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Abstract. In this paper, the dynamics of a stochastic glucose-insulin model with impulsive injection of insulin

are investigated analytically and numerically. Firstly, we show that the system admits unique positive global

solution starting from the positive initial value, which is a prerequisite for analyzing the long-term behavior of the

stochastic model. Then, according to the theory of Khasminskii, we show that there exists at least one nontrivial

positive periodic solution. Finally, numerical simulations are carried out to support our theoretical results. It is

found that: (i) The presence of environmental noises is capable of supporting the irregular oscillation of blood

glucose level, and the average level of the glucose always increases with the increase in noise intensity. (ii) The

higher the volatility of the environmental noises, the more difficult the prediction of the peak size of blood glucose

level.

Keywords: diabetes mellitus; type 1 diabetes mellitus; impulse; environmental fluctuations; positive periodic

solution.
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1. INTRODUCTION

Diabetes mellitus, a metabolic disorder is one of the major problems in global public health.

It is caused by the fact that the pancreas aren’t able to produce enough insulin which is the only
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hormone in the body that lowers blood sugar, or the cells of the body can not respond appropri-

ately to the insulin produced. Diabetes mellitus can generally be divided into two types: type

1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM). T1DM is a metabolic dis-

order characterized by insufficient or insufficient insulin secretion, resulting in elevated plasma

glucose levels and the inability of beta cells to respond appropriately to metabolic stimuli. It is

an autoimmune disease that causes insulin deficiency by autoimmune destruction of islet beta

cells. T2DM (also known as adult or non-insulin-dependent diabetes mellitus) is characterized

by a patient’s insensitivity to insulin secreted in the body resulting in elevated blood glucose

levels. It can be controlled through regular exercise and healthy eating.

The blood glucose level is regulated by two negative feedback loops, where short-term hyper-

glycemia stimulates islet beta cells to secrete insulin and simultaneously inhibits the secretion

of glucagon in islet A cells, thereby lowering blood sugar. In order to better understand the

dynamics of insulin and blood glucose concentration, many scholars have established mathe-

matical models to describe the principle of insulin and blood glucose, and given insulin injection

strategies through mathematical theory and numerical simulation then to better control blood

sugar levels. For instance, Li et al. [1] have reviewed multiple models of subcutaneous injec-

tion of regular insulin and insulin analogues, and found that these models provide key building

blocks for some important endeavors into physiological questions of insulin secretion and ac-

tion. Li and Kuang [2] proposed two systemic models to model the subcutaneous injection

of rapid-acting insulin analogues and long-acting insulin analogues, respectively. Their work

shows the two models will be good choices in practical applications. Particularly, Huang et al.

[3] formulated a physiological and metabolic model by a semicontinuous dynamical system.

They found that the glucose level of a diabetic can be controlled within a desired level by ad-

justing the values of two model parameters, injection period and injection dose. The model in
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[3] is given by

(1.1)



dG(t) =
(

Gin−αG(t)−a(c+ mI(t)
n+I(t))G(t)+b

)
dt,

dI(t) =−γI(t)dt t 6= nT,

 t 6= nT

∆S(t) = 0,

∆I(t) = q,

 t = nT

where G(t), I(t) are the concentration of blood glucose and blood insulin at time t, respectively.

Gin is the estimated average constant rate of glucose input, αG(t) is the insulin-independent

glucose uptake, a(c+ mI(t)
n+I(t))G(t) stands for the insulin-dependent glucose utilization, b is the

hepatic glucose production, and γI(t) indicates the insulin degradation with γ as the constant

degradation rate, T and q represent the period of the impulsive injection of insulin and the

insulin input amount every time, respectively. ∆ρ(t) = ρ(t+)− ρ(t), n ∈ {1,2,3, ...}. All

parameters above are positive. The other parameters can be seen in [3].

