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Abstract. In this paper, our aim is to study the optimal control strategy of a mathematical model of the tuberculosis

transmission in the discrete case, and to investigate, in discrete time, optimal control strategy in which the controls

are: vaccination and treatment and sensibilisation. The studied population is divided into five compartments

SL1IL2R. Our objective is to find the best strategy to reduce the number of S, L1, I and L2. So, the Pontryagin’s

maximum principle, in discrete time, is used to characterize the optimal control. The numerical simulation is

carried out using MATLAB. The obtained results confirm the performance of the optimization strategy.
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1. INTRODUCTION

“Just sleep and eat nutritious foods” was the advice given to patients in the 1800s infected

with tuberculosis, or formerly known for a long time as consumption [12]. Tuberculosis (TB)

has never stopped making victims through the times and in all known human civilizations. Even

today it is considered as the most infectious disease that has led to the most deaths in the history

of humanity. TB remains one of the leading causes of illness and death in the world, estimated
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one third of the world’s population is infected with TB. Such a human reservoir triggers about 8

million new TB cases and 2 million deaths each year according to WHO [26]. The identification

of Mycobacterium tuberculosis “MTB” (or Bacillus of Koch “BK”) on March 24, 1882, by bi-

ologist Robert Koch, followed by the invention of The BCG vaccine starts with Albert Calmette

and Camille Guerin, thy were two French scientists who from 1905 had been working on de-

veloping a vaccine against TB. BCG is abbreviation of Bacillus Calmette-Guerin, meaning the

bacilli of Calmette and Guerin, then the discovery of streptomycin in 1943 by Selman Waks-

man, have eventually allowed to revolutionize the vital and functional prognosis of patients

with TB [12]. Tuberculosis is a contagious disease, secondary to infection with ”bacillus of

Koch” (Mycobacterium tuberculosis). This bacterial agent is transmitted by air via the droplets

contaminated by the bacterium, which are suspended in the exhaled air by patients, especially

during coughing. Inhaling a small number of contaminated droplets is enough to infect an in-

dividual. The displacement of populations (travelers, refugees) has largely contributed recently

in the spread of the disease in the world, People who are more likely to acquire TB infection

are the following:

(1) People recently exposed to someone who has symptomatic TB disease;

(2) People who live in congregate settings with high risk persons;

(3) People who live or have lived in countries where TB is common;

(4) People who are health care workers who are in contact with TB patients when proper infec-

tion control procedures are not followed.

Many people who acquire TB infection do not have symptoms and may never develop TB dis-

ease. These people have latent TB infections (LTBI) [24]. After exposure to the bacillus of

tuberculosis, some people develop a primary infection, the ”primary infection”, which is con-

trolled by the immune system in 90% of cases: tuberculosis is labeled ”latent”. The bacillus

remains in the body, but the immune system prevents its multiplication.

In 10% of infected people, the bacillus is not sufficiently controlled by the immune system and

these people develop a form of so-called ”active” tuberculosis, which will cause illness and

complications. The organs most often affected by tuberculosis infection are the lungs (more

than two-thirds of cases): it is ”pulmonary tuberculosis”, which is also the contagious form
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of the disease, Tuberculosis can also infect lymph nodes (”lymphadenopathy”), skin, kidneys,

brain (”meningitis”), bones, intestines: it is ”extra-pulmonary tuberculosis”, which is the non-

contagious form . After contact with the bacillus of Koch occurs an incubation phase where

the bacteria fight against the immune defenses of the infected person in order to develop. It

lasts from one to three months and usually goes unnoticed, but Koch’s bacillus, which can

remain dormant in the body for years, can also wake up to develop the infection because of

the secondary weakening of the immune system of the person affected (HIV, chemotherapy,

immunosuppressive treatments) [3]. With early antibiotic treatment and well followed, ”tuber-

culosis disease” usually heals without leaving sequelae (treatment combining 4 antibiotics =

quadrotherapy). On the other hand, if the treatment is not treated correctly, the cure will not

be obtained and the bacillus will become resistant to the usual antibiotics obliging to resort to

heavier and more complicated treatments [8].

