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Abstract. This paper studies the transmission model of rubella virus in the population of women of childbearing

age who transmit the disease to babies they gave birth to. The analysis is divided for system with seasonality

only and system with seasonality and vaccination. Basic reproduction number of the first system is calculated and

used to determined the endemic state which corresponds to a stable periodic solution. The information, namely

parameter values when endemic state of first system taken place are then used to study the impact of vaccination

to control rubella transmission in the second system. The results shows that vaccination program is helpful to

eradicate the virus. We also obtained the threshold for the coverage and efficacy of the vaccination program.
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1. INTRODUCTION

Since the outbreak of congenital cataracts due to maternal rubella infection (German measles)

in 1941, rubella has remained an important disease and public health concern worldwide [10].

Congenital Rubella Syndrome (CRS) is the most feared complications resulted from rubella

infection to the early-phase fetus.

∗Corresponding author

E-mail address: abadi@unesa.ac.id

Received December 8, 2019
1



2 ABADI, RUDIANTO ARTIONO, BUDI PRIYO PRAWOTO

In order to control, eliminate, or even eradicate the spread of rubella virus among human

population, there are many efforts have been done. The implementation of immunization using

rubella-containing vaccine is the most effective effort in controlling the transmission of rubella

virus. For example, in the Americas the use of vaccine eliminated rubella in 2009 [10], while

in Australia the virus has been reduced by 99% in 2010 compared to the pre-vaccination period

(1960–70) [8].

The transmission of infectious disease like rubella is affected by pathogen appearance and

disappearance, environmental changes, and host-behavior changes [5]. Those are represented

in the form of seasonal patterns. For rubella case, in the absence of vaccination, it has annual

seasonal outbreaks which usually occur in the spring and large epidemic every 3-9 years ([5],

[11], [10]). In epidemiology, such seasonality is considered as the contact rate of virus and

represented by functions that have periodic/cyclic behavior (see [4]). A fundamental concept

in the study of disease transmission is the basic reproduction ratio/number [3]. It is used as the

threshold parameter to determine the occurrence endemic of the disease or not.

Seasonality in the transmission of rubella virus is implied to the effort for controlling, elim-

inating or eventually eradicating the disease. Common approach to control infectious diseases

worldwide is by implementation of vaccination program. There are many strategies that might

be used in the implementation of vaccination program. Grassly and Fraser [9] derived some

results from applying routine and pulse vaccination strategies for infectious diseases. They

concluded the importance of considering the interaction of control strategies with seasonal dy-

namics and the importance of considering the timing of immunization days. Gao et. al. [7]

studied the effects of mixed vaccination strategy, namely first vaccination and pulse vaccina-

tion, in SIRS epidemic model with vertical transmission and periodic infection rate. They

found the threshold parameter for a disease to be extinct or persist. They concluded that mixed

vaccination strategy works for disease control. Gao, et. al. [8] showed that selective vaccina-

tion to schoolgirl applied by Australian government in the period of 1971 – 88 reduced CRS

incidence by 90%, but only reduced 1 – 4% in rubella incidence. Wu et. al. [17] studied age-

structured transmission model of rubella by comparing seven vaccination strategies for reducing

CRS burden in East Java, Indonesia. Based on those comparison results, they recommended that



THE EFFECTS OF VACCINATION TO THE DYNAMICS OF RUBELLA VIRUS 3

substituting either 9-month or both 9-month and 6-year-old measles vaccine with a combined

measles-rubella vaccine is much more effective and cost-effective. More vaccination strategies

implemented in WHO regions are explained in the work by Lambert et. al. [10]. One of their

recommendations says that for countries newly introducing rubella-containing vaccine should

begin with MR campaign for a wide-range age, then immediately followed by MR or MMR

vaccines in one or two doses routine vaccination program. In addition, countries should apply

immunization program to women of childbearing age besides adolescent girls.