It is well known that meals and exercise, the age and weight of the patient also affect the in-

sulin/glucose dynamics. Liu et al. [4] pointed out that glucose tolerance, insulin response to the

glucose challenge, insulin sensitivity and β cell morphology can be affected by environmental

noise. These daily and hourly fluctuations of patient parameters can create difficulties in contin-

uous glucose control. Hence, it is necessary and important to study the impact of those uncertain

factors on the insulin/glucose level in the body of the patients. In present paper, we intend to

consider model (1.1) incorporating the influence of those uncertain factors, moreover, we take

into account the effect of randomly factors into model (1.1) by assuming α→ α +σdB(t), then

we can obtain the SDE model as follows

(1.2)



dG(t) =
(

Gin−αG(t)−a
(
c+ mI(t)

n+I(t)

)
G(t)+b

)
dt−σG(t)dB(t),

dI(t) =−γI(t)dt,

 t 6= nT

∆S(t) = 0,

∆I(t) = q,

 t = nT



4 GUIJIE LAN, CONG YE, SHUWEN ZHANG, CHUNJIN WEI

where B(t) is a real-valued standard Brownian motion defined on the complete probability space

(Ω,F ,{Ft}t≥0,P) with a filtration {Ft}t≥0 satisfying the usual conditions (i.e. it is right

continuous and F0 contains all P-null sets); σ2 represents the intensities of the white noise. Our

main purpose is to investigate the effect of random fluctuations on the glucose dynamics based

on realistic parameters obtained from previous literatures. The rest of this article is organized

as follows: In Section 2, we present some preliminaries which will be used in our following

analysis. In Section 3, we present the detailed proof of the theoretical results. Section 4 is

devoted to illustrate our analytical results by using some numerical examples. In Section 5, we

provide a brief discussion and summary of main results.

2. PRELIMINARIES

Throughout this paper, unless otherwise specified, we let (Ω,F ,{Ft}t≥0,P) be a complete

probability space with a filtration {Ft}t≥0 satisfying the usual conditions (i.e. it is right con-

tinuous and F0 contains all P-null sets). Throughout this paper, let R+ = [0,∞), R2
+ = {x =

(x1,x2) ∈ R2 : xi > 0, i = 1,2}.

Definition 2.1. [5] A stochastic process ξ (t) = ξ (t,ω)(−∞ < t <+∞) is said to be T -periodic

if for every finite sequence of numbers t1, t2, · · ·, tn, the joint distribution of random variables

ξ (t1 +h),ξ (t2 +h), · · ·,ξ (tn +h) is independent of h, where h = kT,(k = 1,2, · · ·).

Consider the integral equation

(2.1) x(t) = x(t0)+
∫ t

t0
b(s,x(s))ds+

k

∑
r=1

∫ t

t0
σr(s,x(s))dξr(s).

where b(s,x),σr(s,x)(r = 1,2, · · ·,k)(s ∈ [t0,T ],x ∈ Rd) are continuous functions of (s,x) and

for some constant B, the following conditions hold.

(2.2)
|b(s,x)−b(s,y)|+∑

k
r=1 |σr(s,x),σr(s,y)| ≤ B|x− y|,

|b(s,x)|+∑
k
r=1 |σr(s,x)| ≤ B(1+ |x|).

.
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Let U be a given open set in the d-dimensional Euclidean space Rd . E = Rd × [0,∞), C2,1

is the family functions on E which are twice continuously differentiable with respect to x ∈ Rd

and continuously differentiable with respect to t ∈ [0,∞).

Lemma 2.1. [5] Suppose that the coefficients of (2.1) are T -periodic in t and satisfy the con-

ditions (2.2) in every cylinder I×U, and assume further there exists a function V (t,x) ∈C2,1,

which is T -periodic in t and satisfies,

(Q1) inf
|x|>R

V (t,x)→ ∞ as R→ ∞.

(Q2) LV (t,x)≤−1 outside some compact set.

Then system (2.1) has at least a T -periodic Markov process.

Next, we consider the following stochastic insulin-glucose model

(2.3)


dḠ(t) =

(
G′in−α ′Ḡ(t)− a′Ḡ(t)Ī(t)

n+Ī(t)

)
dt−σḠ(t)dB(t),

dĪ(t) =−γ Ī(t)dt,

where G′in = Gin +b, α ′ = α +ac, a′ = am.