In Morocco, tuberculosis remains a major public health problem,. The last World Health Or-

ganization WHO estimates reported 36.000 incident TB cases for the year 2016 (vs.37.000 for

the year 2015), with a per capita rate of 103 per 100.000 population (vs.107 for the year 2015).

The TB death toll for the same year is estimated at 3300 deaths (vs. 3200 for the year 2015)

with a mortality rate of 9.3 per 100.000 population (vs. 9.4 for the year 2015) [27].

However, in Morocco, families cannot declare a birth at the civil registry (30 days delay) if they

do not provide a BCG vaccination certificate. This makes this immunization mandatory for the

first month .

TB control is organized in the framework of the National TB Program (NTP). The efforts un-

dertaken through the NTP activities resulted in increasing TB case detection by 1.5% per year

since 2009. In 2016, the number of patients with a new TB episode who were notified reached

31.542 (vs. 30.636 for the year 2015). It is estimated that more than 87% of incident TB cases

are detected and treated. Furthermore, the treatment success rate is more than 88% among TB

patients who are put on treatment. These high rates in detection and treatment success are likely

to contribute to significantly decreasing TB-related deaths. The analysis of the data generated

by the NTP information system suggests that the transmission of TB is likely declining in gen-

eral population. Even though there is a steady annual decrease in TB incidence, this decrease is
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low in general population. At this decrease pace, the decline in TB burden is likely to remain

significant for many of the coming years.

The goal of this national strategic plan (NSP), which covers the timeframe from 2018 to 2021,

is to fit within the sustainable development goals and to reduce the number of TB deaths by

40% in 2021 compared to 2015. Indeed, this NSP aims at increasing more TB case detection

and treatment success rate, especially in highly urbanized regions, through the improvement

and strengthening of the existing NTP services, the involvement of all care providers and the

reinforcement of TB services for high-risk groups and vulnerable populations.

Moreover, in order to reduce the number of TB deaths, this NSP also aims at improving and

strengthening TB/HIV joint activities and the programmatic management of drug-resistant TB.

To develop and implement these interventions, highlighted above, it is clear that the managerial

capacities of the NTP need to be improved and reinforced at all levels [27] and [16].[2].

Mathematical modeling of tuberculosis has been studied by many researchers [[1] - [3], [7]-

[10], [12], [19]- [25], [28]]. We observe that most of those researchers focused on the

continuous-time models described by the differential equations. It is noted that, in recent years,

more and more attention has been given to discrete time models (see [[11], [18] and the refer-

ences cited therein).

The reasons for adopting discrete modeling are as follows: Firstly, the statistical data are col-

lected at discrete moments (day, week, month, or year). So, it is more direct and more accurate

and timely to describe the disease using discrete time models than continuous time models.

Secondly, the use of discrete time models can avoid some mathematical complexities such as

choosing a function space and regularity of the solution. Thirdly, the numerical simulations of

continuous time models are obtained by the way of discretization.

Based on the aforementioned reasons, we will develop in this paper a discrete time model study-

ing the dynamics of Koch bacillus spread and introduce a mortality rate due to active MTB

infection. In addition, in order to find the best strategy to reduce the number of susceptible,

infected who have active MTB or recently and persistent infected latent, we will use four con-

trol strategies, namely vaccination and treatment programs, tests to detect the disease and take

the TB drugs regularly and to complete them. In this paper, we construct a discrete SL1IL2R
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Mathematical TB Model. In Section 2, the mathematical model is proposed. In Section 3, we

investigate the optimal control problem for the proposed discrete mathematical model. Section

4 consists of numerical simulation through MATLAB.The conclusion is given in Section 5.

2. FORMULATION OF THE MATHEMATICAL MODEL

In the present paper, following, we consider a TB mathematical model taken from [7],where

reinfection and post-exposure interventions, consisting of a system of non-linear ordinary dif-

ferential equations representing population dynamics. in The model without controls, the pop-

ulation total is divided into five categories:

(S) : susceptible, who have never encountered the Mycobacterium;

(L1): early latent, that is, individuals recently infected (less than two years) but not infectious;

(I): infected, that is, individuals who have active tuberculosis and are infectious;

(L2): persistent latent, that is, individuals who were infected and remain latent;

(R): recovered, that is, individuals who were previously infected and treated.

