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Abstract. In the past few years, the parapenaeus longirostris population stock has seen a sharp reduction. In this

work, we propose a bioeconomic model that represents the biomass evolution of this marine population in two

moroccan maritime patches: protected area and unprotected area. In the model construction, we take in consid-

eration the predation interaction between the parapenaeus longirostris population and the small pelagic species

of moroccan coastal zones. We suppose the existence of coastal trawlers that exploit both the predator and prey

populations. Our objective is to study the influence of the predator mortality rate variation on the evolution of prey

biomass and the profit of coastal trawlers. It should be underlined that, coastal trawlers are constrained by the

conservation of marine biodiversity. One of the key consequences of this is that the increase in the mortality rate

of small pelagics leads to an evolution in the parapenaeus longirostris stock, and consequently to an increase in the

profit of coastal trawlers after exploitation of this species. On the other hand, the level of fishing effort and catches

of small pelagics is decreasing, which leads to a reduction in the profit of coastal trawlers after exploiting small

pelagics.
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1. INTRODUCTION

The Moroccan coastline stretches for about 3,500 kilometers. Its waters are among the

world’s richest sources of fish. The FAO considers Morocco’s production potential at nearly

1.5 million tonnes per year. Morocco is the Africa’s largest producer of fish (FAO, 2001). It

represents 1.2% of world production and ranks 18th in the world.

There are four fishing zones in Morocco whose relative importance in terms of activity has

undergone a great change over time and the pace of exploitation (Figure 1). Mediterranean and

North Atlantic zone to ElJadida (35◦45’-32◦N), zone A of Safi to Sidi Ifni (32◦N-29◦N), zone

B of Sidi Ifni to Cape Boujdor (29◦N-26◦N) and zone C from Boujdor to Lagouira (26 ◦N to the

South). Which allows the kingdom to be the first in the Arab world and in Africa for fishing for

fish and seafood, including small pelagics species and shrimps. The shrimps fishing has several

advantages both economically by being a source of foreign exchange and socially by the labor

it generates. However, shrimp fishing in Moroccan fishing zones confronts several challenges

and issues with regard to the nature of the resource itself and the context of exploitation. Mostly

on the , it remains among the most fragile stocks. This resource has not yet covered its optimal

state, it is a very important fishery for both the local market and for export.

FIGURE 1. The distribution of the parapenaeus longirostris and small pelagic

species stocks
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The exploitation of parapenaeus longirostris offshore by Moroccan fleets developed from the

1980s. Its geographical distribution is quite wide. In Morocco, it is found in abundance in the

plateau and the Atlantic continental slope, from Cap Spartel in the North to Lagouira in the

South and in the Moroccan Mediterranean from Ceuta to Saidia. This deep species lives on

muddy or sandy bottom. Its bathymetric distribution is wide, from 20 to 700 m and generally

from 100 to 400 m depth (Heldt, 1954, Holthuis, 1987, Ardizzone et al, 1990).

Overexploitation, especially of growth (of juveniles) remains one of the main causes causing

the state of more or less advanced degradation of certain resources. Excessive fishing pressure

on juveniles (especially for parapenaeus longirostris) is leading to a significant shortfall for

the fishery as a whole in terms of production per recruit and hence exploitable biomass. To

this end, it is recommended to continue the effort already put in place for the management of

parapenaeus longirostris stocks and to reinforce the current management measures, in particular

those relating to the reduction and control of fishing mortality.

Thus, adequate scientific monitoring and appropriate adaptive management alone guarantee

the sustainability of these short-lived resources. Let us add that understanding the biological

mechanisms of parapenaeus longirostris modulating key environmental and ecosystem indica-

tors of stock health, such as water temperature and predator abundance: small pelagics such

as sardine, horse mackerel, anchovy, sardinella, etc., is an integral part of the preparation and

enhancement of stock ecosystem assessments [1, 2, 3, 4]. This will make it possible to decide

on the state of the resource and recommend recommendations for better management of these

fisheries.

In this context, many mathematical models have been developed to describe the dynamics

of fisheries, we can see for example [5, 6, 7, 8, 9, 10, 11, 12, 13]. Also, we can refer to Y. El

foutayeni et al. [14] in their work, the autors have defined a bioeconomic equilibrium model for

several coastal trawlers who catch two fish species. The authors have studied the existence of

the steady states and its stability using eigenvalue analysis; they have solved two mathematical

problems to determine the equilibrium point that maximizes the profit of each coastal trawler.

Finally the authors have given some numerical simulations to illustrate the results.
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An other important example in this context is also that Y. El foutayeni et al. [15], in this

work the authors have defined a bioeconomic equilibrium model for several coastal trawlers

exploiting three species, these species compete with each other for space or food; the natural

growth of each species is modeled using a logistic law; the objective of their work is to calculate

the fishing effort that maximizes the profit of each coastal trawler at biological equilibrium by

using the generalized Nash equilibrium problem.

In the work of I. Agmour et all. [16], the authors have sought to highlight that the increase

of the carrying capacity of marine species does not always lead to an increase on the catch

levels and on the incomes. To effectively support the theoretical outcomes, we have considered

a bioeconomic model of several seiners exploiting Sardina pilchardus, Engraulis encrasicolus

and Xiphias gladius marine species in the Atlantic coast of Morocco based on the parameters

given by ’Institut National de Recherche Halieutique’.

Recently, the parapenaeus longirostris resource stock was marked by a fall yields of the

different fleets operating moroccan maritime zones, as well as a decrease in catches in this

species. In addition, abundance indices decreased. The drop in parapenaeus longirostris stocks

could be caused by over-fishing and the predation between this population and small pelagics. In

this work, we consider the biomass evolution model of the parapenaeus longirostris population

in the presence of predators (the five small pelagics) in two areas: protected area and unprotected

area. In one side, the model introduces the small pelagic fish populations and parapenaeus

longirostris fishery into free access fishing zone. The different parameters and variables used in

the biological model are cited in tables 1 and 2. On the other hand, we search to study the impact

of the variation of the predator mortality rate on the stock evolution of the prey population. It

also seeks to interpret the best fishing situations, which allow seiners to have the maximum

income by preserving stocks of small pelagic and parapenaeus longirostris populations.
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Variables Description

PJ (t) The stock of parapenaeus longirostris juveniles into patch A

PA (t) The stock of parapenaeus longirostris adults into patch B

S(t) The density of sardine

A(t) The density of anchovy

M(t) The density of mackerel

H(t) The density of horse mackerel

L(t) The density of sardinella

Table. 1. The description of variables.

