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Abstract. Background and Objective: Approximate Bayesian computation (ABC), identifying the parameters that

yield simulated data resembling the observed data, is a powerful likelihood-free inference framework, and has

been widely applied in bioscience including population model, epidemic model and so on. A major difficulty in

ABC is how to accurately determine the level of the discrepancy for it has a crucial impact on the inference results

of algorithms. In this paper, our aim is to propose a novel and valid discrepancy measure approach. Methods:

By analyzing and comparing existing discrepancy measure methods, one finds they have obvious shortcomings

including narrow adaptability and high computational cost. To overcome these deficiencies, an improved cosine

similarity to assess the discrepancy in ABC is designed. First, both simulated data and observed data are con-

verted into vectors, and then in virtue of the angle of them and the modulus of vectors, the similarity between the

two data sets are measure. Results: The proposed discrepancy measure method achieves a comparable or higher

posterior quality compared with the existing methods through four examples including Gaussian, Gaussian mix-

ture, predator-prey and epidemic models. Conclusions: The statistical inference of complex biological models is a

challenging task, and ABC algorithm can solve this problem well, but it needs to choose appropriate discrepancy

measures. The results show that the improved cosine similarity is a extremely efficient discrepancy measurement

method. Moreover, our work facilitates researchers to choose an appropriate discrepancy measure in practice.
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1. INTRODUCTION

With the increasing computing power of computers in recent years, approximate Bayesian

computation (ABC) has played a prominent role in statistical inference during the past two

decades. ABC is widely applied into evolutionary biology, ecology, epidemiology, economics,

bioinformatics and other disciplines [1–6]. Suppose that there is a model M and a observed

data Dobs determined by the parameters θ . The posterior distribution of the parameters θ can

be calculated by Bayes’ rule:

(1) π(θ |Dobs) =
L(Dobs|θ)π(θ)∫
L(Dobs|θ)π(θ)

∝ L(Dobs|θ)π(θ),

where π(θ) and π(θ |Dobs) are the prior and posterior respectively, and L(Dobs|θ) denotes the

likelihood function-the probability of the observed data given some parameter value [7]. The

likelihood function is crucial in statistical inference [8], which affects the evaluation of posterior

distribution. Likelihood functions can be deduced in some simple models, but it is often compu-

tationally intractable or too costly to evaluate for more complex models, and standard methods

of Bayesian estimation can not obtain the posterior distribution of the particular parameters in

this situation. Based on Bayes’ theorem, Simon Tavare et al. [9] introduced the Approximate

Bayesian computation (ABC) method for the first time. By comparing the number of segregat-

ing sites in the simulated and real DNA sequence data, they determined the acceptance param-

eters to infer the posterior distribution of the time to the most recent common ancestor of the

sampled individuals. Their pioneering work laid the foundation for likelihood-free inference.

ABC bypasses the calculation of the likelihood by identifying the parameters in parameter

space that can generate data very similar to the observed data, and the similarity between the

two data sets is evaluated by the discrepancy measure. In this paper, we focus on how to assess

the similarity, because it has a crucial impact on the inference results of ABC algorithms [10].

At first, the distance function (such as the L1 distance, Euclidean distance) was often employed

to measure the discrepancy in ABC. For example, Yan Wang et al. [11] took advantage of Prairie
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Grass field observations to evaluate Bayesian statistical methods for source term estimation, and

compared the performances of six different distance measures. ABC usually makes use of sum-

mary statistics (such as sample moments) to collect information from data sets, then calculates

the distance in the summary statistics space, and the quality of the inference depends on the

selected summary statistics. Recently, Michael U. Gutmann et al. [12] found that classification

methods can be used to assess the similarity: Two data sets are judged maximally similar if their

classification accuracy is close to 50%. But, if the classification accuracy is close to 100%, it

means that they are far from each other. They refered to this approach as classifier ABC, and

classifier ABC provides a new idea for how to compare the simulated data with the observed

data. Moreover, it is a fundamental difficulty to construct effective summary statistics, then