Individuals in the early latent compartment L1 can progress either to active disease (I) with

rate φδ or to a persistent latent infection (L2) with rate (1− φ)δ , following the approach in

[28]. Parameter φ reflects that only 5% of infected individuals will ever develop active TB [21]

, [20]. We choose δ such that the progression rate from early infections to active disease is

φδ = 0.6yr−1, which roughly approximates the data by [22] , describing the proportions of dis-

ease development after conversion. For the rates of reactivation we adopt ω = 0.0002yr−1 for

untreated latent infections [23] , [25] and ωR = 0.00002yr−1. for those who have undergone a

therapeutic intervention. As in Gomes et al. (2004a) [9], the partial susceptibility factor affect-

ing the rate of exogenous reinfection of untreated individuals, σ , is fixed at 0.25, in accordance

to the highest estimates of protection conferred by BCG vaccination see [1] .In treated patients

this factor becomes σR, for which several exploratory values are adopted. Treatment of different

infection stages is implemented at specific rates: τ0 applies to active TB and represents the rate

of recovery (typically as a result of treatment, though here it also accounts for the infrequent

natural recovery); τ1 and τ2 apply, respectively, to the latent classes L1 and L2 as the rates at

which chemotherapy or a post-exposure vaccine is applied. The rate τ0 is fixed at 2yr−1, corre-

sponding to an average duration of infectiousness of 6 months, while τ1 and τ2 are considered
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at different exploratory values. see [10].

The total population, N, is assumed to be constant, so, N = S(t)+L1(t)+ I(t)+L2(t)+R(t).

The proportions of the population in each category change, as represented by the diagram in

Fig. 1; According to Silva and Torres [See [19]] , the Tuberculosis modelled is described by the

nonlinear time-varying state equations:

(1)



S(t +1) = S(t)+Λ− β

N I(t)S(t)−µS(t),

L1(t +1) = L1(t)+
β

N I(t)(S(t)+σL2(t)+σRR(t))− (δ + τ1 +µ)L1(t)),

I(t +1) = I(t)+φδL1(t)+ωL2(t)+ωRR(t)− τ0I(t)− (µ +d)I(t),

L2(t +1) = L2(t)+(1−φ)δL1(t)−σ
β

N I(t)L2(t)− (ω + τ2 +µ)L2(t),

R(t +1) = R(t)+ τ0I(t)+ τ1L1(t)+ τ2L2(t)−
(

σR
β

N I(t)+ωR +µ

)
R(t).

where Λ is the recruitment rate, µ is the natural per-capita mortality rate, d is the per-capita TB

induced mortality rate, β is the transmission rate, with The initial conditions for system (1) are:

S(0) = ( 76
120)N, L1(0) = ( 36

120)N, L2(0) = ( 2
120)N, R(0) = ( 1

120)N, and I(0) = ( 5
120)N.

The values of the model parameters presented in the control system (1) are given in Table 1. The

values of the rates β ,δ ,µ,σ ,σR,ω,ωR,φ ,τ0,τ1, and τ2 are taken from [10] and the references

cited therein.
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FIGURE 1. Diagram
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3. THE OPTIMAL CONTROL OF A TUBERCULOSIS MODEL

The model includes control variables representing vaccination or prevention and treatment

measures, which are continuously implemented during a considered period of disease treatment:

We now consider the TB model (1) and introduce four control functions u1(.),u2(.),u3(.) and

u4(.), and four real positive model constants ε1,ε2,ε3 and ε4,

The resulting model is given by the following system of non-linear differential equations:

(2)



