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Abstract. Immunotherapy is a significant cancer treatment as it uses the body’s natural immune system to fight

cancer. To help boost the immune system, monoclonal antibodies (MABs) are used as they bind to cancer cells

helping the immune system recognize these cells. In this paper, we present a mathematical model of nonlinear

partial differential equations describing the interaction between the immune cells, MABs, and cancer cells. After

nondimensionalizing the model, we analyzed the long-term behavior and found later that it is consistent with the

numerical results. Then, we calculated the numerical solutions of the model with different values of the parameters

(relative growth rate of cancer cells and the number of immune cells that are removed after killing a cancer cell)

to determine the values that help increase the effectiveness of the treatment. We have considered the continuous

delivery of antibodies over a certain period of time. These simulations showed that immune cells will eradicate

cancer if the number of immune cells that are removed after killing a cancer cell is less than one. However, if each

immune cell kills only one cancer cell, then the treatment reduces the cancer to a steady state or almost a steady

state. On the other hand, if the relative growth rate of cancer cells is very small and each cancer cell needs more

than one immune cell to kill it, then again, we get a steady state for cancer. However, if the relative growth rate is
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not small, then the cancer will grow after an initial decrease. This study could be implemented into a clinical trial

with different delivery protocols of the drug to improve cancer treatment.
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1. INTRODUCTION

The immune system is a network of different cell types and proteins cooperating together to

maintain the safety of an organism by constantly protecting it from invading pathogens, such

as viruses, bacteria, and mutated cells. Lymphocytes, neutrophils, and monocytes/macrophages

are able to detect the presence of a foreign body and can then mount an efficient response aimed

at their elimination in a short period. A robust defending system consists of a rapid nonspecific

immunity of two types: innate immunity and specific adaptive immunity. The innate immune

system, a naturally existing shield, is usually enough to eliminate foreign molecules without the

activation of a more advanced targeted immunity. The adaptive immune system consumes more

time to respond, however, it is important since it specifically targets the foreign antigen and has

a permanent memory for any future attack [1, 2].

Cancer starts to form when a series of mutations take place in normal cells which lead the cells

to outgrow and divide uncontrollably. These genetic mutations cause the cancer cell to have

a different protein signature than normal cells. Different types of cancer treatments include:

monoclonal antibodies, cancer growth blockers, and anti angiogenics (drugs that block cancer

blood vessel growth). In monoclonal antibodies (MABs), the word “monoclonal” indicates that

a single antibody clone, with identical properties and specifications, is produced [3]. MABs

can attach to cancer cells stimulating the immune system to recognize and eliminate them [4].

In particular, MABs bind antigens on the surface of the cancer cells and this activates specific

immune cells, for example natural killer (NK) cells, and the latter release cytotoxic factors,

which in turn kill cancer cells. This mechanism is called antibody-dependent cell-mediated

cytotoxicity (ADCC) [5]. Moreover, the antibody could itself exert an antitumor effect by

blocking a specific protein, which keeps the immune cells from attacking cancer cells [6]. The
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benefit of using MABs in cancer treatment is that they are less likely to have serious side effects

than conventional treatments [7]. They have also shown success in clinical trials [8–10].

Mathematical modeling is a useful tool in understanding the role of the immune system in

killing cancer alone or in conjunction with other treatments, which stimulate it. Hoffman et

al. [11], formulated a system of ordinary differential equations (ODEs) to model how the rate,

at which NK cells kill cancer cells depends on how much antibody is bound to the cancer

cells . The parameters were estimated from experiments; and the numerical results showed

that the ADCC processes depended on the initial concentration of antibody and NK-cancer cell

ratio [11]. Another system of ODEs, describing the tumor and immune interaction by focusing

on the role of NK and CD8+T cells in killing cancer cells directly, was presented by [12].