This paper aims to study the transmission models of rubella virus with seasonality and vac-

cination. Regarding the recommendation in [10], the study focuses on women of childbearing

age population. Because we also want to study the probability of CRS incidence, the study also

focuses on newly born infants of rubella infected women of childbearing age, in particular in-

fected infants due to vertical transmission and those who are recovered from rubella. The model

follows the one studied by Sun and Hsieh [15], particularly its vaccination modeling. The study

starts with the analysis of system with seasonality only in order to determine threshold parame-

ter when outbreaks take place. By knowing threshold parameter for endemic of the first system,

we continue the analysis for the second system that combined seasonality with vaccination. The

purpose of the analysis of the second system is to study the effects vaccination to the endemic

state of the first system.

2. MATERIALS AND METHODS

The mathematical model under study consists of two populations, namely childbearing age

women and newly born infants of rubella infected mothers. This model is the refinement of our

work in [1] that considered seasonality of rubella incidence in women population. In this model

we also consider the implementation of a vaccination strategy which is applied to the childbear-

ing age women. By considering a vertical transmission we also studied the impact of the virus

to newly born infants with CRS. In this study we used Susceptibles (S) – Exposed/Latent (E) –

Infectives (I) – Recovered (R) model for the women and we only focus on the dynamic of the

virus in the infants. The assumptions used in the model are the followings.

i. The women population is assumed to be closed,
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ii. The dynamics of susceptible women population is affected by natural birth rate, the

natural death rate and contacts between infective women with susceptible individuals,

iii. the infection rate is assumed to be seasonal,

iv. There is an incubation rate before exposed individuals become infective individuals,

v. Less than three months of pregnancy of infected infants due to vertical transmission will

be aborted, according to medical consideration,

vi. Vaccination program being implemented for a certain coverage and efficacy level.

Following the idea by Sun and Hsieh [15], the model is formulated as follows.

dSm

dt
= αN − β (t)(1− p)ImSm

N
− (1−q)pβ (t)IMSM

N
− (µ +qp)Sm

dEm

dt
=

β (t)(1− p)ImSm

N
+

(1−q)pβ (t)IMSM

N
− (η +µ)Em

dIm

dt
= ηEm − (θ +µ)Im

dRm

dt
= θ Im −µRm +qpSM

dIc

dt
= δ Im − (ρ + τ)Ic

dRc

dt
= ρIc − τRc.

(1)

where Sm, Em, Im, and Rm are Susceptible-Exposed-Infectives-Recovered childbearing age

women, respectively, while Icand Rc are infectives and recovered infants, respectively. α is

the birth rate of the women,

(2) β (t) = β0(1+ ε cos(2πt))

is the seasonal infection rate of infective women to susceptible women (See Dietz [4] for ref-

erence), µ is the natural death rate of the women, η is the constant incubation rate of exposed

women to become infective women, θ is the recovery rate of women from being infectives, δ is

the proportion birth rate from infective mothers, ρ is the recovery rate of the children from be-

ing infectives, τ is the natural death rate of the children, whereas p the number of child bearing

women being vaccinated (vaccine coverage rate, 0 ≤ p ≤ 1) and q the proportion of susceptible

women being recovered (vaccine efficacy rate, 0 ≤ q ≤ 1). All parameters of the system are

assumed to be non-negative.
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Using the following re-scaling

S̄M =
SM

N
, ĒM =

EM

N
, ĪM =

IM

N
, R̄M =

RM

N
, ĪC =

IC
N
, R̄C =

RC

N

and after dropping the bars, we obtained the following system.

dSm

dt
= α −β (t)(1− p)ImSm − (1−q)pβ (t)IMSM − (µ +qp)Sm

dEm

dt
= β (t)(1− p)ImSm +(1−q)pβ (t)IMSM − (η +µ)Em

dIm

dt
= ηEm − (θ +µ)Im

dRm

dt
= θ Im −µRm +qpSM

dIc

dt
= δ Im − (ρ + τ)Ic

dRc

dt
= ρIc − τRc.