Michael A. Irvine et al. [13] proposed KDE ABC method which utilizes kernel-density estima-

tion(KDE) to approximate the probability distributions of the simulated and observed data, and

measures the distance between the two approximated distributions by Kullback-Leibler(KL)

divergence. This method avoids the construction of summary statistics. They demonstrated

that KDE ABC is a potentially powerful tool in model fitting for epidemiological data. Simi-

lar to the KL divergence, Espen Bernton et al. [14] utilized the Wasserstein distance between

the empirical distribution of the two data sets as a difference measure in ABC. However, these

discrepancy measures may have drawbacks. The distance function may not accurately measure

the distance between the two data sets because of the use of insufficiency summary statistics.

Although Classifier ABC and KDE ABC avoid the use of summary statistics and the loss of

information, they admit the disadvantages of high computational cost and narrow application

range. In addition, the dependent data is common in the application of ABC methods, such as

time series. The usual approach is to transform the time series so that empirical distributions

can be defined, but these methods may also lead to a poor quality of the inference.

In this paper, we make use of an improved cosine similarity to assess the discrepancy. This

method needs to convert the data sets into vectors, and considering both the angle and the mod-

ulus of vectors to measure the similarity between the two data sets. Experiments show that

this method has good inference results. In order to verify the accuracy of the estimation results

of the discrepancy measures, the observed data are usually replaced by the data generated by
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known parameter values, and then the inferred results are compared with the known parameter

values [15]. We also employ two biological models to compare the performance of the im-

proved cosine similarity and other discrepancy measurement methods. Further, we intuitively

show the performance of five discrepancy measures by establishing the correlation between the

parameters and the discrepancy (the Euclidean distance, classification accuracy, KL divergence,

Wasserstein distance and improved cosine similarity). That is, the discrepancy measures cho-

sen should be able to capture the small variations of parameters more effectively, and these

correlations might be used to choose the most appropriate discrepancy metric [16]. In order

to facilitate researchers to choose appropriate metrics in practice, this paper also compares the

accuracy, stability and efficiency of five discrepancy measures through four examples.

2. METHODS

2.1. Overview of ABC methodology. ABC algorithms sample from the posterior distribution

by accepting candidate parameter values that can generate data sufficiently resembling the ob-

served data [17]. The basic form of ABC methods is the ABC rejection algorithm. Specifically,

let θ be the parameter vector to be estimated. A candidate parameter vector θ̂ is sampled from

the prior π(θ), and a data set D̂ is generated from the specific model described by a conditional

distribution L(D|θ̂). We accept θ̂ if the observed data Dobs is equal to the simulated data D̂.

However, this acceptance criterion will rejects almost all parameter values because the proba-

bility that the simulated data equals the observed data is very small in practice. Therefore, a

appropriate metric ρ (such as Euclidean distance) and threshold (ε ≥ 0) are usually chosen to

determine the level of discrepancy between D̂ and Dobs, and θ̂ is accepted if ρ(D̂,Dobs) ≤ ε .

The ABC rejection algorithm is as follows:

The outcome of the ABC rejection algorithm is a sample which actually comes from the

distribution π(θ |ρ(D̂,Dobs)≤ ε), not from the posterior distribution π(θ |Dobs), where

(2) π(θ |ρ(D̂,Dobs)≤ ε) ∝ Pr(ρ(D̂,Dobs)≤ ε)π(θ).

π(θ |ρ(D̂,Dobs)≤ ε) will be a good approximation of the posterior distribution π(θ |Dobs) under

the condition of the enough small threshold and the reasonable distance metric [17] .
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Algorithm 1 ABC rejection algorithm
for i = 1 to N do

repeat

Sample θ̂ from the prior π(θ)

Simulate a data set D̂ from L(D|θ̂)

until ρ(D̂,Dobs)≤ ε

set θi = θ̂

end for

This method has two-fold approximations including the distance metric and threshold. On

the one hand, researchers choose a discrepancy measurement subjectively basing on expert

knowledge of the observed data [18]. The discrepancy metric used is critical for the success

of the statistical inference. We will focus on the influence of different discrepancy measures

on the inference results of ABC methods. On the other hand, the estimation result will be

very poor if the threshold ε is too large; for the very small values of ε , the acceptance rate

can be dramatically low, and which will greatly reduce the computational efficiency of the

algorithm [19]. Therefore, on a very essential level, ABC has a trade-off between computational

efficiency and statistical efficiency [1].