Parameters Description

κK The carrying capacity in the reserved area

(1−κ)K The carrying capacity in the unreserved area

r The growth rate of parapenaeus longirostris

µs The maximum per capita consumption rates of sardine

µa The maximum per capita consumption rates of anchovy

µm The maximum per capita consumption rates of mackerel

µh The maximum per capita consumption rates of h. mackerel

µl The maximum per capita consumption rates of sardinella

η The maximal carrying of parapenaeus longirostris

β The mobility coefficient

ds The natural death rates of sardine

da The natural death rates of anchovy

dm The natural death rates of mackerel

dh The natural death rates of horse mackerel

dl The natural death rates of sardinella

αs The amount of the P.L required to support sardine

αa The amount of the P.L required to support anchovy

αm The amount of the P.L required to support mackerel

αh The amount of the P.L required to support h. mackerel

αl The amount of the P.L required to support sardinella

Table. 2. The description of parameters
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The paper is organized as follows. In the next section, we present the biological model of the

juveniles and adults of the parapenaeus longirostris evolutions with the presence of the preda-

tors; in other word, the five small pelagic species: Sardines, Anchovy, Mackerel, The horse

mackerel, Sardinella; which consist in a system of seven ordinary differential equations, the

first equation describes the natural growth of the juveniles of Parapenaeus longirostris fish pop-

ulation a prey of the small pelagic fish population, the second equation describes the natural

growth of Parapenaeus longirostris fish population a prey of the small pelagic fish population,

the third to seven equations describe the natural growth of the small pelagic fish population as

a predators of the juveniles and adults of the parapenaeus longirostris. The existence of the

steady states of this system and its stability are studied using eigenvalue analysis and we define

a bioeconomic equilibrium model for all of this fish populations exploited by a fishing fleet. In

section 3, We compute some numerical simulations to determine the optimal conditions under

which the biological steady state can be attained and to draw some important conclusions re-

garding reserve designs. In section 4 we give a numerical simulation of the mathematical model

and discussion of the results. Finally we give a conclusion and some potential perspectives in

section 5.

2. BIOLOGICAL MODEL

Our study is based on a prey–predator system, the parapenaeus longirostris and the small

pelagic fish (Sardine, Anchovy, Mackerel, The horse mackerel, Sardinella) in two patches (as

shown in figure 1): a fishing protected area and free access fishing zone. Let us assume that

PJ (t) is the stock of parapenaeus longirostris juveniles into patch A, the reserve area, and PA (t)

is the stock of parapenaeus longirostris adults into patch B, unreserved area, at time t. Assuming

total region under consideration is unit and 0 < κ < 1 is the reserved area, consequently (1−κ)

is the unreserved area.

It is assumed that the juveniles of parapenaeus longirostris fish population grows according

to a logistic equation with growth rate r and and its carrying capacity is κK. The functions

µsPJ (t)S(t)�η , µaPJ (t)A(t)�η , µmPJ (t)M(t)�η , µhPJ (t)H(t)�η and µlPJ (t)L(t)�η are

the function responses, where µs, µa, µm, µh, µl are respectively the maximum per capita con-

sumption rates of sardine, anchovy, mackerel, horse mackerel and sardinella, i.e. the maximum
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rate at which the juvenile and adults of the parapenaeus longirostris population can be eaten by a

sardine, anchovy, mackerel, the horse mackerel, sardinella per unit time. And η is the maximal

carrying of the juvenile and adults of the parapenaeus longirostris. βPJ (t)PA (t)�κ(1−κ)K2

represent the net transfer rate or migration, where β is a mobility coefficient. The net trans-

fer from the protected area to the unprotected area is assumed to be the positive direction for

migration.

The population of parapenaeus longirostris adults grows according to a logistic equation with

growth rate r, its carrying capacity is equal to (1−κ)K. We note that it is a prey of the small

pelagic species.

Let S(t), A(t), M(t), H(t) and L(t) be the densities of sardine, anchovy, mackerel, horse

mackerel and sardinella, respectively. These populations are predators of parapenaeus lon-

girostris juveniles and adults. The natural death rates of predators: sardine, anchovy, mackerel,

horse mackerel and sardinella are denoted by ds, da, dm, dh and dl , respectively. The parameters

αs, αa, αm, αh and αl are the amount of the juvenile and adults of the parapenaeus longirostris

required to support sardine, anchovy, mackerel, horse mackerel and sardinella at equilibrium,

respectively.

Following the previous assumptions, the biological model is represented as follow

(1)



ṖJ (t) = rPJ (t)
(

1− PJ(t)
κK

)
− βPJ(t)PA(t)

κ(1−κ)K2 −
µsPJ(t)S(t)

η
− µaPJ(t)A(t)

η

−µmPJ(t)M(t)
η

− µhPJ(t)H(t)
η

− µlPJ(t)L(t)
η

ṖA (t) = rPA (t)
(

1− PA(t)
(1−κ)K

)
+ βPJ(t)PA(t)

κ(1−κ)K2 −
µsPA(t)S(t)

η
− µaPA(t)A(t)

η

−µmPA(t)M(t)
η

− µhPA(t)H(t)
η

− µlPA(t)L(t)
η

Ṡ(t) = −dsS (t)+αsS (t)PJ (t)+αsS (t)PA (t)

Ȧ(t) = −daA(t)+αaA(t)PJ (t)+αaA(t)PA (t)

Ṁ(t) = −dmM(t)+αmM(t)PJ (t)+αmM(t)PA (t)

Ḣ(t) = −dhH(t)+αhH(t)PJ (t)+αhH(t)PA (t)

L̇(t) = −dlL(t)+αlL(t)PJ (t)+αlL(t)PA (t)

with positive initial conditions.
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3. BIOLOGICAL MODEL ANALYSIS

Let X(t) = (PJ (t) ,PA (t) ,S(t),A(t),M(t),H(t),L(t)) be the solution of the system (1) at the

biological equilibrium. Then all the solutions of the system (1) are nonnegative. To demonstrate

that we must recall that by [17], the system of equation (1) is a positive system.

Theorem 1. All the solutions of system (1) which start in R7
+ are uniformly bounded.

Proof. We define the function

f (t) = αsαaαmαhαl (PJ (t)+PA (t))+
µsαaαmαhαl

η
S (t)+ µaαsαmαhαl

η
A(t)

+µmαsαaαhαl
η

M (t)+ µhαsαaαmαl
η

H (t)+ µlαsαaαmαh
η

L(t)

Therefore, the time derivative along a solution of (1) is

d f
dt = αsαaαmαhαlrPJ (t)

[(
1− PJ(t)

κK

)
+PA (t)

(
1− PA(t)

(1−κ)K

)]
−µaαsαmαhαlda

η
A(t)− µsαaαmαhαlds

η
S (t)− µmαsαaαhαldm

η
M (t)

−µhαsαaαmαldh
η

H (t)− µlαsαaαmαhdl
η

L(t)

For each ϑ > 0, we have

d f
dt +ϑ f ≤ αsαaαmαhαl

K
4r (r+ϑ)2 + ϑ

η
[µsαaαmαhαlS (t)+µaαsαmαhαlA(t)]

+ϑ

η
[µmαsαaαhαlM (t)+µhαsαaαmαlH (t)+µlαsαaαmαhL(t)]

So, the right-hand side is positive and it is bounded for all (PJ,PA,S,A,M,H, l) ∈R7
+. There-

fore, we find a θ > 0 with d f
dt +ϑ f < θ . Using the theory of differential inequality [18], we

obtain

0≤ f ≤ θ

ϑ
+

[
f (PJ (0) ,PA (0) ,S (0) ,A(0) ,M (0) ,H (0) ,L(0))− θ

ϑ

]
e−ϑ t

which upon letting t −→ ∞, yields 0≤ f ≤ θ

ϑ
.

Then, we have

B =

{
(PJ,PA,S,A,M,H,L) ∈ R7

+ : f <
θ

ϑ
+ ε, ∀ε > 0

}
where B is the region in which all the solutions of system of equation (1) that start in R7

+ are

confined.

