 ≤ 1 we consider two cases.

(1): Let β3 ≤ β1, hence B ≤ 0, therefore U∗max ≤ 0. Now since F(0) ≤ 0 backward bifurcation

can not occur and U∗ = 0 is the only equilibrium point.

(2): Let β3 > β1. We consider the following notations:

a = β3Λ(1− 1
R0

)≤ 0,

b = µ(β2 + p3q1)(
β3

β1
−1)> 0,

c = µ(µ +α)(1+q1)> 0.

In fact B = a+b− c.

Now if b ≤ c then B ≤ 0, which is the same as U∗max ≤ 0, hence backward bifurcation cannot
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occur. Therefore for the occurrence of backward bifurcation, we must have b > c which is

equivalent to

(9)
β3

β1
> 1+

(µ +α)(1+q1)

β2 + p3q1
.

For the occurrence of B > 0, we must have

(10)
β3Λ

β3Λ+b− c
< R0 < 1.

Now we determine the values of R0 for which ∆≥ 0. At first, we rewrite ∆ in term of a,

∆ = ∆(a) = a(a+2b+2c)+(b− c)2

Further more ∆′(a) = 2a+ 2b+ 2c,∆′′(a) = 2 > 0, hence ∆(a) has a minimum value −4bc at

the point −b− c, and ∆(0) = (b− c)2.

On the other hand ∆(a) = 0 has two solution a = −b− c−2
√

bc and a = −b− c+2
√

bc and

when a≤−b− c−2
√

bc or a≥−b− c+2
√

bc, ∆ = ∆(a)≥ 0.

The relation a≤−b− c−2
√

bc, implies,

R0 ≤
β3Λ

β3Λ+b+ c+2
√

bc
≤ β3Λ

β3Λ+b− c

which contradicts 10.

From the relation a≥−b− c+2
√

bc, we have,

β3Λ

β3Λ+b− c
<

β3Λ

β3Λ+b+ c−2
√

bc
< R0 < 1

Let Rc
0 =

β3Λ

β3Λ+b+c−2
√

bc
, in fact; we proved that when Rc

0 < R0 < 1 and 9 holds, there exist at

least one endemic equilibrium point, i. e. backward bifurcation occurs. The above arguments

imply the following theorem.

Theorem 3.1. System 2, has the drug-free equilibrium P0, and:

(1): a unique endemic equilibrium point when R0 > 1.

(2): there is no endemic equilibrium point if, R0 ≤ 1 and β3 ≤ β1.

(3): two endemic equilibrium point when, Rc
0 < R0 < 1 and β3

β1
> 1+ (µ+α)(1+q1)

β2+p3q1
.
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Above theorem demonstrates that in R0 = 1 a bifurcation occurs. In fact, when R0 cross

R0 = 1, the drug-free equilibrium changes its stability.

In the above, we study the bifurcation involving the drug-free equilibrium P0 for R0 = 1, directly.

Now we study backward bifurcation by using the theorem of Castillo-Chavez and Song, which

has been proved in [7], by center manifold theory.

We consider a system of ODEs,

(11)
dX
dt

= f (X ,φ); f : Rn×R→ Rn, f ∈C2(Rn×R)

with a parameter φ , and assume that 0 is a steady state of this system for all φ , i.e. f (0,φ) = 0.

Let Q = DX f (0,0) = ( ∂ fi
∂x j

(0,0) be the Jacobian matrix of f (X ,φ) at (0,0).

Theorem 3.2. Assume the following:

(H1): 0 is a simple eigenvalue of Q, furthermore the other eigenvalues of Q have negative real

parts.

(H2): Q has a (non-negative) right eigenvector of the form w = (w1,w2, ...,wn)
T and a left

eigenvector of the form v = (v1,v2, ...,vn) corresponding to the zero eigenvalue.

Suppose fk(X ,φ) denote the k-th component of f (X ,φ) and

a =
n

∑
k,i, j=1

vkwiw j
∂ 2 fk

∂xi∂x j
(0,0),b =

n

∑
k,i=1

vkwi
∂ 2 fk

∂xi∂φ
(0,0).

Then the quantities a and b determine the local dynamics of 11 around X = 0 as follows:

(1): When a > 0 and b > 0, if φ < 0 with |φ | � 1, X = 0 has asymptotic stability property and

also there is a positive and unstable equilibrium point, and if 0 < φ � 1, X = 0 is an unstable

equilibrium point and also there is a negative equilibrium point which is asymptotically stable.