CD8+T cells are a type of T-lymphocytes, which can be cytotoxic to tumor cells. The results

of the experiments and the simulation showed the importance of increasing the CD8+T-cell

activation to promote tumor killing [12]. Moreover, the sensitivity analysis indicated which

variable makes the model most sensitive; and that it is patient specific [12]. We therefore

know which patient is likely to have a successful treatment according to the prediction of the

model. Another mathematical model consisting of a system of ODEs and based on the clinical

evidence that antibodies can kill cancer cells directly was presented by [13]. The antibodies

were produced by B cells and plasma cells. The results showed that the growth of cancer cells

could be controlled by the value of the rate at which antibodies kill cancer cells directly [13].

In particular, as this rate crosses a critical value, antibodies are able to eradicate cancer for any

initial size [13]. Kirschner and Panetta [14] introduced a mathematical model for the interaction

between cancer cells and the activated immune cells (for example, T and NK cells) with the

presence of interleukin-2 (IL-2). They found that if the administration of antitumor immune

cells (adoptive cellular immunotherapy ACI) has a concentration above a critical value, then

cancer is eradicated. On the other hand, a low amount of IL-2 does not boost the immune

system enough to get rid of cancer, and high amounts make the immune system grow without a

bound, and the combination of ACI and IL-2 gave the best results [14].

In this paper, we investigate the role of the monoclonal antibodies in cancer immunotherapy

by using a mathematical model, which is an extension to the chemotherapy models in [15, 16].
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Our hypothesis is based on stimulating the immune system so it can attack and kill cancer.

This is done by using MABs, which bind to the cancer cells, thus, helping the immune system

recognize and attack them (ADCC). The main goal of the model is to study the interaction

between cancer cells, antibodies, and immune cells and find the prameter values which help

erradicate cance. After introducing the model, we analyze it and solve it numerically to find the

parameters that help reduce the cancer. We assume that the antibodies are given to the patient

in a continuous manner over a certain period of time. First, we introduce the formulation of the

model in section 2, then we nondimensionalize it (section 2), and discuss the long-term response

in section 3. Then we perform a numerical simulation of the model for different values of the

parameters (section 3). Finally, we present the discussion and conclusion in section 4.

2. MATHEMATICAL MODEL

The main goal of our mathematical model is to investigate how the immune system can

eradicate cancer with the help of antibodies. Therefore we have a system of three coupled

partial differentia equations (PDEs), which describes the space and time evolution of three

types of densities: σ(x, t), the density of antibodies; ρ(x, t), the density of cancer cells, and

ψ(x, t), the density of immune cells. The first equation describes the diffusion of antibodies

and the uptake by cancer cells. The second equation describes the death rate of cancer cells

by immune cells due to the history of uptake of antibodies. Also, in the absence of immune

cells (the first term on the right hand side = 0) cancer cells will grow exponentially. The third

equation describes the removal of immune cells after killing cancer cells and the growth rate

of immune cells. We will assume that the domain is cylindrically symmetric (for convenience

since the system will then depend only on time and radial distance r). By considering these

assumptions, the model is governed by the following system of nonlinear PDEs:

∂σ

∂ t
= D52

σ −λbσρ,

∂ρ

∂ t
= −λdψρ

∫ t

0
λbσρdτ +α1ρ,(1)

∂ψ

∂ t
= λrA+α2ψ,
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where D is the antibodies diffusivity, λb is the binding rate of antibodies to cancer cells λd is

the death rate of cancer cells, α1 is the growth rate of cancer cells, α2 is the growth rate of

immune cells, λr is the number of immune cells that are removed after killing a cancer cell,

and A = −λdψρ
∫ t

0 λbσρdτ . In the first equation we will replace the partial derivative by zero

because the diffusion of antibodies is faster than the cell cycle (it does not depend on time).