�
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For system (1), we can see that the equilibrium points of system (1) satisfies the following

equations

(2)



r(1− PJ
κK )−

βPA
κ(1−κ)K2 − µs

η
S+ µa

η
A+ µm

η
M+ µh

η
H + µl

η
L = 0

r(1− PA
(1−κ)K )+

βPJ
κ(1−κ)K2 − µs

η
S− µa

η
A− µm

η
M− µh

η
H− µl

η
L = 0

−ds +αsPJ +αsPA = 0

−da +αaPJ +αaPA = 0

−dm +αmPJ +αmPA = 0

−dh +αhPJ +αhPA = 0

−dl +αlPJ +αlPAs = 0

After calculation, it is obvious that system.(2) has a 128 equilibrium points (Annexe 1), but

it has real positive solution is X∗ = [P∗J ,P
∗
A ,S
∗,A∗,M∗,H∗,L∗]T , where



P∗J = ds(Krκ−β )
Krαs

P∗A = ds(β+Kr(1−κ))
Krαs

S∗ =
ηds(K2r2κ(κ−1)−β 2)(µs−1)+K3r2καs(η−µs)(κ−1)

K3rκαsµs(κ−1)(µs−1)

A∗ = 2K2r2κηda(κ−1)−2β 2ηda−K3rκαa(κ−1)(2rη−µa)
K3rκαa(µa−1)(κ−1)

M∗ = M1+M2+M3+M4+M5
2K3rκµmα2

s (µs−1)(µa−1)(κ−1)

H∗ = H1+H2+H3+H4
K3rκµhα2

h (µm−1)(µa−1)(κ−1)

L∗ = rµl(1−η)
2µh(µa−1)

with

M1 = 2Krβηdm (µs−1)(µa−1)(dm +2καm−4κds)

M2 = K3rκα2
m (κ−1)(2µm (µa +2rη)− r (8η−µm (9η−1)))

−K3rκα2
m (κ−1)µ2

m (−r+2µa +5rη)

M3 = 4β 2ηdm (µm−1)(dm (µm−1)−αm (µm−2))

M4 = 2K2r2κηdm [αm (2κ +µa−3)−µm (2καs−dm)]

M5 = 6K2r2κηd3
mµ2

mαm (2/3dm− (2κ +µm (2κ−3αs)))

−6K2r2κηd3
mµ3

mαm (2κµm−3αm (2κ +µa))
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H1 = 4K3r2κα2
h η (µh−1)2 (κ−1)

H2 = K2r2κdhη
[
αh (µh−1)(2κ−3)+µh

(
2κα2

h −dh
)

2κ (3dh +1)
]

H3 = 3K2r2κd2
hηµ2

h

(
dh−2κα2

h

)
[2κ (µh−1)+3αh−3αh (2κ +µh)]

H4 = βηdh

[
2β (µh−1)2 (2αh−dh)−Kr (µh−1)2 (dh +2καh−4κdh)

]
It must be noted that we only concentrate on the interior equilibrium point of the system

(1), since the biological meaning of the interior equilibrium indicates that the parapenaeus lon-

girostris and the small pelagic fish populations all exist. So in this paper, we assume that Krκ−

β > 0, ds >Kαs, da >Kαa, dm >Kαm, dh >Kαh and dl >Kαl with K,rs,ra,rm,rh,rl,β ,α > 0.

To evaluate the variational matrix at this point and analyze its local stability we use the Routh

Hurwitz criterion, as is shown in annexe 2.

The characteristic polynomial associated to the variational matrix J (X∗) is written as P(λ ) =
7
∑

k=0
ρkλ k. Note that the coefficients ρk are written according to all the parameters mentioned

in the biological model (1) (Annexe 2). It is obvious to show that the ρk are positive for all

k = {1, ...,6}, and likewise for ρi j with i = {1,2,3} and j = {1, ...,6}. So, according to the

Routh Hurwitz stability criterion, we can conclude that the equilibrium point X∗ is stable.

4. BIOECONOMIC MODEL

The exploitation scheme of the shrimp includes directed fishing on these species by the

freezing, offshore and coastal fishing segments, and multi-species by the fleet of fresh coastal

trawlers targeting shrimp and other groups of fish such as small pelagics.

At the Moroccan fishing zones level, catches of fresh-fishing coastal trawlers having landed

parapenaeus longirostris are composed of more than 80 species of fish (according to ONP sta-

tistics). The top 20 species landed in these areas account for more than 84% of the total catch.

parapenaeus longirostris dominates shrimp catches of the fresh coastal fishery segment at both

elevations and accounts for 88% of catch volumes. Hence the importance of introducing the

catches of fishing coastal trawlers into our biological model.

The proposed bioeconomic model (3) in the presence of harvesting includes three parts: a

biological part connecting the catch to the biomass stock, an exploitation part connecting the

catch to the fishing effort, and an economic part connecting the fishing effort to the profit.
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We denote by Hi j the catches of fish population j by the coastal trawler i and it is given by

the equation

Hi j = q jEi jx j,

where Ei j is the fishing effort of the coastal trawler i to exploit the fish population j and

q j is the is the catchability coefficient of fish population j. Let us add that H j = H1 j +H2 j

is the total catches of fish population j by the two coastal trawler, and E j = E1 j + E2 j the

total fishing effort dedicated to fish population j by all coastal trawler, and we denote by

E i = (Ei1,Ei2,Ei3,Ei4,Ei5,Ei6,Ei7)
T the vector fishing effort which must be provided by the

coastal trawler i to catch the fish populations.

(3)



ṖJ (t) = rPJ (t)
(

1− PJ(t)
κK

)
− βPJ(t)PA(t)

κ(1−κ)K2 −
µsPJ(t)S(t)

η
− µaPJ(t)A(t)

η

−µmPJ(t)M(t)
η

− µhPJ(t)H(t)
η

− µlPJ(t)L(t)
η

ṖA (t) = rPA (t)
(

1− PA(t)
(1−κ)K

)
+ βPJ(t)PA(t)

κ(1−κ)K2 −
µsPA(t)S(t)

η
− µaPA(t)A(t)

η

−µmPA(t)M(t)
η

− µhPA(t)H(t)
η

− µlPA(t)L(t)
η

−H1

Ṡ(t) = −dsS (t)+αsS (t)PJ (t)+αsS (t)PA (t)−H2

Ȧ(t) = −daA(t)+αaA(t)PJ (t)+αaA(t)PA (t)−H3

Ṁ(t) = −dmM(t)+αmM(t)PJ (t)+αmM(t)PA (t)−H4

Ḣ(t) = −dhH(t)+αhH(t)PJ (t)+αhH(t)PA (t)−H5

L̇(t) = −dlL(t)+αlL(t)PJ (t)+αlL(t)PA (t)−H6

In what follows of this paper, the product, the scalar product and the division of two vectors

is similar to that in Y. El foutayeni et al. [10], also the product of vector and matrix.

For system (4), we can see that the expression of biomass as a function of fishing effort is

given by the matrix form X = −AE +X∗ (the identification of each vector and matrix is cited

in annexe 3.

An algebraic equation is also included due to the consideration of the economic profit of

harvesting. According to Gordon’s economic theory [19]: The profit (π) = Total Revenue

(T R)−Total Cost(TC), where the Total Revenue (T R) and Total Cost (TC) are given by

The total revenue of the coastal trawler i is (T R)i =
6
∑

k=1
pkHk1, where (pk)16k66 are the

prices per unit harvested biomasses of the parapenaeus longirostris adults and the five small
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pelagic fish populations. After calculation, it is obvious that (T R)i =
〈

E(i),−qpAE(i)
〉
+〈

E(i),qpX∗−qpA
n
∑

k=1,k 6=i
E(k)

〉
.