(3)

with β (t) is the same as (2).

The analysis of system (3) was started with finding the equilibria of the system. The equilibria

being obtained is then determined their stability as done by Aron and Schwartz [2], Moneim

and Greenhalgh [12] or Wang and Zhao [16], or Gao et. al. [7]. Finally, we did numerical

simulations to illustrate the analysis and drew the interpretation of the solutions.

3. RESULTS AND DISCUSSION

As we wanted to study the effects of vaccination to the transmission of the virus, the analysis

of system (3) were divided into two parts. First part is the system without vaccination and the

second part is the one with vaccination.

3.1. System without Vaccination. The purpose of analyzing the following system is to deter-

mine the threshold quantities with which the stability of the solutions is concluded. By taking

the values of p= 0 and q= 0 in system (3) that correspond to no vaccination being implemented

to women population, resulting in the following system.
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dSm

dt
= α −β0(1+ ε cos(2πt))ImSm −µSm

dEm

dt
= β0(1+ ε cos(2πt))ImSm − (η +µ)Em

dIm

dt
= ηEm − (θ +µ)Im

dRm

dt
= θ Im −µRm

dIc

dt
= δ Im − (ρ + τ)Ic

dRc

dt
= ρIc − τRc.

(4)

The equilibria of system (4) were obtained by taking the right-hand sides of (4) equal zeroes.

The Disease-Free Equilibrium (DFE) was reached by taking Im = Ic = 0, to have

(5) DFE := (
α

µ
,0,0,0,0,0).

Meanwhile, the Endemic Solution (ES) is given by

(6) ES := (S∗m,E
∗
m, I

∗
m,R

∗
m, I

∗
c ,R

∗
c)

where

S∗m =
α

µR0(1+ ε cos(2πt))

E∗
m =

α(R0(1+ ε cos(2πt))−1)
(µ +η)(1+ ε cos(2πt))

I∗m =
µ(R0(1+ ε cos(2πt))−1)

β0(1+ ε cos(2πt))

R∗
m =

θ(R0(1+ ε cos(2πt))−1)
β0(1+ ε cos(2πt))

I∗c =
µδ (R0(1+ ε cos(2πt))−1)
β0(ρ + τ)(1+ ε cos(2πt))

R∗
c =

ρδ (R0(1+ ε cos(2πt))−1)
β0τ(ρ + τ)(1+ ε cos(2πt))

and

(7) R0 =
∫ 1

0

ηβ (t)SDFE

(η +µ)(θ +µ)
dt.
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(See Moneim and Greenhalgh [12] or Wang and Zhao [16] for references on threshold quantities

of non-autonomous/periodic systems). It is obvious that ES is a periodic solution.

Taking β (t) = β0(1+ ε cos(2πt)) (from (2))and SDFE = α

µ
(from (5)) we have

(8) R0 =
αηβ0

µ(η +µ)(θ +µ)
,

i.e. the basic reproduction ratio for rubella virus transmission with seasonality.

3.1.1. Simulation I. Considering the basic reproduction (8), for the purpose of numerical sim-

ulation we choose parameter values as presented in Table 1.

TABLE 1. Parameter values.

Description Parameter Values

(Day−1)

Contact rate β0 0.9

Amplitude of periodicity ε 0.8

Birth rate of women α 0.3

Natural death rate of women µ 0.3

Incubation rate of infective women η 0.3

proportion birth rate of infective infants δ 0.3

Recovery rate of infective infants ρ 0.1

Natural death rate of infants τ 0.2

From (8) and the parameter values as in Table 1, we obtain the threshold quantity of the

recovery rate of infective women

θ =
βη −µη −µ2

µ +η
= 0.15,

from which we can determine the stability of the DFE and the occurrence of endemic solution

which is, in this case, a stable periodic orbit. These are confirmed by Fig. 1.