(2): When a < 0 and b < 0, if φ < 0 with |φ | � 1, X = 0 is an unstable equilibrium point, and if

0 < φ � 1, X = 0 is asymptotically stable, and there is a positive equilibrium which is unstable.

(3): When a > 0 and b < 0, if φ < 0 with |φ | � 1, X = 0 is an unstable equilibrium point

and there is a negative equilibrium which is asymptotically stable. If 0 < φ � 1, X = 0 is

asymptotically stable and there is a positive and unstable equilibrium point.

(4): When a < 0 and b > 0, if the sign of φ varies from negative to positive, then the nature
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of x = 0 varies from stability to instability. Furthermore, a negative and unstable steady state

becomes a positive steady state which is asymptotically stable.

The requirement that w is nonnegative is unnecessary, [7].

At first, it is convenient to transform the variables of 2 as follows: x1 = S, x2 = U , x3 = T ,

x4 = Q, and the system 2, transforms into the following:

(12)



dx1

dt
= Λ−β1x1x2−µx1 + p1x4 = f1,

dx2

dt
= β1x1x2 +β3x2x3− (µ +α +β2 + p2)x2 = f2,

dx3

dt
=−β3x2x3 +β2x2 + p3x4−µx3 = f3,

dx4

dt
= p2x2− (p3 + p1 +µ +α)x4 = f4.

Now we apply theorem 3.2 to show that in 12, backward bifurcation occurs when R0 = 1. The

relation R0 = 1 can be interpreted in term of β1, as β1 = β ∗1 = µ(µ+α+β2+p2)
Λ

.

The eigen values of J(P0,β
∗
1 ), are 0,−µ,−(p3 + p1 + µ + α). Now since 0 is simple and

nonzero eigenvalues are nonnegative real numbers, when β1 = β ∗1 (or R0 = 1) the assumption

(1) of Theorem 3.2, is then verified.

Let w = (w1,w2,w3,w4)
T , be the right eigenvector of J(P0,β

∗
1 ) associated with eigen-

value λ4 = 0, founded by, J(P0,β
∗
1 )w = 0. Computation of the solution of this linear system

yields:

w1 = p2 p1− (µ +α +β2 + p2)(p3 + p1 +µ +α),w2 = µ(p3 + p1 +µ +α)

w3 = β2(p3 + p1 +µ +α)+ p2 p3,w4 = p2µ.

On the other hand, v = (v1,v2,v3,v4), the left eigenvector associated with zero eigenvalue is

founded by, vJ(P0,β
∗
1 ) = 0, and turns out to be

v = (0,1,0,0)
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Now we compute the quantities a and b from Theorem 3.2,

a =
4

∑
k,i, j=1

vkwiw j
∂ 2 fk

∂xi∂x j
(0,0) =

4

∑
i, j=1

wiw j
∂ 2 f2

∂xi∂x j
(0,0) = 2w2(β1w1 +β3w3) =

=
2p2w2

q1
[β1(p1q1− (µ +α +β2 + p2))+β3(β2 + p3q1)].

and

b =
4

∑
k,i=1

vkwi
∂ 2 fk

∂xi∂φ
(P0,β

∗) =
4

∑
i=1

wi
∂ 2 f2

∂xi∂φ
(0,0) = w2

Λ

µ

We observe that b is positive, so that, it is the sign of a that determines the dynamics around the

drug-free equilibrium for β1 = β ∗1 . Now using

(13) µ +α + p2 = (µ +α)(1+q1)+ p1q1 + p3q1

it is clear that a > 0 is equivalent to:

β3

β1
> 1+

(µ +α)(1+q1)

β2 + p3q1
.

Which is the same criterion we have obtained directly. Although in most systems the criterions

obtained for the occurrence of backward bifurcation, directly and by Castillo-Chavez and Song

theorem don’t coincide to gether with. Figure 1 shows bifurcation diagram, i.e. the diagram of

U∗ in term of R0.

FIGURE 1. The occurence of backward bifurcation when, Λ = 1, β1 = 0.01,

β2 = 0.3, α = 0.2, q1 = 0.4 and µ = β3 = p3 = 0.1.
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4. GLOBAL STABILITY

In this section, we study the local and global stability of steady states, both drug-free and

endemic point in some cases. At first, we consider the drug-free point.

Lemma 4.1. If R0 ≤ 1 and β3 ≤ β1, then DFE is globally asymptotically stable in Ω.