Lemma 2.2. For any given initial value X̄(0) =
(

G(0), I(0)
)
∈ R2

+, there exists a unique

solution X̄(t) =
(

Ḡ(t), Ī(t)
)

of system (2.3) and the solution will remain in R2
+ with probability

1, that is X̄(t) ∈ R2
+ for all t ≥ 0 almost surely (a.s.).

Proof. Since the coefficients of model (2.3) satisfy the local Lipschitz condition, then there

exists a unique local solution on t ∈ [0,τe), where τe is the explosion time. Now, let us show

that this solution is global, i.e., τe = ∞ a.s..

Let k0 > 0 be sufficiently large for X̄(0) lying within the interval [ 1
k0
,k0]× [ 1

k0
,k0]. For each

integer k ≥ k0, define the stopping time

τk = inf{t ∈ [0,τe) : Ḡ(t) /∈ (
1
k
,k); Ī(t) /∈ (

1
k
,k)}.

Throughout this paper we set inf /0 = ∞ (as usual /0 denotes the empty set). Clearly, τk is

increasing as k→ ∞. Set τ∞ = lim
k→∞

τk, hence τ∞ ≤ τe a.s.. If we can show that τ∞ = ∞ a.s., then

τe = ∞ a.s. and X̄(t) ∈ R2
+ a.s. for all t ≥ 0. In other words, to complete the proof all we need
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to show is that τ∞ = ∞ a.s.. If this statement is false, then there is a pair of constants T ′ > 0 and

ε ∈ (0,1) such that

(2.4) P{τ∞ ≤ T ′}> ε,

hence, there is an integer k1 ≥ k0 such that P{τk ≤ T ′} ≥ ε , for all k ≥ k1.

Define a function V : R2
+→ R+ by V (Ḡ, Ī) = Ḡ− 1− ln Ḡ+ Ī− 1− ln Ī. The nonnegativity

of this function can be seen from u−1− lnu≥ 0 on u > 0. Then, by Itô’s formula, one can see

that

(2.5) dV = LV dt−σḠdB+σdB

where

LV =G′in−α
′Ḡ− a′Ḡ(t)Ī(t)

n+ Ī(t)
− (

G′in
Ḡ
−α

′− a′Ī
n+ Ī

− σ2

2
)− γ Ī + γ

≤G′in−α
′Ḡ+α

′+
a′Ī

n+ Ī
+

σ2

2
− γ Ī + γ

≤M,

here M = sup
(Ḡ,Ī)∈R2

+

G′in−α ′Ḡ+α ′+ a′ Ī
n+Ī +

σ2

2 − γ Ī + γ .

Substituting this inequality into Eq. (2.5), we see that

(2.6) dV ≤Mdt−σḠdB+σdB,

which implies that ∫
τk∧T ′

0
dV
(

Ḡ, Ī
)
≤
∫

τk∧T ′

0
Mdt−

∫
τk∧T ′

0
(σḠ−σ)dB,

where τk∧T ′ = min{τk,T ′}. Taking the expectations of the above inequality leads to

(2.7) EV
(

Ḡτk∧T ′, Īτk∧T ′
)
≤V

(
Ḡ(0), Ī(0)

)
+MT ′.

Set Ωk = {τk ≤ T ′} for k ≥ k1 and from (2.4), we have P(Ωk) ≥ ε . Note that for every

ω ∈Ωk, there is at least one of Ḡτk(ω) and Īτk(ω) equaling either k or 1
k , hence

V
(

Ḡτk∧T ′, Īτk∧T ′
)
≥ (k−1− lnk)∧ (1

k
−1+ lnk).
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It then follows from (2.7) that

V
(
Ḡ(0), Ī(0)

)
+MT ′ ≥E

[
1Ωk(ω)V

(
Ḡτk(ω), Īτk(ω)

)]
≥ε(k− lnk−1)∧ (1

k
+ lnk−1),

where 1Ωk is the indicator function of Ωk. Letting k→ ∞ leads to the contradiction

∞ >V
(
Ḡ(0), Ī(0)

)
+MT ′ = ∞.