Summary statistics s(D) are often employed to capture the relevant information about θ when

the data is continuous or high-dimensional [20], which can greatly improve the computational

efficiency of ABC. A review of the selection of summary statistics is given in [21, 22]. Then,

the acceptance criteria is modified as follows: ρ(s(D̂),s(Dobs))≤ ε .

As mentioned above, the ABC rejection algorithm is basically an experimental scheme in

which the proposal parameter values are sampled from the prior. The acceptance rate is low

when there is a great difference between the prior and posterior. In order to overcome this dis-

advantage and improve the computational efficiency of the ABC rejection algorithm, Markov

Chain Monte Carlo(MCMC) sampling has been embedded in the ABC framework (ABC-

MCMC) [20, 23]. The ABC-MCMC algorithm obtains a Markov chain {θ0,θ1, ...,θN} from

the stationary distribution π(θ |ρ(D̂,Dobs) ≤ ε). Although this algorithm improves the accep-

tance rate, and it brings two potential disadvantages. Firstly, ABC-MCMC algorithm generates
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Algorithm 2 ABC-SMC algorithm
Initialize ε1, ...,εT

for t = 0 to T do

for i = 1 to N do

repeat

if t==0 then

Sample θ ∗∗ independently from π(θ)

else

repeat

Sample θ ∗ form {θ (i)
t−1} with weights ωt−1

θ ∗∗ ∼ Kt(θ |θ ∗) where Kt is a perturbation kernel

until π(θ ∗∗) 6= 0

end if

D̂∼ p(D|θ ∗∗)

until ρ(D̂,Dobs)≤ εt

set θ
(i)
t = θ ∗∗ and calculate the weight for particle θ

(i)
t

w(i)
t =


1 if t=0

π(θ
(i)
t )

N
∑

j=1
ω
( j)
t−1Kt(θ

( j)
t−1|θ

(i)
t )

if t>0

end for

Normalize the weights

end for

a sequence of highly dependent samples from π(θ |ρ(D̂,Dobs)≤ ε) [24]. The second disadvan-

tage is that the chain may be stuck in the low probability region for a long time if the proposal

distribution is poorly chosen [25].

Sisson et al. [24] developed a new ABC method based on sequential Monte Carlo (SMC)(called

ABC-SMC), which avoided the disadvantages of the ABC rejection and ABC-MCMC methods

in part. In ABC-SMC, a set of tolerances {ε1,ε2, ...,εT} is chosen such that ε1 > ... > εT ≥ 0.

Firstly, N parameter values(called particles) {θ0} = {θ
(1)
0 ,θ

(2)
0 , ...,θ

(N)
0 } are sampled from the
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prior π(θ). ABC-SMC is an iterative algorithm which obtains weighted samples {θt} from a

sequence of intermediate distributions π(θ |ρ(D̂,Dobs)≤ εt) by weighting the accepted param-

eters θ
(i)
t with

(3) w(i)
t =

π(θ
(i)
t )

N
∑
j=1

ω
( j)
t−1Kt(θ

( j)
t−1|θ

(i)
t )

, i = 1, ...,T −1.

As the tolerance εt decreases, π(θ |ρ(D̂,Dobs)≤ εt) gradually approaches the posterior. Finally,

ABC-SMC samples from the distribution π(θ |ρ(D̂,Dobs) ≤ εT ) to approximate the posterior

distribution. The process of the algorithm is shown in Algorithm 2. ABC-SMC reduces the

computational time compared with the ABC rejection and ABC-MCMC methods. But these

ABC algorithms are all looking for parameters whose corresponding generated data have a very

small discrepancy with the observed data. Next, we discuss how to define the discrepancy

between the two data sets.

2.2. Discrepancy measures. It can be seen that the statistical efficiency of ABC methods de-

pends largely on how to accurately determine the level of the discrepancy between the simulated

and observed data. In this section, we introduce five discrepancy measures that can be used in

ABC.