Thus, we need two boundary conditions for the first equation and two initial conditions for the

second and third equations as follows:

ρ(r,0) = ρ0,

ψ(r,0) = ψ0,(2)

σ(rb, t) = σ0(t),

dσ

dr
|r= rb√

BV F
= 0,

where rb is the raduis of the blood vessel and BVF is the blood volume fraction [15]. A large

value of BVF represents a tumor with high vascularization; hence enabling more treatment to

reach the tumor cell. Note that the density of cancer and immune cells is initially homogeneous

and there is no flux of antibodies at the right boundary.

The PDEs model in (1) is an extension to the models represented by [15, 16] for chemother-

apy, and we used similar assumptions. Indeed, if the density of immune cells is constant

everywhere (they do not kill cancer and are not removed), then we get the chemotherapy case

presented by [15, 16]. In that case the antibodies would have the same role as chemotherapy

that is killing cancer. Therefore the three equations (1) would be reduced to two. For details

about the assumptions (in particular, the integral in the second equation and replacing the

partial derivative in the first equation by zero) and the choice of initial and boundary conditions,

refer to [15, 16].

Nondimensionalizing
We nondimensionalize the previous system before solving it numerically to reduce the unknown
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parameters for simplicity with the following scaling:

r
′
=

r
L
, t
′
=

t
T
, ρ

′
=

ρ

ρ0
, ψ
′ =

ψ

ψ0
, σ

′
=

σ

σ0
,

where L =

√
D

λbρ0
is the diffusion length of antibodies, T = (λdλbσ0ψ0ρ0)

− 1
2 is the time of

the apoptotic cycles caused by immune cells after the uptake of antibodies, and σ0 = max
t>0

σ0(t).

Thus, the system becomes

0 = 5
′2

σ
′
−σ

′
ρ
′
,

∂ρ
′

∂ t ′
= −ψ

′
ρ
′
∫ t
′

0
σ
′
ρ
′
dτ +α1ρ

′
,(3)

∂ψ
′

∂ t ′
= λ rA

′
+α2ψ

′
,

with the following boundary and initial conditions

ρ
′
(r
′
,0) = 1,

ψ
′
(r
′
,0) = 1,(4)

σ
′
(
rb

L
, t
′
) ≤ 1,

dσ
′

dr′
|r′= rb

L
√

BV F
= 0,

where the relative growth rates are α1 = α1T and α2 = α2T . Also A
′
=−ψ

′
ρ
′
∫ t
′

0
σ
′
ρ
′
dτ and

λ r =
λrρ0

ψ0
. We will drop the dash for convenience. Hereafter, we will assume that ρ0 = ψ0

(thus λ r is the number of immune cells that are removed after killing a cancer cell) and the

growth rate of immune cells is zero (α2 = 0).

3. RESULTS

3.1. long-term response. To analyze the long-term response, we suppose that the growth rate

of cancer is zero (α1 = 0). After a long period of time, the cancer cells will be saturated with

antibodies and thus the integration in (3) becomes a constant:
∫ t

0
σρdτ = β . Thus, from the

third equation we get ψ = 1+λ r(ρ−1). Therefore,

(5)
∂ρ

∂ t
=−ρ[1+λ r(ρ−1)]β .
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Here we consider four significant cases for λ r. First, if λ r = 0 we get an ideal case (unrealistic)

in which the immune cells keep killing cancer cells without dying. Therefore, the density of

immune cells is constant and thus from (5) cancer cells will decay exponentially (ρ = e−β t).

Second, if 0 < λ r < 1, this means that every immune cell kills more than one cancer cell. For

example, when λ r = 0.5, this represents the case where one immune cell kills two cancer cells.

We will study this case numerically in section 3.3. Third, if the immune cells are removed at

the same rate as cancer cells, then λ r = 1. Therefore, from (5) we have ρ = 1/(1+β t). This

will make the death rate less than the first case. Finally, if every cancer cell needs more than one

immune cell to kill it, this gives λ r > 1. From (5), cancer cells will die if−ρ[1+λ r(ρ−1)]≤ 0.