The total cost is equal to (TC)i =
〈

c(i),E(i)
〉

, where c(i) = (ci1,ci2)
T is the vector of the cost

per unit of harvesting.

While the economic profit πi of each coastal trawler i is equal to

πi
(
E i)=〈E(i),−qpAE(i)pqX∗− c(i)− pqA

n

∑
k=1,k 6=i

E(k)

〉

As constraint of the bioeconomic model we should have a strictly positive biomass of all the

marine fish populations, in mathematical words, we must have the following inequality

X =−AE +X∗ ≥ X0 > 0⇔ AE(i) ≤−AE( j)+X∗ (for coastal trawler i)

4.1. Fishing effort: Mathematical formula. To determine the mathematical expression of

fishing effort that maximizes each coastal trawler profit, we use the generelized Nash equilib-

rium problem. By definition a Nash equilibrium exists when no coastal trawler would take a

different action as long as every other coastal trawler remains the same. This problem can be

translated into mathematical problems of maximization. By applying the essential conditions

of Karush-Kuhn-Tucker these mathematical problems can be translated to a Linear Comple-

mentarity Problem (LCP). One can prove that this last problem has one and only one solution

[20, 21]. So, we can deduce that the generalized Nash equilibrium problem admits one and only

one solution. This equilibrium solution is given by


E(1) =

1
3

A−1

(
X∗− c(1)

pq

)

E(2) =
1
3

A−1

(
X∗− c(2)

pq

)

Then, the fishing effort that maximizes the profit of the first coastal trawler for catching the

adults of parapenaeus longirostris species is
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E11 =
K2r2κ(1−κ)+β 2

3K3rκ(κ−1)2q1

(
c11

p1q1
+ (ds+da+dm+dh+dl)(β−Kr(κ−1))

Kr(αs+αa+αm+αh+αl)

)
+ (β+Kr(1−κ))

3Kηr(1−κ)q1

(
µsc12
p2q2

+ µac13
p3q3

+ µmc14
p4q4

+ µhc15
p5q5

+ µlc16
p6q6

)
+

(β+Kr(1−κ))η(5r+(β 2−K2r2κ(κ−1))(µsds+µada+µmdm+µhdh+µldl))
3Kηr(1−κ)q1

the fishing effort that maximizes the profit of the first coastal trawler for catching the sardine

species is

E12 =
βαs−Krαs+Krκαs

3Kr(1−κ)q2

(
c11

p1q1
+ (ds+da+dm+dh+dl)β+Kr−Krκ

Kr(αs+αa+αm+αh+αl)

)
+Kκαs

3rnq2

(
µsc12
p2q2

+ µac13
p3q3

+ µmc14
p4q4

+ µhc15
p5q5

+ µlc16
p6q6

)
+

Kκαsη(5r+(β 2−K2r2κ(κ−1))(µsds+µada+µmdm+µhdh+µldl))
3rnq2

The fishing effort that maximizes the profit of the first coastal trawler for catching the anchovy

species is

E13 =
βαa−Krαa+Krκαa

3Kr(1−κ)q3

(
c11

p1q1
+ (ds+da+dm+dh+dl)β+Kr−Krκ

Kr(αs+αa+αm+αh+αl)

)
+Kκαa

3rnq3

(
µsc12
p2q2

+ µac13
p3q3

+ µmc14
p4q4

+ µhc15
p5q5

+ µlc16
p6q6

)
+

Kκαaη(5r+(β 2−K2r2κ(κ−1))(µsds+µada+µmdm+µhdh+µldl))
3rnq3

the fishing effort that maximizes the profit of the first coastal trawler for catching the mackerel

species is

E14 =
βαm+Krαm(κ−1)

3Kr(1−κ)q4

(
c11

p1q1
+ (ds+da+dm+dh+dl)(β+Kr−Krκ)

Kr(α1+α2+α3+α4+α5)

)
+Kκαm

3rnq4

(
µsc12
p2q2

+ µac13
p3q3

+ µmc14
p4q4

+ µhc15
p5q5

+ µlc16
p6q6

)
+

Kκαmη(5r+(β 2−K2r2κ(κ−1))(µsds+µada+µmdm+µhdh+µldl))
3rnq4

the fishing effort that maximizes the profit of the first coastal trawler for catching the horse

mackerel species is

E15 =
βαh−Krαh+Krκαh

3Kr(1−κ)q5

(
c11

p1q1
+ (ds+da+dm+dh+dl)(β+Kr−Krκ)

Kr(αs+αa+αm+αh+αl)

)
+Kκαh

3rnq5

(
µsc12
p2q2

+ µac13
p3q3

+ µmc14
p4q4

+ µhc15
p5q5

+ µlc16
p6q6

)
+

Kκαhη(5r+(β 2−K2r2κ(κ−1))(µsds+µada+µmdm+µhdh+µldl))
3rnq5

the fishing effort that maximizes the profit of the first coastal trawler for catching sardinella

species is

E16 =
βαl−Krαl+Krκαl

3Kr(1−κ)q6

(
c11

p1q1
+ (ds+da+dm+dh+dl)(β+Kr−Krκ)

Kr(αs+αa+αm+αh+αl)

)
+Kκαl

3rnq6

(
µsc12
p2q2

+ µac13
p3q3

+ µmc14
p4q4

+ µhc15
p5q5

+ µlc16
p6q6

)
+

Kκαlη(5r+(β 2−K2r2κ(κ−1))(µsds+µada+µmdm+µhdh+µldl))
3rnq6

the fishing effort that maximizes the profit of the seconde coastal trawler for catching the

adults of parapenaeus longirostris species is
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E21 =
K2r2κ(1−κ)+β 2

3K3rκ(κ−1)2q1

(
c21

p1q1
+ (ds+da+dm+dh+dl)(β+Kr−Krκ)

Kr(αs+αa+αm+αh+αl)

)
+ (β+Kr(1−κ))

3Kηr(1−κ)q1

(
µsc22
p2q2

+ µac23
p3q3

+ µmc24
p4q4

+ µhc25
p5q5

+ µlc26
p6q6

)
+

(β+Kr(1−κ))η(5r+(β 2−K2r2κ(κ−1))(µsds+µada+µmdm+µhdh+µldl))
3Kηr(1−κ)q1

the fishing effort that maximizes the profit of the seconde coastal trawler for catching the

sardine species is

E22 =
βαs−Krαs+Krκαs

3Kr(1−κ)q2

(
c21

p1q1
+ (ds+da+dm+dh+dl)(β+Kr−Krκ)

Kr(αs+αa+αm+αh+αl)

)
+Kκαs

3rnq2

(
µsc22
p2q2

+ µac23
p3q3

+ µmc24
p4q4

+ µhc25
p5q5

+ µlc26
p6q6

)
+

Kκαsη(5r+(β 2−K2r2κ(κ−1))(µsds+µada+µmdm+µhdh+µldl))
3rnq2

the fishing effort that maximizes the profit of the seconde coastal trawler for catching the

anchovy species is

E23 =
βαa−Krαa+Krκαa

3Kr(1−κ)q3

(
c21

p1q1
+ (ds+da+dm+dh+dl)(β+Kr−Krκ)

Kr(αs+αa+αm+αh+αl)