So we must have τ∞ = ∞. The conclusion is confirmed. �

Now, we give some basic properties of the following subsystem of model (1.2), which are

very important for obtaining our main results.

(2.8)



dI(t) =−γI(t)dt, t 6= nT

∆I(t) = q, t = nT

I(0) = I0.

Lemma 2.3. [3, 11] System (2.8) has a unique positive T -periodic solution I∗(t) which is

globally asymptotically stable, where

(2.9) I∗(t) =
qe−γ(t−kT )

1− e−γT ,

for t ∈ (kT,(k+1)T ] and k ∈ {1,2, · · ·}.

Remark 2.1. Substituting I∗(t) into the first equation of system (1.2) for I(t), we obtain the

following system

(2.10) dG(t) =
(

G′in−α
′G(t)− a′G(t)I∗(t)

n+ I∗(t)

)
dt−σG(t)dB(t),

where G′in = Gin +b, α ′ = α +ac, a′ = am. Next, we will consider the system (2.10).

Lemma 2.4. Let G(t) be the solution of model (2.10) with initial value G(0)> 0, then

lim
t→∞

G(t)
t

= 0 a.s..
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Proof. Define W (G) = (1+G)θ , where θ is a positive constant to be determined later. Then,

by Itô’s formula, we obtain

(2.11) dW = LWdt−σθG(1+G)θ−1dB,

where

(2.12)
LW =θ(1+G)θ−1

(
G′in−α

′G− a′GI∗

n+ I∗

)
+

θ(θ −1)σ2

2
G2(1+G)θ−2

≤θ(1+G)θ−2
(

G′in− (α ′−G′in)G− (α ′− (θ −1)σ2

2
)G2
)
,

choose θ > 1 such that

(2.13) α
′− (θ −1)σ2

2
:= λ > 0 and a′+G′in− (θ −1)σ2 > 0,

that is

(2.14) dW ≤ θ(1+G)θ−2
(

G′in− (α ′−G′in)G−λG2
)

dt−σθG(1+G)θ−1dB.

Then applying Itô’s formula to ekt(1+G)θ , where 0 < k < θλ , we have

(2.15)

L
(

ekt(1+G)θ

)
≤ekt

(
k(1+G)θ +θ(1+G)θ−2[G′in− (α ′−G′in)G−λG2])

=ekt(1+G)θ−2
(

k+G′inθ − (α ′−G′in−2k)G− (λθ − k)G2
)

≤ektH,

here H := sup
G∈R+

(1+G)θ−2
(

k+G′inθ − (α ′−G′in−2k)G− (λθ − k)G2
)
+1. Therefore

E
(

ekt[1+G(t)
]θ)≤ (1+G(0)

)θ

+
H
k

ekt ,

that is

limsup
t→∞

E
([

1+G(t)
]θ)≤ H

k
:= K a.s.,

which together with the continuity of G(t) implies that there exists a constant K > 0 such that

(2.16) E
([

1+G(t)
]θ)≤ K, t ≥ 0.

Note that (2.14), then for sufficiently small δ > 0, k = 1,2, ..., yields

(2.17) E
(

sup
kδ≤t≤(k+1)δ

[
1+G(t)

]θ)≤ E
([

1+G(kδ )
]θ)

+F1 +F2 ≤ K +F1 +F2,
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where

F1 =E
{

sup
kδ≤t≤(k+1)δ

∣∣∫ t

kδ

θ(1+G)θ−2(G′in− (α ′−G′in)G−λG2)dr
∣∣}

≤c1E
(

sup
kδ≤t≤(k+1)δ

∣∣∫ t

kδ

(
1+G(r)

)θ dr
∣∣)

≤c1δE
(

sup
kδ≤t≤(k+1)δ

(
1+G(t)

)θ
)
,

where c1 = sup
G∈R+

∣∣∣θ(G′in−(α ′−G′in)G−λG2)

(1+G)2

∣∣∣. In fact, noting that ϕ(G) =
θ(G′in−(α ′−G′in)G−λG2)