S(t +1) = S(t)+Λ− β

N I(t)S(t)− (µ + ε1u1(t))S(t),

L1(t +1) = L1(t)+
β

N I(t)(S(t)+σL2(t)+σRR(t))− (δ + τ1 + ε2u2(t)+µ)L1(t)),

I(t +1) = I(t)+φδL1(t)+ωL2(t)+ωRR(t)− (τ0 + ε3u3(t)+µ +d)I(t),

L2(t +1) = L2(t)+(1−φ)δL1(t)−σ
β

N I(t)L2(t)− (ω + τ2 + ε4u4(t)+µ)L2(t),

R(t +1) = R(t)+ ε1u1(t)S(t)+(τ0 + ε3u3(t))I(t)+(τ1 + ε2u2(t))L1(t)

+ (τ2 + ε4u4(t))L2(t)−σR
β

N I(t)R(t)− (ωR +µ)R(t).

where

εi =

 1

0
for i ∈ {1,2,3,4}

there are four controls ui = (ui,0,ui,1, ...,ui,T−1) with i = 1,2,3,4.

u1(t) : represents the BCG vaccination for new-borne.

u2(t) : represents the effort on early detection and treatment of recently infected individuals L1,

u3(t) : represents the effort that prevents the failure of treatment in active TB infectious individ-

uals I, e.g. supervising the patients, helping them to take the TB drugs regularly and to complete

the TB treatment;

u4(t) : represents the fraction of persistent latent individuals L2, that is identified and put under

treatment.

So the first control, we note that u1,iSi individuals move from the susceptible class to the re-

moved class at time step i. The second control we note that u2,iL1,i individuals move from the

early latent class to the removed class at time step i. The third control we note that u3,iIi indi-

viduals move from the infected class to the removed class at time step i. The fourth control we

note that u4,iL2,i individuals move from the persistent latent class to the removed class at time

step i .

Indeed, the system above (2) presents five different models as the table 2 explains.



10 RACHID BOUAJAJI, HASSAN LAARABI, MOSTAFA RACHIK

ε
1

ε
2

ε
3

ε
4

in
te

rp
re

ta
tio

ns

0
0

0
0

D
is

cr
et

e
T

B
m

od
el

w
ith

ou
tc

on
tr

ol

1
1

0
0

D
is

cr
et

e
T

B
m

od
el

w
ith

B
C

G
va

cc
in

at
io

n
an

d
th

e
ef

fo
rt

on
ea

rl
y

de
te

ct
io

n
an

d
tr

ea
tm

en
to

fr
ec

en
tly

in
fe

ct
ed

1
0

1
0

D
is

cr
et

e
T

B
m

od
el

w
ith

B
C

G
va

cc
in

at
io

n
an

d
tr

ea
tm

en
ti

n
ac

tiv
e

T
B

in
fe

ct
io

us
in

di
vi

du
al

s

1
0

0
1

D
is

cr
et

e
T

B
m

od
el

w
ith

B
C

G
va

cc
in

at
io

n
an

d
th

e
ef

fo
rt

fo
ri

de
nt

ifi
ed

th
e

pe
rs

is
te

nt
la

te
nt

an
d

pu
tu

nd
er

tr
ea

tm
en

t

1
1

1
1

D
is

cr
et

e
T

B
m

od
el

w
ith

fo
ur

co
nt

ro
ls

Ta
bl

e
-I

nt
er

pr
et

at
io

ns
ac

co
rd

in
g

to
th

e
va

lu
es

of
ep

si
lo

ns



OPTIMAL CONTROL FOR TB MODEL 11

3.1. The Optimal Control Problem: Our goal is reducing the number of S,L1, I and L2

during the times steps t = 0 to T and also minimizing the cost of treatment and the cost of

vaccination. To simplify, we assume that the costs of administering the controls are quadratic.

Then, the objective functional is presented as follows:

(3)

J(u1,u2,u3,u4) = A1,T ST +A2,T L1,T +A3,T IT +A4,T L2,T

+
T−1

∑
t=0

(A1,tSt +A2,tL1,t +A3,tIt +A4,tL2,t +
1
2

Btu2
1,t +

1
2

Ctu2
2,t +

1
2

Dtu2
3,t +

1
2

Etu2
4,t)

where the parametrs Bt > 0,Ct > 0,Dt > 0,Et > 0 and Ai,t > 0, for i = 1,2,3,4

are the cost coefficients. They are selected to weigh the relative importance of

St ,L1,t , It ,L2,t and u1,t ,u2,t ,u3,t ,u4,t at time t.

