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Abstract. In this paper, we propose a mathematical modeling that describe the dynamics of transmission of

the novel Coronavirus 2019 (COVID-19), between potential people and infected people without symptoms, and

those infected people with symptoms and then people with serious complications, as well as those under health

surveillance and quarantine, in addition to people who recovered from the virus.

In addition, we propose an optimal strategy by carrying out awareness campaigns for citizens with practical

measures to reduce the spread of the virus, and diagnosis and surveillance of airports and the quarantine of infected

people.

Pontryagin’s maximum principle is used to characterize the optimal controls, and the optimality system is solved

by an iterative method. Finally, some numerical simulations are performed to verify the theoretical analysis using

Matlab.
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1. INTRODUCTION

On December 31, 2019. In China, specifically in the city of Wuhan in the market for the sale

of aquatic products, a dangerous, lethal and rapid spread appeared as the novel Coronavirus

2019 (COVID-19)[1−2]. which belongs to the Coronaviruses, which is a group of viruses

that infects animals and mammals and then transmits to humans, the symptoms of the novel

Coronavirus 2019 are similar to other types of Coronavirus, such as the severe acute syndrome

virus SARS and others Coronavirus [3], the Middle East Mers syndrome [6], in a large number

of characteristics and symptoms such as colds and high head temperature, and then lead to a

pneumonia and collapse, leading to the failure of the respiratory system leading to death.

The novel Coronavirus 2019 (COVID-19) differs with the rest of the Coronavirus, which

shows that the patient does not have symptoms of the virus for a period ranging between two

to 14 days, and that is the seriousness of the disease, which facilitates the spread of the virus

quickly, especially between the relatives and friends of the infected person, or through means of

transportation, many cases have appeared in several neighboring countries and far from China.

Globally, the number of infected people in China has reached 81218 and about 3281 people

have died. In Italy, 74386 people were infected and 7503 died. In USA, about the infected

individuals reached 61081 and the deaths reached 819. In Spain, about 47610 people were

infected and 3434 died. In Germany, about 37066 people were infected and 205 people died. In

Iran, about 27017 people were infected and 2077 died. According to the last stats declared on

Monday 25 March 2020. The epidemic has moved from China to Europe, which has become

the main epidemic area according to the World Health Organization. and the number is able to

increase due to the lack of a pre-vaccine virus for non-infected people and the absence of any

treatment to treat patients, in addition to the emergence of other cases of neighboring countries

as Japan, South Korea, Russia, and other countries as the United States of America, France and

the Middle East countries such as the United Arab Emirates. The WHO declared a state of

health emergency with an international dimension[13,14].

The COVID-19 virus is considered more lethal and dangerous comparing to other viruses,

whereas the number of people with severe acute respiratory syndrome (SARS) reached about
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8098 people and the death of about 774 people, which also started from Asia and China specif-

ically in 2002 and which researchers suggested transmission from bats to humans, as for the

Middle East Syndrome (MERS) virus, 858 people died out of the total number of infected peo-

ple, who numbered about 2494 people since its appearance in 2012[4−6,7], which appeared

initially in the Kingdom of Saudi Arabia.

Several countries, such as China, Italy, France and Spain have taken a number of practical

measures, such as quarantine, establishing a state of health emergency throughout the country,

stopping transport to and from other countries, due to the spread of the COVID-19 virus list,

including declaring a high alert in all modes of transport, especially airports, diagnosing and

monitoring all people arriving from these regions and sending them to quarantine. The World

Health Organization has taken several steps to control the spread of the virus.

The COVID-19 pandemic has had serious repercussions on the global economy, estimated at

billions of dollars, because after having closed its borders with other countries how many flights

and navigation have been stopped, many companies have stopped many have lost their jobs.

A large number of mathematical models have been developed to simulate, analyse and un-

derstand the Coronavirus, in a related research work, Tahir et al [8] proposed a prevention

strategies for mathematical model MERS-Coronavirus with stability analysis and optimal con-

trol and Zhi-Qiang Xia et al [9] modeling the transmission of middle east respirator syndrome

Coronavirus in the republic of korea using a system of ordinary differential equations. Also,

many researches have focused on this topic and other related topics ([16−17,19−21]).