(1+G)2 is

monotone decreasing for G > 0, if a′+G′in > (θ −1)σ2 holds. That is

sup
G∈R+

∣∣∣ϕ(G)
∣∣∣≤max

{
θG′in,λ

}
,

and

F2 =E
{

sup
kδ≤t≤(k+1)δ

∣∣∫ t

kδ

σθG(1+G)θ−1dB
∣∣}

≤
√

32E
(∫ (k+1)δ

kδ

θ
2
σ

2G2(1+G(r)
)2(θ−1)dr

) 1
2

≤
√

32θσδ
1
2 E
(

sup
kδ≤t≤(k+1)δ

(
1+G(r)

)θ
)
.

We have mainly applied the Burkholder-Davis-Gundy inequality [7] in the above calculation.

Therefore

(2.18)

E
(

sup
kδ≤t≤(k+1)δ

[
1+G(t)

]θ)≤E
([

1+G(kδ )
]θ)

+(c1δ +
√

32θσδ
1
2 )E
(

sup
kδ≤t≤(k+1)δ

(
1+G(t)

)θ
)
.

In particular, choose δ > 0 such that c1δ +
√

32θσδ
1
2 ≤ 1

2 , and according to (2.17), it is easy

to obtain that

E
(

sup
kδ≤t≤(k+1)δ

[
1+G(t)

]θ)≤ 2E
([

1+G(kδ )
]θ)≤ 2K.

Let εu > 0 be arbitrary, an then by Chebyshev’s inequality, we have

(2.19)

P
{

sup
kδ≤t≤(k+1)δ

(
1+G(t)

)θ
> (kδ )1+εu

}
≤

E
(

sup
kδ≤t≤(k+1)δ

[
1+G(t)

]θ)
(kδ )1+εu

≤ 2K
(kδ )1+εu

, k= 1,2, ...
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Applying the well-known Borel-Cantelli’s Lemma (see [7]), we obtain that for almost all

ω ∈Ω

(2.20) sup
kδ≤t≤(k+1)δ

(
1+G(t)

)θ ≤ (kδ )1+εu ,

holds for all but finitely many k. Hence, there exists a k0(ω), for almost all ω ∈ Ω, for which

(2.19) holds whenever k ≥ k0. Consequently, for almost all ω ∈ Ω, if k ≥ k0 and kδ ≤ t ≤

(k+1)δ ,

ln
([

1+G(t)
]θ)

ln t
≤ (1+ εu) ln(kδ )

ln(kδ )
= 1+ εu.

Therefore
ln
([

1+G(t)
]θ)

ln t
≤ 1+ εu a.s..

Letting εu→ 0, yields

limsup
t→∞

ln
([

1+G(t)
]θ)

ln t
≤ 1 a.s..

Noting that 1 < θ < 1+ 2α ′

σ2 implies

limsup
t→∞

lnG(t)
ln t

≤ limsup
t→∞

ln
([

1+G(t)
]θ)

ln t
≤ 1

θ
a.s..

That is to say, for arbitrary small 0 < ξ < 1− 1
θ

, there exist a constant τ = τ(ω) and a set Ωξ

such that P(Ωξ )≥ 1−ξ and for t ≥ τ,ω ∈Ωξ , lnG(t)≤ ( 1
θ
+ξ ) ln t and so

(2.21) limsup
t→∞

G(t)
t
≤ t

1
θ
+ξ

t
= 0 a.s..

This ends the proof. �

Lemma 2.5. Suppose that α ′ > σ2

2 and G(t) is the solution of stochastic model (2.10) with

initial value G(0)> 0, then the following statement is valid with probability 1:

lim
t→∞

∫ t
0 G(s)dB(s)

t
= 0.