The stability of DFE can be proven by following the methods in [6], [12], or [15]. Meanwhile,

the stability of ES can be proven by using the methods in [2], [16], or [7].
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(i) (ii)

FIGURE 1. (i) Stable Disease Free Equilibrium for θ = 0.3 (R0 < 1), and (ii)

Stable Endemic (periodic) Solution for θ = 0.1 (R0 > 1).

3.2. System with Vaccination. Having the information about the dynamics of rubella virus

transmission with seasonal contact rate, in this subsection we study the impact of vaccination

applied to susceptible women population, particularly in the endemic state. Hence, we analyze

system (3) where vaccine coverage rate (p) and vaccine efficacy rate (q) are considered.

The disease free state of system (3) is given by

(9) DFEV := (
α

pq+µ
,0,0,

pqα

µ(pq+µ)
,0,0).

Meanwhile, the Endemic Solution is given by

(10) ESV := (S∗∗m ,E∗∗
m , I∗∗m ,R∗∗

m , I∗∗c ,R∗∗
c )

where

S∗∗m (t) = f1(ν
T ,cos2πt)

E∗∗
m (t) = f2(ν

T ,cos2πt)

I∗∗m (t) = f3(ν
T ,cos2πt)

R∗∗
m (t) = f4(ν

T ,cos2πt)

I∗∗c (t) = f5(ν
T ,cos2πt)

R∗∗
c (t) = f6(ν

T ,cos2πt)
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with ν is the vector whose components are the parameters of system (3). This endemic solution,

ESV , is a periodic orbit.

Following similar lines as the analysis of system 4, by employing DFEV we obtain the aver-

aged basic reproduction ratio

(11) R0 =
αηβ0

(pq+µ)(η +µ)(θ +µ)
.

3.2.1. Simulation II. We now ready to study the dynamics of rubella virus transmission when

vaccination program is implemented. Starting from the endemic state which takes place when-

ever

(12) q <
αηβ0 −µ2η −ηµθ −µ3 −µ2θ

p(ηµ +ηθ +µ2 +µθ)
.

This corresponds to R0 > 1.

Taking the parameter values are the same as those in the Simulation I, we have

q <
0.0375

p
.

As 0 ≤ p ≤ 1 we may take p = 0.8 such that q < 0.0468. So, q = 0.0468 is the maximum

vaccine efficacy that the endemic of rubella virus transmission occurs. On the other hand, if

we take q > 0.0468 the condition (12) is violated and hence, we are in the disease free state.

Fig. 2 illustrates this situation. In Fig 2 (i), due to small vaccine efficacy (q = 0.04) there exist

rubella incidence in women population and, as a consequence, in infants population as well.

This is a stable periodic orbit. (See [2], [16], or [7] for the methods for determining the stability

of periodic solution). Fig. 2 (ii) shows that increasing vaccine efficacy greater than 0.0468

results in eradication of virus transmission and at the same time recovered individuals increase

in number. Taking q = 0.4 the solution converges to the stable disease free equilibrium. (See

[6], [12] or [15] for stability theorem for DFE).

4. CONCLUSIONS

The determination of the basic ratio number of both systems with seasonality only (4) and

with seasonality combined with vaccination (3) is an important stage of the analysis. From

the endemic state of (4) it is easy to understand how is the impact of vaccination to control
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(i) (ii)

FIGURE 2. (i) Stable Endemic (periodic) solution for q = 0.04 (R0 > 1), and

(ii) Stable Disease Free Equilibrium for q = 0.4 (R0 < 1).

rubella virus transmission. The analysis gives the conditions of vaccination coverage (p) and

vaccination efficacy (q) to eliminate or eventually to eradicate the virus. The occurrences of the

periodic solution of the endemic state of the systems might be further studied to find possible

periodic doubling bifurcations (see [2] and [14]) and other bifurcations.
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