Proof. Define L : {(S,U,T,Q) ∈Ω : S > 0}→ R by

V (S,U,T,Q) =U

The time derivative of L along the solution curves of (2) is,

L̇ =
dU
dt
≤ (β1S+β1T − (µ +α +β2 + p2))U ≤ (R0−1)U,

therefore Lasalle invariance principle shows the global asymptotic stability of DFE equilibrium

point.

Proposition 4.1. If R0 <
β1Λ

β1Λ+µ(β2+p3q1)
, then DFE is globally asymptotically stable in Ω.

Proof. Define V : {(S,U,T,Q) ∈Ω : S > 0}→ R by

V (S,U,T,Q) = z1U + z2T + z3Q

The time derivative of L along the solution curves of (2) is,

dV
dt

= z1
dU
dt

+ z2
dT
dt

+ z3
dQ
dt

= z1[β1SU +β3UT − (µ +α +β2 + p2)]

+ z2[−β3UT +β2U + p3Q−µT ]+ z3[p2U− (p3 + p1 +µ +α)Q]

≤ [z1(
β1Λ

µ
(1− 1

R0
)+ z2β2 + z3 p2]U +[(z1− z2)β3]UT − z2µT

+ [z2 p3− z3(p3 + p1 +µ +α)]Q

Now we take z2 p3− z3(p3 + p1 + µ +α) = −K in which K > 0. For the negativity of dV
dt , we

must choose positive coefficients z1,z2 such that:

(14) z1M1 + z2M2 +M3 < 0
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(15) z1− z2 < 0

In which M1 =
β1Λ

µ
(1− 1

R0
), M2 = β2 + p3q1 and M3 = q1K. This system of linear inequalities

has a positive solution when M1+M2 < 0 which is equivalent to R0 <
β1Λ

β1Λ+µ(β2+p3q1)
. Choosing

such coefficients, the above relation for dV
dt , shows, dV

dt = 0 only in drug-free equilibrium (DFE),

(Λ

µ
,0,0,0). Hence Lasalle invariance principle shows G.A.S. of DFE.

In the following, we discuss the local stability of the endemic equilibrium point when

R0 > 1. We use the following lemma, from [14].

Lemma 4.2. Let M be an n×n matrix with real entries. For M to be stable, it is necessary and

sufficient that:

(1): The second compound matrix M[2] of M is stable.

(2): (−1)ndetM > 0.

Theorem 4.1. When R0 > 1, the endemic equilibrium point P∗, is asymptotically stable.

Proof. The linearization of 2 at an arbitrary point has form 3. Therefore, J[2], the second

compound matrix of J = ∂ f
∂x , has the following form:

(16) M = J[2] =



M11 M12 0 0 M15 0

M21 M22 M23 M24 0 M26

M31 0 M33 0 M35 0

0 M42 0 M44 M45 0

0 0 M53 0 M55 M56

0 0 0 M64 M65 M66



with the following components,

M11 =−β1U−µ +β1S+β3T − (µ +α +β2 + p2),M12 = β3U,M15 =−p1,

M21 =−β3T +β2,M22 =−(β1 +β3)U−2µ,M23 = p3,M24 =−β1S,M26 =−p1,

M31 = p2,M33 =−β1U− (p3 + p1 +α +2µ),M35 =−β1S,
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M42 = β1U,M44 = β1S+β3T −β3U− (2µ +α +β2 + p2), M45 = p3,

M53 = β1U,M55 = β1S+β3T − (p1 + p2 + p3 +β2 +2µ +2α),M56 = β3U,

M64 =−p2,M65 =−β3T +β2,M66 =−β3U− (p1 + p3 +α +2µ).

By using, Gersgorin’s theorem, we see that, the matrix J[2](P∗) is stable when it is diag-

onally dominant in rows. In 16, we have:

max{M11(P∗),M22(P∗),M33(P∗),M44(P∗),M55(P∗),M66(P∗)}< 0.

Hence J[2](P∗) is stable.

Furthere more:

det(J(P∗)) =
p2

q1
U∗[µβ3(β3−β1)T ∗ + µβ1(β1−β3)S∗−µβ3(β2 + p3q1)

+ β1β3Λ−β1µ p1q1].

We show det(J(P∗))> 0. If β3 = β1, then,

det(J(P∗)) =
p2

q1
U∗[β 2

1 Λ−µβ1(β2 + p3q1 + p1q1)]

and R0 > 1 and 13, implies det(J(P∗))> 0.