Proof. Let X(t) =
∫ t

0 G(s)dB(s) and 2 < θ < 1+ 2α ′

σ2 . By Burkholder-Davis-Gundy inequality

[7] and (2.16), we have

E
[

sup
0≤s≤t

∣∣X(s)
∣∣θ]≤Cθ E

[∫ t

0
G2(r)dr

] θ

2 ≤Cθ t
θ

2 E
[

sup
0≤s≤t

G2(r)
] θ

2 ≤ 2KCθ t
θ

2 .
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Let εX be an arbitrary positive constant. Then, according to Doob’s martingale inequality [7],

it is easy to see that

P
{

ω : sup
kδ≤t≤(k+1)δ

∣∣X(t)
∣∣θ > (kδ )1+εX+

θ

2

}
≤

E
[∣∣X((k+1)δ

)∣∣θ]
(kδ )1+εX+

θ

2
≤

2KCθ

(
(k+1)δ

) θ

2

(kδ )1+εX+
θ

2
≤ 21+ θ

2 KCθ

(kδ )1+εX
.

So by the well-known Borel-Cantelli’s Lemma [7], we obtain that for almost all ω ∈Ω,

(2.22) sup
kδ≤t≤(k+1)δ

∣∣X(t)
∣∣θ ≤ (kδ )1+εX+

θ

2 ,

holds for all but finitely many k. Hence, there exists a positive kX0(ω), for almost all ω ∈ Ω,

(2.22) holds whenever k ≥ kX0 . Consequently, for almost all ω ∈ Ω, if k ≥ kX0 and kδ ≤ t ≤

(k+1)δ ,

ln
∣∣X(t)

∣∣θ
ln t

≤
(1+ εX + θ

2 ) ln(kδ )

ln(kδ )
= 1+ εX +

θ

2
.

Therefore

limsup
t→∞

ln
∣∣X(t)

∣∣
ln t

≤
1+ εX + θ

2
θ

a.s..

Letting εX → 0, yields

limsup
t→∞

ln
∣∣X(t)

∣∣
ln t

≤ 1
2
+

1
θ

a.s..

Then, for arbitrary small 0 < η < 1
2 −

1
θ

, there exist a constant τ̄ = τ̄(ω) > 0 and a set Ωη

such that P(Ωη)≥ 1−η and for t ≥ τ̄,ω ∈Ωη

ln |X(t)| ≤ (
1
2
+

1
θ
+η) ln t,

which implies

limsup
t→∞

|X(t)|
t
≤ t

1
2+

1
θ
+η

t
= 0 a.s..

Together with liminf
t→∞

|X(t)|
t ≥ 0, yields

limsup
t→∞

|X(t)|
t

= 0 a.s..

That is

limsup
t→∞

X(t)
t

= 0 a.s..

This ends the proof. �
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3. MAIN RESULTS

First of all, we show that there is a unique positive solution, which is a prerequisite for

analyzing the long-term behavior of the stochastic model (1.2).

Theorem 3.1. For any given initial value X(0) =
(

G(0), I(0)
)
∈ R2

+, there is a unique solution

X(t) =
(

G(t), I(t)
)

of system (1.2) and the solution will remain in R2
+ with probability 1, that

is X(t) ∈ R2
+ for all t ≥ 0 almost surely.

Proof. For t ∈ [0,T ] and for any initial condition X(0) =
(

G(0), I(0)
)
∈ R2

+ and by Lemma

2.2, Eq. (2.3) has a unique global solution X̄
(

t;0,X(0)
)
∈ R2

+ that is defined and contin-

uous on interval [0,T ], hence Eq. (1.2) also has a unique global solution X
(

t;0,X(0)
)
=

X̄
(

t;0,X(0)
)
∈ R2

+ on interval [0,T ]. At t = T , there is an impulse which transfers solution

X(T ) = X̄
(

T ;0,X(0)
)
=
(

Ḡ(T ), Ī(T )
)
∈ R2

+ into X(T+) =
(

Ḡ(T ), Ī(T )+ q
)
∈ R2

+. By the

Lemma 2.2 and the same deduction, we get there is a unique global solution X
(

t;T,X(T+)
)
=

X̄
(

t;T,X(T+)
)

that is defined on [T+,2T ] and X(2T+) =
(

Ḡ(2T ), Ī(2T )+q
)
∈ R2

+. It is easy

to see the above deduction can go on infinitely. The proof is completed. �

Theorem 3.2. Suppose that α ′ > σ2

2 and G(t) is the solution of stochastic model (2.10) with

initial value G(0)> 0, then the following statement is valid with probability 1:

G′in
α ′+a′

≤ lim
t→∞

1
t

∫ t

0
G(s)ds≤ G′in

α ′
.