Our aim in this paper is to highlight the seriousness of the spread and transmission of The

COVID-19 virus between people, especially a person who is infected without symptoms (IW ) to

an uninfected person or susceptible S. As well as transmission of a virus from an infected person

with mild or moderate symptoms I to an uninfected person. We also highlight the complications

of infection with the virus C. Then the quarantined people H on them and in the last recovered

R.

In this paper, we propose a continous mathematical model that descibes the dynamic of a

population infected by COVID-19 virus, and we give some basic properties of the model in

Section 2. In Section 3, we present the optimal control problem for the proposed model where
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we give some results concerning the existence and characterization of the optimal controls us-

ing Pontryagin’s maximum principle. Numerical simulations through MATLAB are given in

section 4. Finally we conclude the paper in section 5.

2. MATHEMATICAL MODEL

We consider a mathematical model SIW ICHR that describe the dyanamic of transmission

of COVID-19 virus in a given population. We divide the population denoted by N into six

compartments.

2.1. Description of the Model. The graphical representation of the proposed model is shown

in Figure 1.

FIGURE 1. Figure compartments model

Compartment (S) is representing the number of people who may be infected with the Noval

Coronavirus 2019. The compartment S is increasing by Λ1 (denote the incidence of susceptible).

This compartment is decreasing by the amount µ (natural mortality), β1
SIW
N (The number of

people who were infected with the virus by contact with the infected patients without symptoms)
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and β2
SI
N (The number of people who were infected with the virus by communicating with the

infected patients with symptoms)

(1)
dS(t)

dt
= Λ1−µ S(t)−β1

S(t)IW (t)
N

−β2
S(t)I(t)

N

Compartment (IW ) is representing the number of Infected without symptoms. The copart-

ment IW is increasing by Λ1 (denote the incidence of Immigrants and carriers of the virus with-

out symptoms) and also by amounts β1
SIW
N and β2

SI
N . This compartment is decreasing by µ

(natural mortality) and also decreased by α1IW ( the number of people become infected with

symptoms) and also α2IW (the number of people have developed a rapid and dangerous devel-

opment of the virus due to immunodeficiency, old age or children).

(2)
dIW (t)

dt
= Λ2 +β1

S(t)IW (t)
N

+β2
S(t)I(t)

N
− ( µ +α1 +α2)IW (t)

Compartment (I) is representing the number of individual infected with symptoms. The

compartment I is increasing by Λ2 (denote the incidence of Immigrants and carriers of the

virus with symptoms) and also by increasing α1IW . This compartment is decreasing by α3I

(People have severe complications such as pulmonary failure) and also decreasing by µ (natural

mortality) and decreasing by θ1I (The number of people with symptoms of mild virus who have

been quarantined).

(3)
dI(t)

dt
= Λ3 +α1IW (t)− (α3 +θ1 +µ)I(t)

Compartment (C) is representing the number of infected with complications. The compart-

ment C is increasing by α2IW and increasing α3I . This compartment is decreasing by θ2C (The

number of people with serious complications who have been quarantined) and decreasing by

δ1C (mortality rate due to complications) and also decreasing by µC (natural mortality).

(4)
dC(t)

dt
= α2IW (t)+α3I(t)− (θ2 +µ +δ1)C(t)



6 A. KOUIDERE, B. KHAJJI, A. BHIH, O. BALATIF, M. RACHIK

Compartment (H) is representing the number of people who have been quarantined in

hospitals with follow-up and health monitoring. The compartment H is increasing by θ1I and

increasing θ2C. This compartment is also decreasing by σH (The number of individual who

recovered from the virus) and decreasing by δ2H (The number of people who died under quar-

antine in hospitals) and also decreasing by µH (natural mortality)

(5)
dH(t)

dt
= θ1I(t)+θ2C(t)− (µ +σ +δ2)H(t)

Compartment (R) is representing the number of recovered. The compartment H is increas-

ing by σH. This compartment is decreasing by µR (natural mortality)