)
+Kκαa

3rnq3

(
µsc22
p2q2

+ µac23
p3q3

+ µmc24
p4q4

+ µhc25
p5q5

+ µlc26
p6q6

)
+

Kκαaη(5r+(β 2−K2r2κ(κ−1))(µsds+µada+µmdm+µhdh+µldl))
3rnq3

the fishing effort that maximizes the profit of the seconde coastal trawler for catching the

mackerel species is

E24 =
βαm−Krαm+Krκαm

3Kr(1−κ)q4

(
c21

p1q1
+ (ds+da+dm+dh+dl)(β+Kr−Krκ)

Kr(αs+αa+αm+αh+αl)

)
+Kκαm

3rnq4

(
µsc22
p2q2

+ µac23
p3q3

+ µmc24
p4q4

+ µhc25
p5q5

+ µlc26
p6q6

)
+

Kκαmη(5r+(β 2−K2r2κ(κ−1))(µsds+µada+µmdm+µhdh+µldl))
3rnq4

the fishing effort that maximizes the profit of the seconde coastal trawler for catching the

horse mackerel species is

E25 =
βαh−Krαh+Krκαh

3Kr(1−κ)q5

(
c21

p1q1
+ (ds+da+dm+dh+dl)(β+Kr−Krκ)

Kr(αs+αa+αm+αh+αl)

)
+
(

µsc22
p2q2

+ µac23
p3q3

+ µmc24
p4q4

+ µhc25
p5q5

+ µlc26
p6q6

)
+

Kκαhη(5r+(β 2−K2r2κ(κ−1))(µsds+µada+µmdm+µhdh+µldl))
3rnq5

the fishing effort that maximizes the profit of the seconde coastal trawler for catching the

sardinella species is

E26 =
βαl−Krαl+Krκαl

3Kr(1−κ)q6

(
c21

p1q1
+ (ds+da+dm+dh+dl)(β+Kr−Krκ)

Kr(αs+αa+αm+αh+αl)

)
+Kκαl

3rnq6

(
µsc22
p2q2

+ µac23
p3q3

+ µmc24
p4q4

+ µhc25
p5q5

+ µlc26
p6q6

)
+

Kκαlη(5r+(β 2−K2r2κ(κ−1))(µsds+µada+µmdm+µhdh+µldl))
3rnq6
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5. NUMERICAL SIMULATIONS AND DISCUSSION OF THE RESULTS

As can be seen from the figure 2, the mortality coefficient increase of small pelagics results

an evolution in the stock of the parapenaeus longirostris population. Witch is justified by the

absence of predators that feed on parapenaeus longirostris fish. And therefore, the level of small

pelagic population stocks decrease figure 3.

FIGURE 2. The influence of mortality coefficient on the arapenaeus longirostris

population stocks

FIGURE 3. The influence of mortality coefficient on the small pelagic popula-

tion stocks

In this situation, according to figure 4, the number of fishing trips, that must be made by

coastal trawlers to harvest parapenaeus longirostris, increase. This increase enable them to

make more catches, which allows them to get high economic returns taking into consideration

the marine resources conservation.
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FIGURE 4. The influence of mortality coefficient on the fishing trips

However, when the biomass of small pelagic fish decreases, the number of fishing trips ded-

icated to these species decreases, because the carrying capacity of each small pelagic species

does not contain the enough biomass that allows the coastal trawlers to catch a greater amount

of fish, note that each coastal trawler is constrained by the sustainability of marine species. In

this situation, coastal trawlers do not have the opportunity to catch more small pelagic fish, and

as a result, their profit related to the exploitation of these resources decreases, as shown in figure

5.

FIGURE 5. The influence of mortality coefficient on profit

If the mortality rate is sufficiently high, which means the almost total absence of small pelag-

ics, then the coastal trawlers will be forced to exploit only parapenaeus longirostris. In this

situation, their catch level is equal to 300 tons and the profit is equal to 34500000.
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In the opposite situation, the mortality rate approaches zero, which means a total abandon-

ment of small pelagics, and which leads to a very high predation of parapenaeus longirostris. In

this situation, the profit of coastal trawlers is equal to 1332000 after the exploitation of 61000

tons of small pelagics.

But whereas these two situations do not ensure the sustainability and abundance of stocks of

all the marine populations considered in this work.

However, if we consider the normal mortality rate, assumed equal to 0.27, 0.19, 0.21, 0.17,

0.37 for sardine, anchovy, mackerel, horse mackerel, sardinella, respectively. In this case the

abundance of prey and predator stocks is ensured. Coastal trawlers capture 890 tons of small

pelagic stocks and 552 tons of parapenaeus longirostris stock, to have the maximum economic

return equal to 17629200 for small pelagics and 92316000 for parapenaeus longirostris. We can

notice that their total profit equal to 109945200 higher than 34500000 and 1332000 cited in the

other situations.

CONCLUSION

In this paper, we presents a contribution to the modeling of parapenaeus longirostris fishing

on Moroccan coasts. The modeling is based on the knowledge and available data on its dynam-

ics and its harvest. We study the interaction between parapenaeus longirostris and small pelagic

fish on two different spatial zones connected by migration. For that, we propose to define a

bioeconomic model of prey-predator (parapenaeus longirostris-small pelagic fish) on two patch

with homogeneous environments. One of these patches is considered to be a fishing protected

area and the remaining adjacent patch is a free access fishing area. We first outline the basic

theoretical model describing the biological dynamics of marine species stocks and then fisheries

is introduced to the system.

ANNEX 1: EQUILIBRIUM POINTS

The equilibrium points are:

P1 (0,0,0,0,0,0,0), P2 (Kκ,0,0,0,0,0,0), P3 (0,K (1−κ) ,0,0,0,0,0),

P4

(
Krdm (κ−1)

βαm
,0,

rη (Kκαm−dm)

Kκαmµs
,0,0,0,0

)
,
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P5

(
Krda (κ−1)

βαa
,0,0,

rη (Kκαa−da)

Kκαaµa
,0,0,0

)
,

P6

(
dm−2Kκαm

αm
,0,0,0,

rη (Kκαm−dm)

Kκαmµm
,0,0

)
,

P7 (P71,P72,0,0,0,0,0) , with


P71 =

Krκ (dh +Kαh (κ−1))
αh (β +Krκ)

P72 =
Kr (da +Kκαa)(κ−1)

αa (β +Kr (κ−1))

P8 (P81,0,0,0,0,P82,0), with


P81 =

2K2rκηαh (κ−1)−β µhdh

Krηαh (κ−1)

P82 =
β µhdh−K2rκηαh (κ−1)

K2καhµh (κ−1)
P9 (P91,0,0,0,0,0,P92), with


P91 =

Krµldl (κ−1)
βαlµl

P92 =
rη (−µldl +Kκαlµl)

Kκµlαl

P10 (0,P101,P102,0,0,0,0), with


P101 =

µ2
s ds−Kαs

(
η2−µ2

s
)
(κ−1)

η2αs

P102 =
rµs (ds +Kαs (κ−1))

Kηαs (κ−1)
P11 (0,P111,0,P112,0,0,0), with


P111 =

β µ2
a da +K2rκαa (µa−1)(µa +1)(κ−1)

Krκαa

P112 =
ηµa

(
βda +K2rκαa (κ−1)

)
K2καa (κ−1)

P12 (0,P121,0,0,P122,0,0), with


P121 =

dm +2Kαm (κ−1)
αm

P122 = rη
dm +Kαm (κ−1)
Kαmµm (κ−1)