Now we take β3 > β1, in this case,

det(J(P∗))>
p2

q1
U∗[2µβ3(β3−β1)T ∗−µβ3(β2 + p3q1)+β

2
1 Λ−β1µ p1q1].

We consider two subcases: if β3
β1

< 1 + (µ+α)(1+q1)
β2+p3q1

, we have the relation

β 2
1 Λ − µβ3(β2 + p3q1) − β1µ p1q1 > 0, therefore in this case det(J(P∗)) > 0. When

β3
β1

> 1+ (µ+α)(1+q1)
β2+p3q1

, the inequality, 2µβ3(β3−β1)− µβ3(β2 + p3q1)+β 2
1 Λ−β1µ p1q1 > 0

holds, hence det(J(P∗))> 0.

The case β3 < β1 is similar to the previous case.

Now we present the geometric method for the global stability problem, proposed in

[14, 15], see [1, 4, 5, 6, 10, 12, 27, 28] for applications of the method. Let us denote unit

ball of R2 and its boundary and closure by, B, ∂B, and B̄ respectively. We also denote the

collection of all Lipschitzian functions from X to Y , by Lip(X → Y ). We consider a function
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φ ∈ Lip(B̄ → Ω) as a simply connected and rectifiable surface in Ω ⊆ Rn. A closed and

rectifiable curve in Ω can be described as a function φ ∈ Lip(∂B→ Ω) and called simple if it

is one to one. Suppose Σ(ψ,Ω) = {ψ ∈ Lip(B̄→ Ω) : φ |∂B = ψ}. Let Ω be an open domain

which is simply connected, then Σ(ψ,Ω) is a nonvoid set, for any simple, closed and rectifiable

curve ψ in Ω. Consider a norm ‖.‖ on R(
n
2). We define a functional S on the surfaces in Ω by

the following relation:

(17) S φ =
∫
B̄
‖P · ( ∂φ

∂u1
∧ ∂φ

∂u2
)‖du.

In which the mapping u 7→ φ(u) is Lipschitzian on B̄, and ∂φ

∂u1
∧ ∂φ

∂u2
is the wedge product

in R(
n
2). Further more the

(n
2

)
×
(n

2

)
matrix function P is invertible and, ‖P−1‖ is a bounded

function on φ(B̄). The following result is stated in [14].

Lemma 4.3. For an arbitrary simple, closed and rectifiable curve ψ , in Rn, there is δ > 0 with

S ψ ≥ δ for all φ ∈ Σ(ψ,Ω).

Consider the vector field x 7→ f (x) ∈ Rn, which is a C1 function on the set Ω ⊂ Rn, and the

following ODE system,

(18)
dx
dt

= f (x).

We consider the function φt(u) = x(t,φ(u)) as the solution of 18, passing through (0,φ(u)), for

any φ . We define the right-hand derivative of S φt , by the following relation,

(19) D+S φt =
∫
B̄

lim
h→0+

1
h
(‖z+hQ(φt(u))z‖−‖z‖)du.

In which Q = Pf P−1 +P∂ f [2]
∂x P−1, Pf represents the directional derivative of P in the direction

of the vector field f , and ∂ f [2]
∂x denotes the second additive compound matrix of ∂ f

∂x . Furthermore

we consider the following differential equation,

(20)
dz
dt

= Q(φt(u))z

For which the solution is of the form z = P · ( ∂φ

∂u1
∧ ∂φ

∂u2
). The formula D+S φt can be expressed

as,

(21) D+S φt =
∫
B̄

D+‖z‖du.
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Let P be the following matrix,

P =



1
U

0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0
1
U

0 0

0 0 0 0
1
U

0

0 0 0 0 0 1



Hence we have the matrix Pf P−1 =−diag(
U ′

U
,0,0,

U ′

U
,
U ′

U
,0), thus,

Q = Pf P−1 +PMP−1 =



A11 A12 0 0 A15 0

A21 A22 A23 0 0 A26

A31 0 A33 0 A35 0

0 A42 0 A44 A45 0

0 0 A53 0 A55 A56

0 0 0 A64 A65 A66



in which,

A11 =−β1U−µ,A12 = β3,A15 =−p1

A21 =−β3TU +β2U,A22 =−(β1 +β3)U−2µ,A23 = p3,A26 =−p1

A31 = p2U,A33 =−β1U− (2µ +α + p1 + p3),A35 =−p1

A42 = β1,A44 =−β1U−µ,A45 = p3.