2.2.1. Basic ABC. The distance functions, such as the Euclidean distance and the Manhattan

distance, are most often used to measure the discrepancy between the simulated and observed

data in ABC. If the data set is replaced by summary statistics and the discrepancy is mea-

sured by a metric in the summary statistical space, the quality of the inference depends on the

summary statistics chosen [17]. It is impossible to identify sufficient summary statistics if the

likelihood function is unknown, so the use of summaries adds another approximation [10]. For

some models and the observed data, the distance function may not accurately measure the dis-

crepancy between the two data sets, because the use of non-sufficient statistics may lead to loss

of information. In the following example, we refer to the ABC method, which makes use of the

Euclidean distance between the summary statistics as the discrepancy measure, as Basic ABC.
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2.2.2. Classifier ABC. Michael U. Gutmann et al. [12] found that classification methods can

be applied to measure the discrepancy, and thus to perform likelihood-free inference. Intu-

itively, two data sets generated with two different parameter values are easier to distinguish

than those generated with two similar parameter values. Classification methods are performed

on feature vectors that extract information from data. Suppose that X = {x1,x2, ...,xn} is

the feature vectors from the observed data and Y = {y1,y2, ...,yn} is the feature vectors from

the simulated data. Each data point in X is set as a positive instance point, and each data

point in Y is set as a negative instance point. Therefore, the augmented data set is T =

{(x1,1), ...,(xn,1),(y1,−1), ...,(yn,−1)}. The augmented data set T is used to learn the classi-

fication rule R, and R(z) ∈ {1,−1} (z = xi or yi). Then the classification accuracy is

(4) CA(R,T ) =
1

2n
{

n

∑
i=1

(
1+R(xi)

2
+

1−R(yi)

2
)}.

Obviously, the closer the classification accuracy CA is to 0.5, the more difficult the two data

sets are to distinguish. The closer the classification accuracy is to 1, the easier the data sets are

to distinguish. That is, the closer CA is to 0.5, the smaller the discrepancy between simulated

and observed data, and the closer CA is to 1, the larger the discrepancy between them. In order

to improve classification accuracy, K-fold cross-validation is usually used to reduce over-fitting

to some extent. Classifiability is used as a discrepancy measurement in ABC, which is a data-

driven approach to assess the similarity between the two data sets [12]. However, this method

has the disadvantage of high computational cost, and its inference may be poor when the size

of data sets is small.

2.2.3. KDE ABC. When we estimate the parameters of stochastic complex models, the het-

erogeneity of data is an intractable problem [13]. Additionally, the selection of some summary

statistics and distance functions potentially includes the assumptions of unimodality and nor-

mality [26] [27], which may lead to the inaccurate estimation. Michael A. Irvine et al. [13]

used the non-parametric kernel density estimation (KDE) to directly compare the simulated and

observed data to resolve this problem. Suppose that the data sets is D = {x1,x2, ...,xn}, and the
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empirical distribution f (x) of D approximated by KDE is as follows:

(5) f (x|D) =
1
n

n

∑
k=1

K(x,xi),

where K(x,xi) is a kernel function. The approximate probability distributions of the simu-

lated data D̂ and observed data Dobs are expressed in f (x|D̂) and f (x|Dobs) respectively. The

Kullback-Leibler (KL) divergence is served to calculate the distance between the two approxi-

mate distributions. It is defined as:

(6) Dkl( f (x|Dobs)|| f (x|D̂)) =
∫

∞

−∞

f (x|Dobs)log
f (x|Dobs)

f (x|D̂)
dx.

The KL divergence is zero if the two distributions are equal, and it will also increase when

the difference between the them increases. The method of combining ABC with kernel density

estimation is referred to as KDE ABC. The disadvantage of KDE ABC is its high computational

cost, and it is difficult to calculate integrals when the data is high-dimensional.