P13 (0,P131,0,0,0,P132,0), with
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P131 = Krκ

dh

βαh

P132 = rη
dh +Kαh (κ−1)
Kαhµh (κ−1)

P14 (0,P141,0,0,0,0,P141), with


P141 =

βdl−2K2rκαl (κ−1)
Krκαl

P142 = η
βdl−K2rκαl (κ−1)

K2καlµl (κ−1)

P15 (P151,P152,P153,0,0,0,0), with



P151 =
Krκ (Kαs (κ−1)(S−1)+Sds)−βds

βαs (S−1)+Krαs (−κ +Sκ +1)

P152 =
Sβds−Kr (κ−1)(ds +Kκαs (S−1))

βαs (S−1)+Krαs (−κ +Sκ +1)

P153 =
K2r2κη (κ−1)(ds−Kαs)−β 2ηds

K2καsµs (κ−1)(β −Sβ +Kr (−κ (S−1)−1))

P16 (P161,P162,0,P163,0,0,0), with



P161 =
(Krκ−β )da

Krαa

P162 =
(β −Kr (κ−1))da

Krαa

P163 =
K2r2κη (κ−1)(Kαa−da)−β 2ηda

−K3rκαaµa (κ−1)

P17 (P171,P172,0,0,P173,0,0), with



P171 =
β µadm +Krκ (Kαm (µa−µm)(κ−1)−µmdm)

βαm (µa−µm)−Krαm (µa−κµa +κµm)

P172 =
β µmdm +Kr (κ−1)(Kκαm (µa−µm)−µadm)

Krαm (µa−κµa +κµm)−βαm (µa−µm)

P173 =
+K2r2κη (κ−1)(dm−Kαm)−β 2ηdm

K2καm (κ−1)(β µa−β µm +Kr (−µa +κµa−κµm))

P18 (P181,P182,0,0,0,P183,0), with
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P181 =
(Krκ−β )dh

Krαh

P182 =
(β +Kr (1−κ))dh

Krαh

P183 =
K2r2κη (κ−1)(Kαh−dh)−β 2ηdh

K3rκαhµh (1−κ)

P19 (P191,P192,0,0,0,0,P193), with



P191 =
dl (Krκ−β )

Krαl

P192 =
(β −Kr (κ−1))dl

Krαl

P193 =
K2r2κη (κ−1)(−dl +Kαl)−β 2ηdl

K3rκαlµl (1−κ)

P20 (P201,0,P202,A,0,0,0) , with


P201 =

ds

αs

P202 =
Kκαs (Aµa− rη)− rηds

Kκαsµs

P21 (P211,0,P212,0,0,H,0), with


P211 =

dh

αh

P212 =
Kκαh (rη−Hµh)− rηdh

Kκαhµh

P22 (P221,0,0,P222,M,0,0), with


P221 =

dm

αm

P222 =
βη (dm−Kκαm)+K2Mκαmµm (κ−1)

K2αmµaκ (1−κ)

P23 (P231,0,0,P232,0,H,0), with


P231 =

dh

αh

P232 =
rηdh +Kκαh (Hµh−ηr)

Kκαhµa

P24 (P241,0,0,P242,0,0,L), with
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P241 =

dl

αl

P242 =
Kκαl (ηr−Lµl)− rηdl

Kκαlµa

P25 (P251,0,0,0,P252,H,0), with


P251 =

dm

αm

P252 =
Kκαm (rη−Hµh)− rηdm

Kκαmµm

P26 (P261,0,0,0,P262,0,L), with


P261 =

dl

αl

P262 =
(rη−Lµl)Kκαl− rηdl

Kκαlµm

P27 (P271,0,P272,A,M,0,0), with


P271 =

da

αa

P272 =
βη (da−Kκαa)−K2καa (Aµa +µmM)(1−κ)

K2καaµs (1−κ)

P28 (P281,0,P282,A,0,H,0), with


P281 =

ds

αs

P282 =
Kκαs (rη−Aµa−µhH)− rηds

Kκαsµs

P29 (P291,0, ,A,0,0,L), with


P291 =

dl

αl

P292 =
Kκαl (rη−Aµa−µlL)− rηdl

Kκαlµs

P30 (P301,0,P302,0,M,H,0), with


P301 =

ds

αs

P302 =
Kαsκ (rη−Mµm−µhH)− rηds

Kκαsµs

P31 (P311,0,P312,0,M,0,L), with
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P311 =

dl

αl

P312 =
Kκαl (ηr−Mµm−µlL)− rηdl

Kκαlµs

P32 (P321,0,P322,0,0,0,L), with


P321 =

dl

αl

P322 =
Kκαl (rη−Lµl)− rηdl

Kκαlµl

P33 (P331,0,0,P332,M,H,0), with


P331 =

da

αa

P332 =
Kκαa (rη−Mµm−µhH)− rηda

Kκαaµa

P34 (P341,0,0,P342,M,0,L), with


P341 =

da

αa

P342 =
Kκαa (rη−Mµm−µlL)− rηda

Kκαaµa

P35 (P351,0,0,P352,0,H,L), with


P351 =

da

αa

P352 =
Kκαl (rη−Hµh−µlL)− rηdl

Kκαaµa

p36

(
d1

α1
,0,P362,A,M,0,0

)
, with


P361 =

ds

αs

P362 =
Kκαs (rη−Aµa−µmM)− rηds

Kκαsµa

P37 (P371,0,P372,A,0,H,0) , with


P371 =

da

αa

P372 =
Kκαs (rη−Aµa−µhH)− rηda

Kκαaµa

P38 (P381,0,P382,A,0,0,L), with
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P381 =

dl

αl

P382 =
Kκαl (rη−Aµa−µlL)− rηdl

Kκαlµa

P39 (0,P391,P392,0,M,H,0), with


P391 =

ds

αs

P392 =
Kαs (κ−1)(rη +µmH +µsM)− rηds

Kαsµh (1−κ)

P40 (0,P401,P402,0,M,0,L), with


P401 =

dl

αl

P402 =
Kαl (κ−1)(rη +µmL+µsM)− rηdl

Kαlµl (1−κ)

P41 (0,P411,P412,0,0,H,L), with


P411 =

dh

αh

P412 =
Kαh (κ−1)(rη +µhL+µsH)− rηdh

Kαhµl (1−κ)

P42

(
0,0,

rη−Aµa−Mµm−µhH
µs

,A,M,H,0
)

,

P43

(
0,0,

rη−Aµa−Mµm−µlL
µs

,A,M,0,L
)

,

P44

(
0,0,

rη−Aµa−Hµh−µlL
µs

,A,0,H,L
)

,

P45

(
0,0,0,

rη−Mµh−Hµm−µlL
µa

,M,H,L
)

,

P46

(
0,0,

rη−Aµa−Mµm−µhH−µlL
µs

,A,M,H,L
)

,

P47

(
0,
(1−κ)

[
Kβη−K2κ (µhH +µlL+Aµa +Mµm)

]
βη

,0,A,M,H,L

)
,

P48 (0,P481,S,0,P482,H,L), with


P481 =

ds

αs

P482 =
Kαs (κ−1)(rη +µhH +µll)− rηds

Kαsµm (1−κ)

P49 (0,P491,P492,A,0,H,L), with
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P491 =

dm

αm

P492 =
Kαm (κ−1)(rη +µaA+µll)− rηdm

Kαmµs (1−κ)