Thus, 1−ρ ≤ (λ r)
−1 < 1. So for this case the density of cancer cells will decay to reach the

value of (λ r)
−1 and they will not die completely. In addition, the death rate becomes less as the

value of λ r is increased since ρ → 1 as λ r→ ∞. In the next sections, we will solve the model

numerically and compare the result with this analysis.

3.2. Numerical solution. We study the nondimentionalized model (3), (4) numerically for

different values of the parameters. The parameters are reduced to α1, α2, λ r,
rb
L and BVF. We

will fix the values of rb
L and BVF such that rb

L = 0.5 and BVF=0.05 [15, 16]. Regarding the

antibodies, they can be given periodically in cycles [17] or continuously over a certain period of

time. The latter can be done using nanotechnology [18]. We will consider continuous infusion

of the drug in our numerical simulations; and thus σ(rb/L, t) = 1.

To solve the system (3), (4), we first spatially discretize the initial values of ρ and ψ . Then,

at each time step, we find the value of σ in the first equation by using the finite difference

method [19], where ρ is given from the previous time step. Moreover, we calculate the values

of ρ and ψ in the second and third equations by using the fourth order Runge-Kutta method [20].

In each time step, we calculate the ratio of the viable cancer mass M to its mass M0 over the

cylindrically symmetric domain

(6) f (t) =
M
M0

=
2π

V

∫ rb
L
√

BV F

rb
L

ρrdr,
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where V = π

[(
rb

L
√

BV F

)2

−
(rb

L

)2
]

. Note that M0 = V since ρ(r,0) = 1. This ratio is

calculated to investigate whether the cancer will grow or decay over a period of time after

giving the antibodies.

Figure 1 represents a numerical simulation of (3), (4) for BVF= 0.05, rb/L = 0.5, λ r = 0.5,

α1 = 3.2991×10−6, and α2 = 0 for 20 apoptotic cycles (caused by the antibodies). The solution

in Figure 1(a) shows that the normalized density of cancer cells becomes close to zero in about

10 cycles. In Figure 1(b) the normalized density of immune cells will decay due to the killing of

cancer, then becomes constant afterwards. Figure 1(c) shows that the antibodies decrease when

they diffuse into cancer cells (since cancer cells uptake them). Then, after 10 cycles they begin

to reach a constant value since the immune cells have almost killed the cancer cells and there is

small uptake of antibodies. In Figure 1(d) the ratio of the viable cancer mass to its initial mass

shows that after approximately 12 cycles the cancer cells die.

3.3. Parameter analysis. Figure 2 shows that, for the number of immune cells that are re-

moved after killing a cancer cell (λ r), if 0 ≤ λ r < 1, after a short period of time all cancer

cells will die (for four different values of α1). This shows that, even if we increase the relative

growth rate of cancer cells, the immune cells can eradicate the cancer. While, if λ r > 1, the

cancer cells will decrease at the beginning of the treatment. Then afterwards, they will either

grow continuously (for larger values of α1) or will reach a steady state. When λ r = 1, and α1

is increasing, the cancer almost reaches a steady state. In Figure 2, as the relative growth rate of

cancer cells (α1) increases (compare the figures clockwise for a fixed value of λ r > 1) we find

that after the beginning of the simulation cancer cells will not have a steady state and instead,

they will increase.

These simulations show that, if the number of immune cells that are removed after killing

cancer cells is between zero and one or is equal to zero, we get the best result. Otherwise for

λ r > 1, the relative growth rate of cancer cells must be very small to reduce the cancer and

reach a steady state.

For the case where α1 = 0, the simulations in Figure 2(a) show that after a long time period

cancer cells decay exponentially if λ r = 0. The death rate becomes less when λ r = 1. Finally,
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FIGURE 1. Numerical solution of (3), (4), where BVF= 0.05, rb/L = 0.5 , α1 =

3.2991× 10−6, α2 = 0, and λ r = 0.5 for 20 cycles. The plot of f in (d) shows

that cancer cells die after approximately 12 apoptotic cycles.

cancer cells reach a steady state such that 1−ρ = (λ r)
−1 for λ r > 1. All of these results are

consistent with the long-term response analysis given in section 3.1.
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(b) α1 = 0.000005
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(c) α1 = 0.006
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(d) α1 = 0.01

FIGURE 2. The curves of the normalized cancer mass plotted against t and cal-

culated numerically from (6) with different values of λ r as given in the legend

in each graph. In addition, the value of α1 is given under each figure. Here

BVF= 0.05, rb/L = 0.5, and α2 = 0.