T is the final time. We are minimizing the number of susceptible individuals, early latent

individuals, infected individuals and persistent latent individuals during the time steps t = 0 to

T −1, and at the final time and also minimizing the cost of administering the control.

In other words, we seek the optimal control u∗ = (u∗1,u
∗
2,u
∗
3,u
∗
4) such that :

(4) J(u∗) = min
u∈Uad

J(u)

Where Uad is the set of admissible controls defined by:

(5) Uad = {ui,t : 0≤Umin ≤ ui,t ≤Umax ≤ 1, i = 1,2, ...,4, t = 0,1, ...,T −1}

The sufficient condition for the existence of optimal controls (u1,u2,u3,u4) for problem (2)

and (3) comes from the following theorem:

Theorem 1. There exists an optimal control (u∗1,u
∗
2,u
∗
3,u
∗
4) such that:

(6) J(u∗1,u
∗
2,u
∗
3,u
∗
4) = min

(u1,u2,u3,u4)∈Uad

J(u1,u2,u3,u4)

subject to the control system (2) with initial conditions.

Proof. Since the coefficients of the state equations are bounded and there are finite num-

ber of time steps, S = (S0,S1, ...,ST ), L1 = (L1,0,L1,1, ...,L1,T ), I = (I0, I1, ..., IT ), L2 =
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(L2,0,L2,1, ...,L2,T ) and R = (R0,R1, ...,RT ) are uniformly bounded for all (u1,u2,u3,u4) ∈Uad;

thus J(u1,u2,u3,u4) is bounded, inf
(u1,u2,u3,u4)∈Uad

J(u1,u2,u3,u4) is finite, and there exists a se-

quence (u j
1,u

j
2,u

j
3,u

j
4)∈Uad such that lim j→+∞ J(u j

1,u
j
2,u

j
3,u

j
4) = inf

(u1,u2,u3,u4)∈Uad

J(u1,u2,u3,u4)

and corresponding sequences of states S j,L j
1, I

j,L j
2, and R j . Since there is a finite number of

uniformly bounded sequences, there exist (u∗1,u
∗
2,u
∗
3,u
∗
4)∈Uad and S∗,L∗1, I

∗,L∗2, and R∗ ∈ IRT+1

such that, on a subsequence, (u j
1,u

j
2,u

j
3,u

j
4)−→ (u∗1,u

∗
2,u
∗
3,u
∗
4),

S j −→ S∗, L j
1−→ L∗1, I j −→ I∗, L j

2−→ L∗2, and R j −→R∗. Finally, due to the finite dimensional

structure of system (2) and the objective function J(u1,u2,u3,u4),(u∗1,u
∗
2,u
∗
3,u
∗
4) is an optimal

control with corresponding states S∗,L∗1, I
∗,L∗2, and R∗. Therefore inf

(u1,u2,u3,u4)∈Uad

J(u1,u2,u3,u4)

is achieved. see [14] �

In order to derive the necessary conditions for optimal control, the Pontryagin’s maximum

principle, in discrete time, given in [17] was used. This principle converts into a problem of

minimizing a Hamiltonian, Ht at time step t defined by:

(7) Ht = A1,tSt +A2,tL1,t +A3,tIt +A4,tL2,t +
1
2

Btu2
1,t +

1
2

Ctu2
2,t +

1
2

Dtu2
3,t +

1
2

Etu2
4,t +

5

∑
j=1

λ j,t+1 f j,t+1

where f j,t+1 is the right side of the system of difference equations (2) of the jth state variable

at time step t+1 .