P50 (0,P501,P502,A,M,0,L), with


P501 =

dm

αm

P502 =
Kαm (κ−1)(rη +µmM+µll)− rηdm

Kαmµs (1−κ)

P51 (0,P511,P512,A,M,H,L), with


P511 =

dl

αl

P512 =
Kαl (κ−1)(rη +µmM+µaA)− rηdl

Kαlµs (1−κ)

P52 (P521,0,P522,A,0,H,L) , with


P521 =

K2κµh (L−H)

η (β +Kr)

P522 =
β (rη−Aµm−µhH−µlL)+Kr (κ−1)(rη−Aµm)

µa (β +Kr (1−κ))

P53 (P531,0,P532,0,M,H,L), with


P531 =

dm

αm

P532 =
Kκαm (rη−Mµm−µhH−µlL)− rηdm

Kαmµsκ

P54 (P541,0,P542,A,M,0,L), with


P541 =

dh

αh

P542 =
Kκαh (rη−Mµm−µaA−µlL)− rηdh

Kαhµsκ

P55

(
ds

αs
,0,−Aµa +µhH +µmM

µs
,A,M,H,0

)
,

P56 (P561,P562,0,0,M,H,P563), with
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P561 =
dm (Krκ−β )

Krαm

P562 =
βdm +Krdm (1−κ)

Krαm

P563 =
(κ−1)K2r2κη (dm +αm)−β 2ηdm

K3rκαmµl (1−κ)

P57 (P571,P572,0,P573,0,H,L) with



P571 =
dm (Krκ−β )

Krαm

P572 =
βdm +Krdm (1−κ)

Krαm

P573 =
K2rκ (κ−1)(rηdm−Kαm (rη +µhH +µlL))−β 2ηdm

K3rκαmµa (1−κ)

P58 (P581,P582,0,P583,M,0,L) , with



P581 =
dm (Krκ−β )

Krαm

P582 =
βdm +Krdm (1−κ)

Krαm

P583 =
K2rκ (κ−1)(rηdm−Kαm (rη +µmM+µlL))−β 2ηdm

K3rκαmµa (1−κ)

P59 (P591,P592,0,P593,M,H,0) , with



P591 =
da (Krκ−β )

Krαa

P592 =
βda +Krda (1−κ)

Krαa

P593 =
K2rκ (κ−1)(rηda−Kαa (rη +µmM+µhH))−β 2ηda

K3rκαaµa (1−κ)

P60 (P601,P602,P603,A,0,H,0) , with



P601 =
ds (Krκ−β )

Krαs

P602 =
βds +Krds (1−κ)

Krαs

P603 =
K2rκ (κ−1)(rηds−Kαs (rη +µaA+µhH))−β 2ηds

K3rκαsµa (1−κ)

P61 (P611,P612,P613,A,0,0,L) with
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P611 =
da (Krκ−β )

Krαa

P612 =
βda +Krda (1−κ)

Krαa

P613 =
K2rκ (κ−1)(rηda−Kαa (rη +µaA+µlL))−β 2ηda

K3rκαaµs (1−κ)

P62 (P621,P622,P623,A,M,0,0) , with



P621 =
dm (Krκ−β )

Krαm

P622 =
βdm +Krdm (1−κ)

Krαm

P623 =
K2rκ (κ−1)(rηdm−Kαm (rη +µaA+µmM))−β 2ηdm

K3rκαmµs (1−κ)

P63 (P631,P632,0,P633,M,H,L) , with



P631 =
ds (Krκ−β )

Krαs

P632 =
βds +Krds (1−κ)

Krαs

P633 =
K2rκ (κ−1)(rηds−Kαs (rη +µlL+µmM))−β 2ηds

K3rκαsµa (1−κ)

P64 (P641,P642,P643,0,M,H,L) , with



P641 =
da (Krκ−β )

Krαa

P642 =
βda +Krda (1−κ)

Krαa

P643 =
K2rκ (κ−1)(rηda−Kαa (rη +µlL+µhH))−β 2ηds

K3rκαaµs (1−κ)

P65 (P651,0,P652,0,M,0,0), with


P651 =

ds

αs

P652 =
Krκαs (µmM−η)− rηds

Kκαsµs

P66 (0,P661,P662,A,M,H,L), with


P661 =

ds

αs

P662 =
Kαs (1−κ)(rη−Aµa−µhH−µmM−µlL)− rηds

Kαsµs (1−κ)
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P67 (P671,0,P672,A,M,H,L) , with


P671 =

dl

αl

P672 =
Kαl (1−κ)(rη−Aµa−µhH−µmM−µlL)− rηdl

Kκαlµs

P68 (P681,P682,P683,A,0,H,L) , with



P681 =
dh (Krκ−β )

Krαh

P682 =
βdh +Krdh (1−κ)

Krαh

P683 =
K2rκ (κ−1)(rηdh−Kαh (rη +µlL+µhH +µaA))−β 2ηdh

K3rκαhµs (1−κ)

P69 (P691,P692,P693,A,M,0,L) , with



P691 =
dl (Krκ−β )

Krαl

P692 =
βdl +Krdl (1−κ)

Krαl

P693 =
K2rκ (κ−1)(rηdl−Kαl (rη +µlL+µmM+µaA))−β 2ηdl

K3rκαlµs (1−κ)

P70 (P701,P702,P703,A,M,0,L) , with



P701 =
dh (Krκ−β )

Krαh

P702 =
βdh +Krdh (1−κ)

Krαh

P703 =
K2rκ (κ−1)(rηdh−Kαh (rη +µlL+µmM+µaA))−β 2ηdh

K3rκαhµs (1−κ)

P71 (P711,P712,P713,A,M,H,0) , with



P711 =
da (Krκ−β )

Krαa

P712 =
βda +Krda (1−κ)

Krαa

P713 =
K2rκ (κ−1)(rηda−Kαa (rη +µmM+µhH +µaA))−β 2ηda

K3rκαaµs (1−κ)
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ANNEX 2: THE LOCAL STABILITY OF THE POSITIVE EQUILIBRIUM POINT X∗

The variational matrix J(X∗) evaluated at the positive equilibrium point X∗ is given by

J =



J11 − βPJ

κ(1−κ)K2 −µsPJ

η
−µaPJ

η
−µmPJ

η
−µhPJ

η
−µlPJ

η

βPA

κ(1−κ)K2 J22 −µsPA

η
−µaPA

η
−µmPA

η
−µhPA

η
−µlPA

η

αsS αsS J33 0 0 0 0

αaA αaA 0 J44 0 0 0

αmM αmM 0 0 J55 0 0

αhH αhH 0 0 0 J66 0

αlL αlzL 0 0 0 0 J77


where

J11 =−
rPJ

κK
J22 =−

rPA

(1−κ)K
J33 =−ds +αsPJ +αsPA

J44 =−da +αaPJ +αaPA

J55 =−dm +αmPJ +αmPA

J66 =−dh +αhPJ +αhPA

J77 =−dl +αlPJ +αlPA

The characteristic polynomial associated to the variational matrix (J(X∗)) is written as

ρ7λ
7 +ρ6λ

6 +ρ5λ
5 +ρ4λ

4 +ρ3λ
3 +ρ2λ

2 +ρ1λ +ρ0,

where ρ7 = 1, ρ6 =
(1

k r y
a−1 −

1
ak rx

)
and the other coefficients are positive and are written ac-

cording to all the parameters mentioned in the mathematical model, we avoided to integrate

them in the article because their expressions are laborious and too long.