A53 = β1,A55 =−(µ +α + p1 + p3),A56 = β3.

A64 = p2U,A65 = β3TU−β2U,A66 =−β1U− (2µ +α + p1 + p3).

Now we use the following norm introduced in [12], for z = (z1,z2,z3,z4,z5,z6) ∈ R6, let
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||z||= max{U1,U2}, where U1(z1,z2,z3) has the following form:

max{|z1|, |z2|+ |z3|} if
sgn(z1) = sgn(z2)

= sgn(z3)

max{|z2|, |z1|+ |z3|} if
sgn(z1) = sgn(z2)

=−sgn(z3)

max{|z1|, |z2|, |z3|} if
sgn(z1) =−sgn(z2)

= sgn(z3)

max{|z1|+ |z3|, |z2|+ |z3|} if
−sgn(z1) = sgn(z2)

= sgn(z3)

and U2(z4,z5,z6) has the following form:

|z4|+ |z5|+ |z6| if
sgn(z4) = sgn(z5)

= sgn(z6)

max{|z4|+ |z5|, |z4|+ |z6|} if
sgn(z4) = sgn(z5)

=−sgn(z6)

max{|z5|, |z4|+ |z6|} if
sgn(z4) =−sgn(z5)

= sgn(z6)

max{|z4|+ |z6|, |z5|+ |z6|} if
−sgn(z4) = sgn(z5)

= sgn(z6)

Furthere more we will use the following relations:

|z2|<U1, |z3|<U1, |z2 + z3|<U1

and

|zi|, |zi + z j|, |z4 + z5 + z6| ≤U2(z) i = 4,5,6; i 6= j

We use this inequalities in the estimation of D+||z||. Now we prove the following lemma.

Lemma 4.4. There is a constant τ > 0, for which D+‖z‖ ≤ −τ‖z‖ for all z ∈ R6 and all

S,U,T,Q, where z is the solution of 20, provided that β2 < β1 < p1 + µ +α,β2 < β3 < p1 +

p3 +µ +α and max(β3TU−β1U + p1−2µ)< 0.

Proof. We prove the existence of a τ > 0 for which D+‖z‖ ≤−τ‖z‖, for the solution z of the

equation 20. The full calculation to demonstrate this relation contains sixteen separate cases



18 REZA MEMARBASHI, SOMAYE TAGHAVI

in term of the different orthants and the definition of the above norm, see [4]. As in [10], we

demonstrate five cases with details.

Case 1: U1 >U2, z2,z3 > 0 > z1, in this case, ||z||= max{|z1|+ |z3|, |z2|+ |z3|}.

Subcase 1.1. |z1|> |z2|, hence ||z||= |z1|+ |z3|=−z1 + z3, and

D+||z||=−z′1 + z′3 =−(A11z1 +A12z2 +A15z5)+A31z1 +A33z3 +A35z5 =

= (−β1U− p2U−µ)|z1|+(−β3)|z2|+(−β1U− (2µ +α + p1 + p3))|z3| ≤

≤ max{−µ−β3,−(β3 +2µ +α + p1 + p3)}||z||

which is a negative coefficient.

Subcase 1.2. |z1|< |z2|. In this case, ||z||= |z2|+ |z3| and

D+||z||= z′2 + z′3 = A21z1 +A22z2 +A23z3 +A26z6 +A31z1 +A33z3 +A35z5 =

≤ (β3TU− p2U−β2U)|z1|+(−(β1 +β3)U−2µ)|z2|+

+(−β1U− (2µ +α + p1))|z3|+ p1(|z5|+ |z6|)≤

≤ (β3TU−β1U + p1−2µ)||z||

Case 2: U1 <U2 and z4,z5,z6 > 0. In this case ||z||= |z4|+ |z5|+ |z6| and

D+||z||= z′4 + z′5 + z′6 = A42z2 +A44z4 +A45z5 +A53z3 +A55z5 +A56z6 +A64z4+

+A65z5 +A66z6 ≤ β1||z||+(−β1U−µ− p2U)|z4|+

+(−β3TU +β2U− (p1 +µ +α))|z5|+(−β1U− (p1 + p3 +µ +α)+β3))|z6| ≤

≤max{β1−β1U−µ− p2U,−β3TU +β2U− (p1 +µ +α)+β1,

−β1U− (p1 + p3 +µ +α)+β3 +β1}||z||

Case 3. If U2 >U1 and z6 < 0 < z4,z5. In this case, ||z||= max{|z4|+ |z5|, |z4|+ |z6|}.
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Subcase 3.1. |z5|> |z6|, in this case, ||z||= |z4|+ |z5|= z4 + z5, and:

D+||z||= z′4 + z′5 = A42z2 +A44z4 +A45z5 +A53z3 +A55z5 +A56z6 ≤

≤ β1(z2 + z3)+(−β1U−µ)|z4|+(−p1−µ−α)|z5|+(−β3)|z6| ≤

≤max{β1−β1U−µ,β1− (p1 +µ +α)}||z||

Subcase 3.2. |z5|< |z6|. In this case ||z||= |z4|+ |z6|= z4− z6, and:

D+||z||= z′4− z′6 = A42z2 +A44z4 +A45z5−A64z4−A65z5−A66z6 ≤

≤ β1||z||+(−p2U−β1U−µ)|z4|+(β2U−β1U +β1− (p1 +2µ +α))|z6| ≤

≤max{β1− p2U−β1U−µ,(β2−β1)U +β1− (p1 +2µ +α)}||z||

Now using the supposed inequalities, in all of the above cases the coefficient of ||z|| is a

negative number.

In [14], the geometric method is applied to investigate the global stability of a unique

steady state. In such cases, there exists a compact absorbing set. Hence surfaces remain in Ω

for all time. But in models with backward bifurcation, such as model 2, such a set will not

exist. Hence as in [1], we prove the existence of the following sequence ϕk of surfaces in the

next lemma.

Lemma 4.5. For an arbitrary simple and closed curve ψ in Ω, there is ε > 0 and surfaces ϕk

which minimizes S with respect to Σ(ψ,Ω), in such a way that, for all t ∈ [0,ε] and k = 2,3, ...,

ϕk
t ⊆Ω.

Proof. Consider the quantity, ξ =
1
2

min{U : (S,U,T,Q) ∈ ψ}. It is easy to see that ξ > 0.

Based on the inequality
dU
dt
≥−(µ +α +β2 + p2)U,

which holds in Ω, there exists ε > 0 such that, the solutions with U(0) ≥ ξ , remains in

Ω, for t ∈ [0,ε]. Hence we must show the existence of a sequence {ϕk} which minimizes
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S with respect to Σ(ψ,Ω̃), in which Ω̃ = {(S,U,T,Q) ∈ Ω : U ≥ ξ}. Now for ϕ(u) =

(S(u),U(u),T (u),Q(u)) ∈ Σ(ψ,Ω), we define another surface,

ϕ̃(u) = (S̃(u),Ũ(u), T̃ (u), Q̃(u)) by the following relation,



ϕ(u) if U(u)≥ ξ

(S,ξ ,T,Q) if
U(u)< ξ ,

S+ξ +T +Q≤ Λ

µ

(
S√

3(S+T +Q)
(

Λ

µ
−ξ ),ξ ,

T√
3(S+T +Q)

(
Λ

µ
−ξ ),

Q√
3(S+T +Q)

(
Λ

µ
−ξ )) if

U(u)< ξ ,

S+ξ +T +Q > Λ

µ

It is easy to see that ϕ̃(u) ∈ Σ(ψ,Ω̃). We will prove S ϕ̃ ≤S φ .

We denote
∂ ϕ̃

∂u1
∧ ∂ ϕ̃

∂u2
= (x̃1, x̃2, x̃3, x̃4, x̃5, x̃6)

T and
∂ϕ

∂u1
∧ ∂ϕ

∂u2
= (x1,x2,x3,x4,x5,x6)

T , and

prove ‖ ∂ φ̃

∂u1
∧ ∂ φ̃

∂u2
‖ ≤ ‖ ∂φ

∂u1
∧ ∂φ

∂u2
‖.

Case 1. If U(u)≥ ξ , then ϕ̃ = ϕ and therefore, |x̃i|= |xi|

(i = 1,2, · · · ,6), hence, ‖ ∂ φ̃

∂u1
∧ ∂ φ̃

∂u2
‖= ‖ ∂φ

∂u1
∧ ∂φ

∂u2
‖.

Case 2. If U(u) < ξ and S(u) + ξ + T (u) + Q(u) ≤ Λ

µ
, then ϕ̃(u) = (S(u),ξ ,T (u),Q(u)).