The proof is the application of the well-known comparison theorem for stochastic differential

equation, Lemmas 2.4 and 2.5. Here it is omitted.

Theorem 3.3. System (2.10) has at least one nontrivial positive T -periodic solution.

Proof. By Lemma 2.1, one can see that in order to verify Theorem 3.3, it suffices to find a C2,1-

function V (x, t) which is T -periodic in t and a closed set U ∈ R+ such that conditions (Q1) and

(Q2) of Lemma 2.1 hold.

Define a C2,1-function V : R+×R+→ R+ as follows

V (G, t) = ω(t)+G− lnG,
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where ω(t) is positive T -periodic continuous functions. Obviously, V (G, t) is T periodic in t

and satisfies

liminf
k→∞, G∈R+\Dk

V (G, t)→+∞,

where Dk = [1
k ,k], which shows that (Q1) in Lemma 2.1 holds. Making use of Itô’s formula, we

have

LV =ω̇(t)+G′in−α
′G− a′GI∗

n+ I∗
− (

G′in
G
−α

′− a′I∗

n+ I∗
− σ2

2
)

≤ω̇(t)+G′in−α
′G− G′in

G
+α

′+a′+
σ2

2
.

Consider the bounded open subset

Dε = {G ∈ R+|ε ≤ G≤ 1
ε
},

where 0< ε < 1 is a sufficiently small number. In the set DC
ε =R+\Dε , let us choose sufficiently

small ε such that

ω̇(t)+G′in−
G′in
ε

+α
′+a′+

σ2

2
≤−1,

ω̇(t)+G′in−
α ′

ε
+α

′+a′+
σ2

2
≤−1.

For convenience, we divide DC
ε into two domains,

D1 = {G ∈ R+|0 < G < ε}, D2 = {G ∈ R+|G > 1
ε
},

clearly, DC
ε = D1∪D2.

Case 1. On domain D1, we get

LV ≤ω̇(t)+G′in−α
′G− G′in

G
+α

′+a′+
σ2

2

≤ω̇(t)+G′in−
G′in
ε

+α
′+a′+

σ2

2

≤−1

Case 2. On domain D2, one can see that

LV ≤ω̇(t)+G′in−α
′G− G′in

G
+α

′+a′+
σ2

2

≤ω̇(t)+G′in−
α ′

ε
+α

′+a′+
σ2

2

≤−1
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Consequently

LV (G, t)≤−1, for ∀ G ∈ DC
ε ,

that is, the condition (Q2) holds. Hence in view of Lemma 2.1, we obtain that system (2.10)

has a nontrivial positive T -periodic solution. In addition, one can see that for any initial value

G(0) ∈ R+ system (2.10) has a unique global positive solution and so system (2.10) has at least

one nontrivial positive T -periodic solution. This completes the proof. �

4. NUMERICAL SIMULATIONS

In this section, we provide numerical simulation results to substantiate the analytical findings

for the stochastic model (1.2) reported in the previous sections by using the Milstein method

mentioned in [8].

Motivated by [6, 3, 9, 10], the parameter values are chosen as follow: Gin = 1.35,b =

1.93,α = 0.0221502,a = 3× 10−5,c = 40,m = 900,n = 80,γ = 0.09,T = 30,q = 80 (See

Table 1 for details). In addition, we always assume that the initial value of system (1.2) is

(G(0), I(0)) = (150,20). Then we use different values of σ to investigate the effect of the white

noise on the transmission dynamics of the disease. We start our numerical simulation with en-

vironmental forcing intensity σ = 0 and the initial value (150,20). The results are reported in

Fig.1. One can see that, for any positive initial value, the solution of the deterministic system

will enter the periodic orbit after a period of time. Next we increase strength of environmental

forcing to σ = 0.001 and we observe that the solution of the stochastic system (1.2) is fluctuat-

ing in a small neighborhood of the periodic orbit (See, Fig.1 and Fig.2).