Theorem 2. Given an optimal control (u∗1,u
∗
2,u
∗
3,u
∗
4) ∈ Uad and the solutions

S∗t ,L
∗
1,t , I

∗
t ,L
∗
2,t and R∗t of the corresponding state system (2), there exists adjoint func-

tions λ1,t , λ2,t , λ3,t , λ4,t and λ5,t satisfying:

λ1,t = A1,t +(1−µ)λ1,t+1 +
β

N
It(λ2,t+1−λ1,t+1)+ ε1u1,t(λ5,t+1−λ1,t+1)

λ2,t = A2,t +(1−µ)λ2,t+1 +(τ1 + ε2u2,t)(λ5,t+1−λ2,t+1)+φδ (λ3,t+1−λ4,t+1)+δ (λ4,t+1−λ2,t+1)

λ3,t = A3,t +(1−µ−d)λ3,t+1 +
β

N
St(λ2,t+1−λ1,t+1)+σ

β

N
L2,t(λ2,t+1−λ4,t+1)+(τ0 + ε3u3,t)(λ5,t+1−

λ3,t+1)+σR
β

N
Rt(λ2,t+1−λ5,t+1)

λ4,t = A4,t +(1−µ)λ4,t+1 +σ
β

N
It(λ2,t+1−λ4,t+1)+ω(λ3,t+1−λ4,t+1)

+(τ2 + ε4u4,t)(λ5,t+1−λ4,t+1)
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λ5,t = (1−µ)λ5,t+1 +σR
β

N
It(λ2,t+1−λ5,t+1)+ωR(λ3,t+1−λ5,t+1)

with the following transversality conditions at time T,

(8) λ1,T = A1,T , λ2,T = A2,T , λ3,T = A3,T , λ4,T = A4,T and λ5,T = 0

Furthermore, for t = 0,1,2...,T −1, the optimal control u∗1,t ,u
∗
2,t ,u

∗
3,t ,u

∗
4,t are given by:

(9)

u∗1,t = min
[
Umax,max

(
Umin,

ε1St(λ1,t+1−λ5,t+1)

Bt

)]
,

u∗2,t = min
[
Umax,max

(
Umin,

ε2L1,t(λ2,t+1−λ5,t+1)

Ct

)]
,

u∗3,t = min
[
Umax,max

(
Umin,

ε3It(λ3,t+1−λ5,t+1)

Dt

)]
,

u∗4,t = min
[
Umax,max

(
Umin,

ε4L2,t(λ4,t+1−λ5,t+1)

Et

)]
.

Proof. The Hamiltonian at time t is given by:

(10)

Ht = A1,tSt +A2,tL1,t +A3,tIt +A4,tL2,t +
1
2Btu2

1,t +
1
2Ctu2

2,t +
1
2Dtu2

3,t +
1
2Etu2

4,t

+ λ1,t+1[St +Λ− β

N ItSt−µSt− ε1u1,tSt ]

+ λ2,t+1[L1,t +
β

N
It(St +σL2,t +σRRt)− (δ + τ1 + ε2u2,t +µ)L1,t ]

+ λ3,t+1[It +φδL1,t +ωL2,t +ωRRt− (τ0 + ε3u3,t +µ +d)It ]

+ λ4,t+1[L2,t +(1−φ)δL1,t−σ
β

N
ItL2,t− (ω + τ2 + ε4u4,t +µ)L2,t ]

+ λ5,t+1[Rt + ε1u1,tSt +(τ1 + ε2u2,t)L1,t +(τ0 + ε3u3,t)It +(τ2 + ε4u4,t)L2,t

− (ωR +σR
β

N
It +µ)Rt ]

By the bias of Pontryagin’s Maximum Principle, in discrete time, the adjoint equations and

corresponding final time conditions (transversality conditions) are given:



λ1,t =
∂Ht

∂St
, λ1,T = A1,T

λ2,t =
∂Ht

∂L1,t
, λ2,T = A2,T

λ3,t =
∂Ht

∂ It
, λ3,T = A3,T

λ4,t =
∂Ht

∂L2,t
, λ4,T = A4,T

λ5,t =
∂Ht

∂Rt
, λ5,T = 0
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for t = 0,1.....,T −1 ; the optimal control u∗ = (u∗1,t ,u
∗
2,t ,u

∗
3,t ,u

∗
4,t) is obtained as well

∂Ht

∂ui,t
= 0 f or t = 0,1, ...,T −1 and i = 1,2,3,4.