2.2.4. Wasserstein ABC (WABC). Wasserstein distance can be applied to evaluate similarity

between the two data sets in ABC to avoid the use of summaries and the consequent loss of

information, and it defines a metric in the probability distributions space [14, 28]. Let ρ be a

distance function on χ ⊆ℜd . The q-Wasserstein distance between two distributions µ and ν is

defined as

(7) Dwq(µ,ν) = ( inf
γ∈Γ(µ,ν)

∫
χ×χ

ρ(x,y)qdγ(x,y))
1
q ,

where Γ(µ,ν) is the set of all joint probability distribution γ on χ × χ with marginals µ and

ν . We denote this discrepancy by Dwq(X ,Y ) based on the observed data X = {Xi}n
i=1 and the

simulated data Y = {Yi}m
i=1, and the form is

(8) Dwq(X ,Y ) = (inf
γ

n

∑
i=1

m

∑
j=1

ρ(Xi,Yj)
q
γi j)

1
q ,

where γ is a n×m non-negative matrix with rows summing to 1
n and rows summing to 1

m . We

only focus on the case n = m in ABC, where per row and column of matrix γ only have one

non-zero entry which equal to 1
n . In particular, the 2-Wasserstein distance between X and Y

takes the form (1
n ∑

n
i=1 |X(i)−Y(i)|2)

1
2 if d = 1 and ρ(x,y) = |x− y|.
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2.2.5. Cosine ABC. We find that the improved cosine similarity can be served as a discrepancy

measurement. Cosine similarity is to evaluate the similarity of two vectors by calculating their

cosine value. The more similar the two vectors are, the closer their cosine value is to 1, and

the closer their included angle is to 0 degree. In order to use cosine similarity in ABC, it is

necessary to transform the simulated and observed data sets into vectors, which are represented

by A and B, respectively. Then, suppose that A = [x1,x2, ...,xn]
T , B = [y1,y2, ...,yn]

T . The

formula of cosine similarity is as follows:

(9) Cos(A,B) =
A ·B
‖A‖‖B‖

=
∑

n
i=1 xi · yi√

∑
n
i=1 x2

i

√
∑

n
i=1 y2

i

.

For convenience, we make use of arccosine function arccos( A·B
‖A‖‖B‖) to measure the similarity

of two vectors, then the more similar two vectors are, the closer their included angle is to 0.

However, cosine similarity measures the similarity of two vectors from the direction, and it is

insensitive to numerical values. In order to consider the influence of numerical values, we cal-

culate the absolute value of the difference between the modulus of two vectors, i.e. |‖A‖−‖B‖|,

and then combine |‖A‖−‖B‖| and arccos( A·B
‖A‖‖B‖) together to form a discrepancy measurement.

We know that the angle range between two vectors is [0,π], and the angle can be ignored if the

value of |‖A‖−‖B‖| is too large. So we narrow down |‖A‖−‖B‖| by dividing ‖A‖. Therefore,

the formula of the improved cosine similarity is as follows:

(10) ImpCos(A,B) = arccos(
A ·B
‖A‖‖B‖

)+
|‖A‖−‖B‖|
‖A‖

.

The improved cosine similarity takes into account both the direction of vectors and the mod-

ulus of vectors, and it can be served to calculate the discrepancy between the two data sets in

ABC. We refer to the ABC method combining the improved cosine similarity as Cosine ABC,

and experiments show that this method visibly outperforms other methods.

3. RESULTS

The experiments contain four examples which were used to compare five discrepancy mea-

sures. The first two examples are toy models, and the observed data are generated with known

parameters, and the second two examples are biological models. In this section, we describe

the relation between the parameters and the discrepancy (the Euclidean distance, classification
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accuracy, KL divergence, Wasserstein distance and improved cosine similarity)to intuitively

compare the performance of five discrepancy measures. For specific models, the chosen dis-

crepancy measure should be able to reflect the correlation between the parameter values and the

discrepancy, that is, the closer the candidate parameters extracted from the prior are to the true

parameters, the smaller the discrepancy is.