For comparison, we also plot the mean evolution of blood glucose and the corresponding

evolution of the stochastic model (1.2) for various values of σ , where σ : 0.001,0.005,0.02

(See Fig.3 and Fig.4). Here we can conclude that the presence of environmental noises is

capable of supporting the irregular fluctuate of the concentration of blood glucose G(t) and as

the noise intensity decreases, the variability of the stochastic model decreases and approaches

the deterministic model dynamics (See Figs. 1, 2 and 3(b)). It is worthy to note that the

average level of the number of the concentration of blood glucose G(t) always increases with
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the increase of noise intensity (See Fig.3(a)). Therefore, it is important to consider the effect of

noise on diabetes mellitus and try to reduce the interference of noise on diabetes mellitus.

TABLE 1. Parameter values in numerical simulations for model (1.2) .

Parameters Values Units References

Gin 1.35 mg/dl/min [6]

b 1.93 mg/dl/min [9]

α 0.0221502 min−1 [10]

a 3×10−5 mg−1 [3]

c 40 mg/min [3]

m 900 mg/min [3]

n 80 mg [3]

γ 0.09 min−1 [10]

T 30 min [3]

q 0.08 mU [3]
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FIGURE 1. The left is a sample phase portrait of deterministic system (1.1);

middle and right are the solutions of deterministic model (1.1) with initial value(
G(0), I(0)

)
= (150,20). The parameters are taken as Table 1.
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FIGURE 2. The left is a sample phase portrait of stochastic system (1.2); mid-

dle and right are the solutions of stochastic model (1.2) with initial value(
G(0), I(0)

)
= (150,20) and σ = 0.001. The parameters are taken as Table

1.
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FIGURE 3. (a) The mean evolution of blood glucose of the stochastic model

(1.2) is graphed for various values of σ , where σ : 0.001,0.005,0.02. (b) The

corresponding evolution of blood glucose of the stochastic model (1.2).

5. DISCUSSION

Over the decades subcutaneous injection of insulin analogues was considered as the most

widely method in treating diabetes. In the point of view of treating diabetes, the ultimate pur-

pose of the subcutaneous injection of insulin analogues is to increase the plasma insulin con-

centration and thus lower blood glucose to maintain normal glycemia. In the real ecological

systems, meals and exercise, the age and weight of the patient also affect the insulin/glucose

dynamics. These daily and hourly fluctuations of patient parameters can create difficulties in

continuous glucose control. In order to better understand the dynamics of the insulin analogues



DYNAMICS OF A STOCHASTIC GLUCOSE-INSULIN MODEL WITH IMPULSIVE INJECTION OF INSULIN 17

0 500 1000 1500 2000 2500
105

110

115

120

125

130

135

140

145

150

Time (min)

G(t)

t−1×∫
0
t  G(s)ds

(a) σ = 0.001

0 500 1000 1500 2000 2500
100

110

120

130

140

150

160

Time (min)

G(t)

t−1×∫
0
t  G(s)ds

(b) σ = 0.005

0 500 1000 1500 2000 2500
90

100

110

120

130

140

150

160

Time (min)

G(t)

t−1×∫
0
t  G(s)ds

(c) σ = 0.02

FIGURE 4. The evolution of a single path of blood glucose of the stochastic

model (1.2).

from subcutaneous injection to absorption, we have considered the basic features of insulin-

glucose stochastic model of subcutaneous injection of regular insulin. Our results show that

there exists at least one nontrivial positive periodic solution for model (1.2), which means that

the glucose and insulin will exhibit periodicity in the long run. In addiion, we found that the

noise has great effects on the diabetic patient, such as, (i) the presence of environmental noises

is capable of supporting the irregular oscillation of blood glucose level, and the average level of

the glucose always increases with the increment in noise intensity; (ii) the higher the volatility

of the environmental noises, the more difficult the prediction of the peak size of blood glucose

level. Hence, diabetic patient should avoid the influence of uncertain factors on them, such as,

mood and stress.
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