(11)



∂Ht

∂u1,t
= Btu1,t− ε1Stλ1,t+1 + ε1Stλ5,t+1 = 0

∂Ht

∂u2,t
=Ctu2,t− ε2L1,tλ2,t+1 + ε2L1,tλ5,t+1 = 0

∂Ht

∂u3,t
= Dtu3,t− ε3Itλ3,t+1 + ε3Itλ5,t+1 = 0

∂Ht

∂u4,t
= Etu4,t− ε4L2,tλ4,t+1 + ε4L2,tλ5,t+1 = 0

So, for ε1 = ε2 = ε3 = ε4 = 1,we have:

(12)



u1,t =
1
Bt
(λ1,t+1−λ5,t+1)St

u2,t =
1
Ct

(λ2,t+1−λ5,t+1)L1,t

u3,t =
1

Dt
(λ3,t+1−λ5,t+1)It

u4,t =
1
Et
(λ4,t+1−λ5,t+1)L2,t

�

However, if εi = 0 for i=1,2,3,4 the control attached to this case will be eliminated and re-

moved.

By the bounds in Uad of the controls, it is easy to obtain u∗1,t ,u
∗
2,t ,u

∗
3,t , and u∗4,t in the forme of

(9).�

4. NUMERICAL SIMULATIONS

4.1. Algorithm: In this section, we present the result obtained by solving numerically the

optimality system.

This system consists of the state system, adjoint system, initial and final time conditions, and

the controls characterization. So, the optimality system is given by the following:

Step 1:
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S(0) = S0, L1(0) = L1,0, I(0) = I0, L2(0) = L2,0, R(0) = R0, λ1,T = A1,T , λ2,T =

A2,T , λ3,T = A3,T , λ4,T = A4,T and λ5,T = 0, and given u∗1,0, ,u∗2,0, ,u∗3,0, and u∗4,0.

Step 2:

for i=0;1;....;T-1,do:

(13)

Si+1 = Si +Λ− β

N IiSi− (µ + ε1u1,i)Si,

L1,i+1 = L1,i +
β

N Ii (Si +σL2,i +σRRi )−(δ + τ1 + ε2u2,i +µ)L1,i,

Ii+1 = Ii +φδL1,i +ωL2,i +ωRRi− (τ0 + ε3u3,i +µ +d)Ii,

L2,i+1 = L2,i +(1−φ)δL1,i−σ
β

N IiL2,i− (ω + τ2 + ε4u4,i +µ)L2,i,

Ri+1 = Ri + ε1u1,iSi +(τ0 + ε3u3,i)Ii +(τ1 + ε2u2,i)L1,i +(τ2 + ε4u4,i)L2,i

−
(

σR
β

N Ii +ωR +µ

)
Ri,

λ1,T−i = A1,i +(1−µ)λ1,T−i+1 +
β

N
Ii (λ2,T−i+1−λ1,T−i+1 )

+ ε1u1,i(λ5,T−i+1−λ1,T−i+1),

λ2,T−i = A2,i +(1−µ)λ2,T−i+1 +(τ1 + ε2u2,i)(λ5,T−i+1−λ2,T−i+1)

+ φδ (λ3,T−i+1−λ4,T−i+1)+δ (λ4,T−i+1−λ2,T−i+1),

λ3,T−i = A3,i +(1−µ−d)λ3,T−i+1 +
β

N
Si(λ2,T−i+1−λ1,T−i+1)

+ (σ
β

N
L2,i)(λ2,T−i+1−λ4,T−i+1)+(τ0 + ε3u3,i)(λ5,T−i+1−λ3,T−i+1)

+ σR
β

N
Ri
(
λ2,T−i+1−λ5,T−i+1 ),

λ4,T−i = A4,i +(1−µ)λ4,T−i+1 +σ
β

N
Ii(λ2,T−i+1−λ4,T−i+1)+ω(λ3,T−i+1−λ4,T−i+1)