3.1. Gaussian Models. Five discrepancy measures are compared by using a simple normal

distribution N(µ,σ2). Suppose that the parameter of interest is µ , and we set σ = 0.5. The

observed data Dobs of size 30 are generated with µ = 0. In order to calculate the true posterior

distribution conveniently, the normal distribution N(1,22) is chosen as the prior. According to

the conjugate prior distribution, the posterior distribution is also normal distribution and it can

be derived directly.
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FIGURE 1. The relation between the parameter values and the discrepancy.

Firstly, we visualize the relation between five discrepancy measures and the parameter µ in

Figure 1. Specifically, we extract 2000 candidate parameter values from the prior and simu-

late the corresponding data with these values, and then utilize five measures to calculate the



12 CHUANG XU, YONGZHEN PEI, CHANGGUO LI

distance. Figure 1 indicates that these five methods all can accurately measure the discrepancy

in this simple toy model. That is, the corresponding discrepancy decreases as the candidate

parameter values approach the true parameters. Additionally, this figure also provides guidance

for choosing the appropriate tolerance.
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FIGURE 2. The approximate posterior distributions estimated by five algorithms

and the true posterior distribution (red line).

We perform the five algorithms and retain 500 particles. The average value of reserved par-

ticles is as the result of estimating parameters (Table 1). Table 1 shows that the estimation

inferred by five methods are very close to the true values. However, Basic ABC, WABC and

Cosine ABC are much faster than KDE ABC and Classifier ABC, because the calculation of KL

divergence and classification accuracy takes a great quantity time, so the computational cost of

these two methods may be higher. For example, when we perform 100,000 simulations, Basic

ABC, WABC and Cosine ABC only take about 2.11, 2.58 and 4.18 seconds respectively, while

KDE ABC and Classifier ABC take about 121.13 and 478.53 seconds respectively. Approx-

TABLE 1. Inference results of five methods

methods the results of estimating parameter

Basic ABC -0.0206

Classifier ABC -0.0446

KDE ABC -0.0229

WABC -0.0304

Cosine ABC -0.0151
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imate posterior distributions estimated by five methods and the true posterior distribution are

shown in Figure 2. The red line stands for the true posterior distribution, and the blue, yellow,

green, magenta and black lines are inferred by Basic ABC, Classifier ABC, KDE ABC, WABC

and Cosine ABC respectively. The black lines is closer to the true posterior, which indicates

that the Cosine ABC obtain comparably high quality approximate posterior in this example.

3.2. Gaussian mixture model. We make use of a Gaussian mixture model to test the perfor-

mance of five methods. For simplicity, Suppose that the model is the mixture of two Gaussian

distributions. The model is

(11) P(y|θ) = α1P(y|θ1)+α2P(y|θ2),

where P(y|θk) is the Gaussian density function, α1 +α2 = 1, θk = (µk,σ
2
k )(k = 1,2),

(12) P(y|θk) =
1√

2πσk
exp(−(y−µk)

2

2σ2
k

).

We fixed α1 = α2 = 0.5, σ1 = σ2 = 0.5, µ2 = 3, and the parameter of interest is µ1. The
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FIGURE 3. The relation between the parameter values and the discrepancy.

synthetic data yobs of size 100 generated with µ1 = 1 was served as observation data. The
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prior for µ1 is taken to be uniform, µ1 ∼U(−1,3). According to Bayes’ rule, the posterior is

proportional to the likelihood function

(13) L(yobs|µ1) =
n

∏
i=1

π(yi|µ1),

where

(14) π(yi|µ1) =
1

2
√

2πσ1
exp(−(yi−µ1)

2

2σ2
1

)+
1

2
√

2πσ2
exp(−(yi−µ2)

2

2σ2
2

)

and yobs = {y1,y2, ...,yn}(n = 100). So, the posterior distribution π(µ1|yobs) = kL(yobs|µ1),

where k is the proportional coefficient.