Therefore,

∂ ϕ̃

∂u1
∧ ∂ ϕ̃

∂u2
=



det


∂S
∂u1

∂S
∂u2

∂U
∂u1

∂U
∂u2


0

det


∂S
∂u1

∂S
∂u2

∂Q
∂u1

∂Q
∂u2


0

det


∂U
∂u1

∂U
∂u2

∂Q
∂u1

∂Q
∂u2


0


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almost everywhere. Hence it follows x̃i = xi(i = 1,3,5) and x̃i = 0(i = 2,4,6). Thus |x̃i| ≤ |xi|,

which implies ‖ ∂ φ̃

∂u1
∧ ∂ φ̃

∂u2
‖ ≤ ‖ ∂φ

∂u1
∧ ∂φ

∂u2
‖.

Case 3. If U(u) < ξ and S(u) + ξ + T (u) +Q(u) >
Λ

µ
, then ϕ̃(u) = (

S√
3(S+T +Q)

(
Λ

µ
−

ξ ),ξ ,
T√

3(S+T +Q)
(
Λ

µ
−ξ ),

Q√
3(S+T +Q)

(
Λ

µ
−ξ )).

In this case, using
∂ S̃
∂u j

+
∂ T̃
∂u j

+
∂ Q̃
∂u j

= 0, we obtain,

∂ ϕ̃

∂u1
= z1(u1) f1 + z2(u1) f2

and

∂ ϕ̃

∂u2
= z1(u2) f1 + z2(u2) f2

in which,

f1 =



1

0

0

−1


, f2 =



0

0

1

−1


and

z1(u j) = (
Λ

µ
−ξ )

(T +Q)
∂S
∂u j
−S(

∂T
∂u j

+
∂Q
∂u j

)

√
3(S+T +Q)2

z2(u j) = (
Λ

µ
−ξ )

(S+Q)
∂T
∂u j
−T (

∂S
∂u j

+
∂Q
∂u j

)

√
3(S+T +Q)2
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for j = 1,2. Therefore,

∂ ϕ̃

∂u1
∧ ∂ ϕ̃

∂u2
=(z1(u1)z2(u2)− z2(u1)z1(u2)) f1∧ f2

=

(
Λ

µ
−ξ )2

3(S+T +Q)4 A



0

1

−1

0

0

1


in which,

A = Q(S+T +Q)x2−T (S+T +Q)x3 +S(S+T +Q)x6

which yields,

‖ ∂ φ̃

∂u1
∧ ∂ φ̃

∂u2
‖ ≤ |x2|+ |x3|+ |x6| ≤ ‖

∂φ

∂u1
∧ ∂φ

∂u2
‖

On the other hand, Ũ(u) = max{U(u),ξ}, and thus
1

Ũ
≤ 1

U
. Therefore,

S φ̃ =
∫
B̄
‖P̃ · ( ∂ φ̃

∂u1
∧ ∂ φ̃

∂u2
)‖du≤

∫
B̄
‖P · ( ∂φ

∂u1
∧ ∂φ

∂u2
)‖du = S φ

Using lemma, we can choose δ = inf{S φ : φ ∈ Σ(ψ,Ω)}. Suppose that {φ k}, minimizes S

with respect to Σ(ψ,Ω), then limk→∞ S φ k = δ . Now consider the sequence {φ̃ k} ⊂ Σ(ψ,Ω̃)

as in the above definition, from the boundedness of {S φ̃ k} and S φ̃ k ≤ S φ k, we have

limk→∞ S φ̃k ≤ δ . Furthermore φ̃ k ∈ Σ(ψ,Ω), hence S φ̃ k ≥ δ , and limk→∞ S φ̃k ≥ δ , which

implies limk→∞ S φ̃k = δ . Now

inf{S φ̃ : φ̃ ∈ Σ(ψ,Ω̃)} ≤ inf{S φ : φ ∈ Σ(ψ,Ω)}= δ .

And from φ̃ ∈ Σ(ψ,Ω), we have inf{S φ̃ : φ̃ ∈ Σ(ψ,Ω̃)} ≥ δ , which implies inf{S φ̃ : φ̃ ∈

Σ(ψ,Ω̃)} = δ . At the final we can show that limk→∞ S φ̃k = δ = inf{S φ̃ : φ̃ ∈ Σ(ψ,Ω̃)}, i.e.

{φ̃ k} minimizes S with respective to Σ(ψ,Ω̃).

Lemmas 4.4, 4.5 and a proof similar to corollary 5.4 in [1], implies the following theorem.
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Theorem 4.2. Positive semi-trajectories of system converges to an equilibrium point, i.e., any

ω-limit point of 2 in Ω◦, is an equilibrium point.