+ (τ2 + ε4u4,i)(λ5,T−i+1−λ4,T−i+1),

λ5,T−i = (1−µ)λ5,T−i+1 +σR
β

N
Ii(λ2,T−i+1−λ5,T−i+1)+ωR(λ3,T−i+1−λ5,T−i+1),

u1,i+1 = min
[
Umax,max

(
Umin,

Si(λ1,T−i+1−λ5,T−i+1)

Bi

)]
,

u2,i+1 = min
[
Umax,max

(
Umin,

L1,i(λ2,T−i+1−λ5,T−i+1)

Ci

)]
,

u3,i+1 = min
[
Umax,max

(
Umin,

Ii(λ3,T−i+1−λ5,T−i+1)

Di

)]
,

u4,i+1 = min
[
Umax,max

(
Umin,

L2,i(λ4,T−i+1−λ5,T−i+1)

Ei

)]
,

end for

Step 3:
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for i=0;1;....;T write:

S∗i = Si, L∗1,i = L1,i, I∗i = Ii, L∗2,i = L2,i, R∗i = Ri, u∗1,i = u1,i, u∗2,i = u2,i, u∗3,i = u3,i,

u∗4,i = u4,i(14)

end for.

4.2. The different control strategies: In the following, four different control strategies are

investigated and compared. This approach can be used to test various control options. Here, we

only look at how the state variables change under the different strategies.

4.2.1. The first strategy: In this strategy, we use only two controls: the BCG vaccination u1

and the effort on early detection and treatment of recently infected u2 to optimize the objective

function J(u) while the controls u3 and u4 are set to zero. In Fig.2, we observe that there is a

significant decrease in the number of susceptible individuals vaccinated compared with those

not vaccinated, with a slight decrease in the number of early latent individuals and an increase

the number of recovered individuals.

4.2.2. The second strategy: In this strategy, we use only two controls: the BCG vaccination

u1 and the effort that prevents the failure of treatment in active TB infectious individuals u3 to

optimize the objective function J(u) while the controls u2 and u4 are set to zero. In Fig.3, we

observe that there is a significant decrease in the number of susceptible individuals vaccinated

compared with those not vaccinated, with a slight decrease in the number of infected individuals

and an increase the number of recovered individuals.
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FIGURE 2. Curves without and with controls u1 and u2

4.2.3. The third strategy: In this strategy, another time we use only two controls: the BCG

vaccination u1 and the effort to identifying the persistent latent individuals and put them under

treatment u4 to optimize the objective function J(u) while the controls u2 and u4 are set to

zero. In Fig. 4, we observe that there is a significant decrease in the number of susceptible

individuals vaccinated compared with those not vaccinated, with a slight decrease in the number

of persistent latent individuals and an increase the number of recovered individuals.
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FIGURE 3. curves without and with controls u1 and u3

4.2.4. The fourth strategy: In this strategy,we will use four controls: the BCG vaccination u1,

the effort on early detection and treatment of recently infected u2, the effort that prevents the

failure of treatment in active TB infectious individuals u3 and the effort to identified the persis-

tent latent individuals and put them under treatments u4 to optimize the objective function J(u).

In Fig. 5, we observe that there is a significant decrease in the number of susceptible individu-

als, early latent individuals, infected, and persistent latent individuals, controled compared with

those not controled, and an increase the number of recovered individuals.
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FIGURE 4. without or wih two controls u1 and u4

5. CONCLUSION

In this paper, we introduced a discrete modeling of TB tuberculosis in order to minimize the

number of susceptible individuals, early latent individuals, infectious individuals, and persistent

latent individuals, we also introduced four controls which, respectively, represent BCG vacci-

nation, and the effort on early detection and treatment of recently infected, and the effort that

prevents the failure of treatment in active TB infectious individuals, and the effort to identifie

the persistent latent individuals and put them under treatment. We applied the results of the

control theory and we managed to obtain the characterizations of the optimal controls. The
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FIGURE 5. without or with four controls

numerical simulation of the obtained results showed the effectiveness of the proposed control

strategies.
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