4. DISCUSSION AND CONCLUSION

In this paper, we formulated a mathematical model of PDEs to study the effect of im-

munotherapy, supported by antibodies, on cancer and to investigate the long-term response.
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This model is an extension of the chemotherapy model presented by [15]. In their model,

chemotherapy is given to the patient continuously over a period of time and the PDEs represent

the diffusion of this drug and the cancer cell death. Later [16] studied the same model after

adding a term representing the growth of cancer cells. In our model we assume that antibodies

are given to the patient in the same manner as was chemotherapy given in the former models.

However, after antibodies diffuse into cancer, unlike chemotherapy, they do not kill cancer cells

but only attach to them. This mechanism makes the immune cells recognize and kill cancer

cells. Our model simplifies the complex interaction between antibodies, cancer, and immune

cells. It may help in understanding how the immune system fights cancer with the help of anti-

bodies. We assumed that all immune cells are of one kind; therefore, in future studies different

kinds of immune cells may be considered as in [21].

After introducing our model, we nondimensionalized it for simplifications; and thus the pa-

rameters are reduced to the relative growth rate of cancer and immune cells and the number of

immune cells that are removed after killing a cancer cell. We also have other parameters which

are BVF and rb/L which we fixed. Afterwards we analyzed the nondimensionalized model in

terms of the long-term response we found that if the growth rate of cancer cells is zero, then

the result depends on the number of immune cells that are removed after killing a cancer cell.

If immune cells keep killing cancer cells, then cancer will decay exponentially. On the other

hand, if each immune cell kills one cancer cell then we get a death rate of cancer, which is less

than the previous case. Finally, if each cancer cell needs more than one immune cell to kill it,

then cancer will not die completely and it will reach a steady state. These results are consistent

with the numerical simulations for the case where the growth rate of cancer cells is zero.

After considering the long-term response, we solved the system numerically with different

values of the parameters. In particular, we considered the relative growth rate of cancer cells

α1 and the number of immune cells that are removed after killing a cancer cell λ r. Moreover,

we assumed that the antibodies were given continuously for specific apoptotic cycles and we

neglected the effect of α2 (the relative growth rate of immune cells). The numerical simulation

showed that if 0 ≤ λ r < 1, even if we increase the relative growth rate of cancer cells, the

immune cells can still eradicate the cancer. Whereas, if λ r > 1, the cancer cells will have two



12 E. SIMBAWA, S. ALHARBI, J. ALJOHANI, H. ABOSAMRA, S. ABOUSHOUSHAH, V. CRISTINI

cases; either they grow continuously or they reach a steady state depending on the value of α1.

Finally, if we increase α1 and if λ r = 1, then the cancer growth almost reaches a steady state.

We conclude that the immune cells will eradicate cancer after a few apoptotic cycles if λ r is

equal to zero or between zero and one. Otherwise, the cancer will be reduced to reach a steady

state if λ r is greater than one and the relative growth rate of cancer cells is very small.

For future research, the model can be developed more by adding variables and considering

new clinical treatments. In this paper, we have taken α2 = 0. In future work, α2 can be varied to

study the effect of changing this value on the result of the model. Also in this paper, we assumed

that the drug was given continuously over a certain period of time; in future studies, the case

where the drug is given in a periodic manner (convectional treatment) may be considered to

improve our understanding of the effect of different delivery techniques for cancer treatment.

This may help oncologists choose the optimal strategy for treatment by raising their awareness

of the possible outcomes.
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