Finally, the above theorem implies the following result.

Theorem 4.3. Suppose the inequalities in Lemma 4.4 holds, then:

(1) when the only equilibrium point is the drug-free equilibrium P0, then all solutions tend to

P0;

(2) when R0 > 1, then all solutions of 2 tends to the unique endemic equilibrium point;

(3) when there are two endemic equilibrium points, which occurs when Rc
0 < R0 < 1, solutions

of the system either tend to the drug-free equilibrium P0 or tend to the upper equilibrium point.

5. NUMERICAL SIMULATION

Finally, we present numerical examples using Matlab. The aim of this simulations is to

illustrate stability results obtained in previous sections. We consider the following three cases.

Case 1. R0 ≤ 1 and β3 ≤ β1.

We choose Λ = 20, µ = 10−3, α = 10−3, β3 = β1 = 10−5, β2 = 10−1, p1 = 10−2, p2 = 10−1,

p3 = 2× 10−2, and initial conitions, (S0,U0,T0,Q0) = (15000,1100,900,220). In this case

R0 = 0.99. See figure 2.

Case 2. R0 <
β1Λ

β1Λ+µ(β2+p3q1)
.

We choose Λ = 10, µ = 10−3, α = 10−3, β1 = 10−6, β2 = 10−1, p1 = 10−2, p2 = 10−1,

p3 = 10−2, β3 = 10−2 and initial conitions, (S0,U0,T0,Q0) = (9800,1100,300,250). In this

case R0 = 0.049 < 0.064 = β1Λ

β1Λ+µ(β2+p3q1)
. See figure 3.

Case 3. R0 > 1.

We choose Λ= 100, µ = 10−2, α = 10−2, β1 = 2×10−2, β2 = 2×10−6, p1 = 10−2, p2 = 10−2,

p3 = 2×10−3, β3 = 2×10−6 and initial conitions, (S0,U0,T0,Q0) = (98000,1700,1000,900).

In this R0 = 6666.2222. This collection of parameters satisfy the inequalities in Lemma 4.4.

See figure 4.
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FIGURE 2. The DFE equilibrium point is globally asymptotically stable. In this

case Λ = 20, µ = 10−3, α = 10−3, β3 = β1 = 10−5, β2 = 10−1, p1 = 10−2,

p2 = 10−1, p3 = 2×10−2, and (S0,U0,T0,Q0) = (15000,1100,900,220).

FIGURE 3. The DFE equilibrium point is globally asymptotically stable. In this

case Λ= 10, µ = 10−3, α = 10−3, β1 = 10−6, β2 = 10−1, p1 = 10−2, p2 = 10−1,

p3 = 10−2, β3 = 10−2 and (S0,U0,T0,Q0) = (9800,1100,300,250).
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FIGURE 4. The unique endemic equilibrium point is globally asymptotically

stable. In this case Λ = 100, µ = 10−2, α = 10−2, β1 = 2×10−2, β2 = 2×10−6,

p1 = 10−2, p2 = 10−2, p3 = 2× 10−3, β3 = 2× 10−6 and (S0,U0,T0,Q0) =

(98000,1700,1000,900).

6. CONCLUSION

The White and Comiskey’s model of heroin epidemics is extended in this paper. This exten-

sion includes addition of a compartment for the incarcerated drug users due to criminal actions.

Complete qualitative study of the model including the existence and local and global stability of

the equilibrium points are carried out. The drug free equilibrium P0, is shown to be locally and

globally stable under suitable conditions. Using compound matrices the sufficcient conditions

for the local and global stability of the endemic equilibrium points is obtained.

By the analysis of the model, we noted that, the model has a unique and locally assymptotically

stable endemic equilibrium when R0 > 1, which shows the persitence of drug users in the com-

munity.

The occurence of backward bifurcation is also proved for the model which shows under some

conditions, it is not enough to reduce R0 to the region R0 < 1, to control the drug epidemc.

Infact when R0 < 1, the drug problem may be persitent. Hence we compute another threshold,

Rc
0 < 1, and show that for the control of drug epidemic, R0 should be reduced to below Rc

0.

Through the analysis of the model, we find that the ratio β3
β1

, is the main factor of the occurence
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of backward bifurcation. Hence for the simpler eradication of the drugs in a community, β3
β1

,

should be reduced below 1+ (µ+α)(1+q1)
β2+p3q1

.
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