In this example, Basic ABC takes the Euclidean distance as a measure of discrepancy and

sample average as summary statistics. Figure 3 is obtained in the same way as the first example,

and it indicates that classification methods and the Euclidean distance with insufficient statistics

do not accurately determine the differences between the simulated and observed data. However,

the improved cosine similarity visibly outperforms other methods, followed by Wasserstein

distance and KL divergence. The approximate posteriors obtained by five methods and the true

posterior distribution are shown in Figure 4. The experimental results indicate that the black

line is closest to the red line, that is, Cosine ABC produces better inference, and the improved

cosine similarity acted as a discrepancy measure has an overall satisfactory performance. Table

2 shows the average values of particles obtained by the five methods, and Basic ABC and

classifier ABC give poor inferences.
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1
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3.5
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4.5

5

µ
1

 

 

True posterior

Basic ABC

Classifier ABC

KDE ABC

WABC

Cosine ABC

FIGURE 4. The approximate posterior distributions estimated by five algorithms

and the true posterior.
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TABLE 2. Inference results of five methods

methods the results of estimating parameter

Basic ABC 1.0412

Classifier ABC 1.0645

KDE ABC 1.0283

WABC 1.0170

Cosine ABC 1.0010

3.3. Lotka-Volterra (LV) model. Volterra first proposed Lotka-Volterra (LV) model for the

predation of one species by another to explain the oscillatory levels of certain fish catches in

the Adriatic [29,30]. Now it will be recruited to verify the improved cosine similarity and com-

pare with other discrepancy measures. The interaction between prey species(X) and predator

species(Y ) can be described by the following differential equations:

(15)

dX
dt

= aX−bXY,

dY
dt

= cXY −dY.

where a,b,c and d are positive constants. The aX term means that the prey grows in a Malthu-

sian way without any predation. The −bXY term reflects the effect of predation. The prey’s

contribution to the predators’ growth rate is cXY . The −dY term means that the mortality rate

of predators decreases exponentially in the absence of any prey.

The synthetic data are obtained by solving the equations with (a,b,c,d) = (10,0.01,0.01,10)

at initial conditions (X0,Y0) = (1100,990), and Gaussian noise N(0,102) is added to the data

points. We estimate the parameters a and d, keeping b and c fixed at the value which was gener-

ated the synthetic data. The prior is taken to be uniform, a∼U(0,20) and d ∼U(0,20). In this

example, the data points are large and scattered, which is not suitable for KDE ABC. We extract

10,000 candidate parameter values from the parameter space at equal intervals, and wield these

values to generate corresponding simulation data from the model, then calculate the discrep-

ancy between the simulated and observed data with the Euclidean distance, improved cosine

similarity, classification accuracy and Wasserstein distance respectively. The relation between

the parameters and the discrepancy is depicted in a heat map (Figure 5), which exposes that all

four discrepancy measures are minimal when the parameters are close to the true parameters.
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FIGURE 5. The heat map of the relation between the parameters and the dis-

crepancy. The red crosses mark the data-generating parameter value.

TABLE 3. Inference results of three methods

methods a d

Basic ABC 10.0123 9.9905

Cosine ABC 10.0133 9.9987

Classifier ABC 10.0308 9.9911

WABC 10.0204 9.9844

Next the ABC-SMC algorithm was employed to estimate parameters, and the Euclidean dis-

tance, improved cosine similarity, classification accuracy and Wasserstein distance were served

as the discrepancy measures respectively. We set ε = (10000,5000,2000,1500),(0.4,0.1,0.07,

0.04),(1.5,1.3,1.2,1.1),(300,100,50,27) respectively and retain 200 particles to obtain the ap-

proximate posteriors of parameters a and d (Figure 6). Simulations suggest that Cosine ABC
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FIGURE 6. The approximate posterior distributions of parameters a and d.

yields the approximate posteriors that have narrower regions and are more closely centered

around the true parameter values than those produced by other methods [31]. Table 3 takes the

average value of the retained particles as the estimation of the parameters, which indicates that

the estimation results of the four methods are all very close to the true values.

3.4. Stochastic SEIR model. Infectious diseases have tremendous influence on human life.

Every year, millions of people die of various infectious diseases such as West Nile Virus,

Dengue, Zika, Ebola and so on. Mathematical modelling is of considerable importance in

the study of epidemiology because it may provide understanding of the underlying mechanisms

which influence the spread of disease. Various epidemic models have been formulated and an-

alyzed. The stochastic SEIR model describing the spread of a non-lethal disease in a large pop-

ulation is based on a partition of the total population into four classes: susceptible (S), exposed

(infected but not yet infectious) (E), infectious (I), recovered (R) and N = S+E + I +R [32].