Since all the coefficients ρi exist and they are positive, then we move to form the following

Routh array
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λ 7

λ 6

λ 5

λ 4

λ 3

λ 2

λ 1

1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ρ7 ρ5 ρ3 ρ1

ρ6 ρ4 ρ2 ρ0

ρ11 ρ12 ρ13 0

ρ21 ρ22 ρ23 0

ρ31 ρ32 0 0

ρ41 ρ42 0 0

ρ51 0 0 0

ρ61 0 0 0

with

ρ11 =
ρ6ρ5−ρ7ρ4

ρ6
> 0, ρ12 =

ρ3ρ6−ρ7ρ2

ρ6
, ρ13 =

ρ6ρ1−ρ7ρ0

ρ6

ρ21 =
ρ11ρ4−ρ6ρ12

ρ11
> 0, ρ22 =

ρ11ρ2−ρ6ρ13

ρ11
, ρ23 =

ρ11ρ0

ρ11

ρ31 =
ρ12ρ21−ρ11ρ22

ρ21
> 0, ρ32 =

ρ13ρ21−ρ11ρ23

ρ21
, ρ33 =

ρ22×0−ρ11×0
ρ21

= 0

ρ41 =
ρ31ρ22−ρ21ρ32

ρ31
> 0, ρ42 =

ρ31ρ23

ρ31

ρ51 =
ρ41ρ32−ρ42ρ31

ρ41
> 0, ρ52 = 0

ρ61 =
ρ51ρ42

ρ51
> 0.

From this array, we can clearly see that all of the signs of the first column are positive, there

are no sign changes, and therefore the interior equilibrium point X∗ is locally asymptotically

stable.

ANNEX 3: SOLUTION OF THE BIOECONOMIC MODEL

The biomasses at biological equilibrium are the solutions of the system:

r− rPJ
κK −

βPA
κ(1−κ)K2 − µsS

η
− µaA

η
− µmM

η
− µhH

η
− µlL

η
= 0

r− rPA
(1−κ)K + βPJ

κ(1−κ)K2 − µsS
η
− µaA

η
− µmM

η
− µhH

η
− µlL

η
−q1E1 = 0

−ds +αsPJ +αsPA−q2E2 = 0

−da +αaPJ +αaPA−q3E3 = 0

−dm +αmPJ +αmPA−q4E4 = 0

−dh +αhPJ +αhPA−q5E5 = 0

−dl +αlPJ +αlPA−q6E6 = 0
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The solution of the system is given by the matrix form X =−AE +X∗, where

E = [E1,E2,E3,E4,E5,E6,0]
T , X = [PJ,PA,S,A,M,H,L]T and A =

(
−ai j

)
1≤i, j≤7 with

a11 =
q1(κ−1)K2κ

Kr , a12 =
(β−Krκ)q2

Kr(αs+αa+αm+αh+αl)
, a13 =

(β−Krκ)q3
Kr(αs+αa+αm+αh+αl)

,

a14 =
(β−Krκ)q4

Kr(αs+αa+αm+αh+αl)
, a15 =

(β−Krκ)q5E5
Kr(αs+αa+αm+αh+αl)

, a16 =
(β−Krκ)q6E6

Kr(αs+αa+αm+αh+αl)
,

a21 =
q1(1−κ)K2κ

Kr , a22 =
(Kr(κ−1)−β )q2

Kr(αs+αa+αm+αh+αl)
, a23 =

(Kr(κ−1)−β )q3
Kr(αs+αa+αm+αh+αl)

,

a24 =
(Kr(κ−1)−β )q4

Kr(αs+αa+αm+αh+αl)
, a25 =

(Kr(κ−1)−β )q5
Kr(αs+αa+αm+αh+αl)

, a26 =
(Kr(κ−1)−β )q6

Kr(αs+αa+αm+αh+αl)
,

a31 =
(1−κ)(β+Kr(κ−1))K2ηκα1q1

K3µsrκαs(κ−1) , a32 =
(K2r2κ(κ−1)−β 2)ηq2

K3µsrκαs(κ−1) , a33 =
(K2r2κ(κ−1)−β 2)ηq3

K3µsrκαs(κ−1) ,

a34 =
(K2r2κ(κ−1)−β 2)ηq4

K3µsrκαs(κ−1) , a35 =
(K2r2κ(κ−1)−β 2)ηq5

K3µsrκαs(κ−1) , a36 =
(K2r2κ(κ−1)−β 2)ηq6

K3µsrκαs(κ−1) ,

a41 =
(1−κ)(β+Kr(κ−1))K2ηκα2q1

K3µarκαa(κ−1) , a42 =
(K2r2κ(κ−1)−β 2)ηq2

K3µarκαa(κ−1) , a43 =
(K2r2κ(κ−1)−β 2)ηq3

K3µarκαa(κ−1) ,

a44 =
(K2r2κ(κ−1)−β 2)ηq4

K3µarκαa(κ−1) , a45 =
(K2r2κ(κ−1)−β 2)ηq5

K3µarκαa(κ−1) , a46 =
(K2r2κ(κ−1)−β 2)ηq6

K3µarκαa(κ−1) ,

a51 =
(1−κ)(β+Kr(κ−1))K2ηκα3q1

K3µmrκαm(κ−1) , a52 =
(K2r2κ(κ−1)−β 2)ηq2

K3µmrκαm(κ−1) , a53 =
(K2r2κ(κ−1)−β 2)ηq3

K3µmrκαm(κ−1) ,

a54 =
(K2r2κ(κ−1)−β 2)ηq4

K3µmrκαm(κ−1) , a55 =
(K2r2κ(κ−1)−β 2)ηq5

K3µmrκαm(κ−1) , a56 =
(K2r2κ(κ−1)−β 2)ηq6

K3µmrκαm(κ−1) ,

a61 =
(1−κ)(β+Kr(κ−1))K2ηκα4q1

K3µhrκαh(κ−1) , a62 =
(K2r2κ(κ−1)−β 2)ηq2

K3µhrκαh(κ−1) , a63 =
(K2r2κ(κ−1)−β 2)ηq3

K3µhrκαh(κ−1) ,

a64 =
(K2r2κ(κ−1)−β 2)ηq4

K3µhrκαh(κ−1) , a65 =
(K2r2κ(κ−1)−β 2)ηq5

K3µhrκαh(κ−1) , a66 =
(K2r2κ(κ−1)−β 2)ηq6

K3µhrκαh(κ−1) ,

a71 =
(1−κ)(β+Kr(κ−1))K2ηκαlq1

K3µlrκαl(κ−1) , a72 =
(K2r2κ(κ−1)−β 2)ηq2

K3µlrκαl(κ−1) , a73 =
(K2r2κ(κ−1)−β 2)ηq3

K3µlrκαl(κ−1) ,

a74 =
(K2r2κ(κ−1)−β 2)ηq4

K3µlrκαl(κ−1) , a75 =
(K2r2κ(κ−1)−β 2)ηq5

K3µlrκαl(κ−1) , a76 =
(K2r2κ(κ−1)−β 2)ηq6

K3µlrκαl(κ−1)

a77 =−1, ai7 = 0, ∀i = {1, . . . ,6}

Conflict of Interests

The authors declare that there is no conflict of interests.

REFERENCES

[1] INRH/DRH 2015 - Rapport annuel de l’Etat des stocks et des pêcheries marocaines (2015), pp. 295.
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