The process can be described by the following rate equations:

(16)

S+ I→ E + I at rate
λSI
N

,

E→ I at rate δE,

I→ R at rate µI.

The parameter λ is the infection rate, µ denotes the rate for recovery, and δ is the rate at

which the exposed individuals become infective.
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Gillespie algorithm was executed to simulate data under given parameter values in this model

[29, 33]. In this example, 21 data points are acquired by Gillespie algorithm with (λ ,δ ,µ) =

(2,4,0.3) at initial conditions (S0,E0, I0,R0) = (198,1,1,0). We infer the parameters λ , δ and

µ , and uniform priors including λ ∼ U(0,10), δ ∼ U(0,10) and µ ∼ U(0,1) are adopted.

Because of the randomness of Gillespie algorithm simulation process, the average value of

multiple runs can better reflect the mean dynamic of the system than that of one run. So in

lab settings, the simulated data of each run are averaged in three runs [25]. KDE ABC is not

suitable for solving this problem because the data points are large and scattered, which is also

the defect of this method.

Here we perform four ABC methods including Basic ABC, Cosine ABC, Classifier ABC and

WABC, and set ε = (500,300,200,100,60),(0.8,0.2,0.15,0.1,0.08),(0.7,0.6,0.55,0.5),(40,

30,20,12,8) respectively. We retain 200 particles to obtain the histograms of the approximate

posteriors of parameters λ , δ and µ displayed in Figure 8. The inference of parameters λ and

µ obtained by Cosine ABC are better than other methods. However, none of the four methods

can infer parameter δ . Perhaps because δ is insensitive. The relation between the parameter

and the distance is described to verify the sensitivity of δ in the case of fixing parameters λ = 2

and µ = 0.3. Figure 7 indicates that parameter δ is insensitive because the distance does not

change near δ = 4.
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FIGURE 7. The relation between the parameter δ and the distance.
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eters λ , δ and µ .
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4. DISCUSSION

The statistical inference of complex models is an challenging task because the likelihood

functions is usually intractable. Approximate Bayesian computation (ABC) is a powerful

likelihood-free inference method, and the key step of ABC is to identify parameters by cal-

culating the discrepancy between the simulated data and observed data. In this paper, we add

the improved cosine similarity to the arsenal of the discrepancy measures for ABC, and compare

it with other four data discrepancy measures. We analyze the advantages and disadvantages of

these five methods and check their performance through four examples.

In terms of the approximate posterior quality, the improved cosine similarity performs com-

parably better than other discrepancy measures methods. In the second example, classification

methods and the Euclidean distance using summary statistics can not accurately measure the

differences, and their inference is poor. Research suggests that the kernel density estimation

and the improved cosine similarity can capture more data information, so better inference re-

sults are obtained by KDE ABC and Cosine ABC.

Except for the quality of approximate posterior distribution, another problem to be considered

in ABC is the computational efficiency of the discrepancy function. KDE ABC and Classifier

ABC have obvious shortcomings including narrow adaptability and high computational cost,

that is, the calculation of KL divergence and classification accuracy takes a great quantity time.

Cosine ABC has a wide range of applications and low computational costs, and our research

indicates that it is a very effective discrepancy measurement method.

However, for some problems with poor estimation results, we do not know whether the error

is due to the discrepancy measurement chosen or the inaccuracy of the model. Moreover, ABC

is still limited by large data sets and high-dimensional parameters, which is a difficult problem

to be solved.

5. CONCLUSIONS

Approximate Bayesian calculation is an effective statistical inference method, which is very

suitable for parameter estimation of biological model. The discrepancy measure is an essential
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part of ABC algorithm, which has a great impact on the results of the inference. Various dis-

crepancy measurement methods are discussed in this paper. Therefore, our work is of practical

value, which enlightens us to flexibly choose the measure of discrepancy in practice.
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