(6)
dR(t)

dt
= σH(t)−µR(t)

Hence, we present the COVID-19 mathematical model is governed by the following system

of differential equation :

(7)



dS(t)
dt = Λ1−µ S(t)−β1

S(t)IW (t)
N −β2

S(t)I(t)
N

dIW (t)
dt = Λ2 +β1

S(t)IW (t)
N +β2

S(t)I(t)
N − ( µ +α1 +α2)IW (t)

dI(t)
dt = Λ3 +α1IW (t)− (α3 +θ1 +µ)I(t)

dC(t)
dt = α2IW (t)+α3I(t)− (θ2 +µ +δ1)C(t)

dH(t)
dt = θ1I(t)+θ2C(t)− (µ +σ +δ2)H(t)

dR(t)
dt = σH(t)−µR(t)

where S(0)≥ 0, IW (0)≥ 0, I(0)≥ 0, C(0)≥ 0, H(0)≥ 0 and R(0)≥ 0, are the initial state.

2.2. Model Basic Properties.

2.2.1. Positivity of Solutions.

Theorem 1. If S(0)≥ 0, IW (0)≥ 0, I(0)≥ 0, C(0)≥ 0, H(0)≥ 0 and R(0)≥ 0, the solutions

S(t), IW (t) , I (t) ,C (t) ,H (t) and R(t) of system (7) are positive for all t ≥ 0.



MATHEMATICAL MODELING OF TRANSMISSION OF COVID-19 PANDEMIC VIRUS 7

Proof. It follows from the first equation of system (7) that

dS(t)
dt

= Λ1−µ S(t)−β1
S(t)IW (t)

N
−β2

S(t)I(t)
N

≥ −µ S(t)−β1
S(t)IW (t)

N
−β2

S(t)I(t)
N

dS(t)
dt

+

(
µ +β1

IW (t)
N

+β2
I(t)
N

)
S(t)≥ 0

where F(t) = µ + β1
IW (t)

N + β2
I(t)
N . The both sides in last inequality are multiplied by

exp(
t́

0
F(s)ds).

We obtain

exp(

tˆ

0

F(s)ds).
dS(t)

dt
+F(t)exp(

tˆ

0

F(s)ds).S(t)≥ 0

then d
dt

(
S(t)exp(

t́

0
F(s)ds)

)
≥ 0

Integrating this inequality from 0 to t gives:

tˆ

0

d
ds

S(s)exp(

tˆ

0

(µ +β1
IW (s)

N
+β2

I(s)
N

)ds)

ds≥ 0

then

S(t)≥ S(0)exp(

tˆ

0

(
µ +β1

IW (s)
N

+β2
I(s)
N

)
ds)

=⇒ S(t)> 0.

Similarly, we prove that IW (t)≥ 0 , I (t)≥ 0,C (t)≥ 0,H (t)≥ 0 and R(t)> 0. �

2.2.2. Boudedness of the solutions.

Theorem 2. The set Ω =
{
(S, IW , I,C,H,R) ∈ R6

+/ 0≤ S+ IW + I +C+H +R≤ Λ

µ

}
posi-

tively invariant under system (7) with initial conditions, S(0)≥ 0, IW (0)≥ 0, I(0)≥ 0,C(0)≥ 0,

H(0)≥ 0 and R(0)≥ 0.



8 A. KOUIDERE, B. KHAJJI, A. BHIH, O. BALATIF, M. RACHIK

Proof. Also, one assumes that:

dN
dt

= Λ−µN−δ1C ≤ Λ−µN

=⇒ N(t)≤ Λ

µ
+N(0)e−µt

where Λ = Λ1 +Λ2 +Λ3

If we take limit t→ ∞ we have 0≤ N(t)≤ Λ

µ
.

It implies that the region Ω is a postivily invariant set for the system (7). �

2.2.3. Exictence of solutions.

Theorem 3. The system (7) that satisfies a given initial condition

(S (0) , IW (0) , I (0) .C (0) ,H (0) ,R(0)) has a unique solution.

Proof. Let X =



S (t)

IW (t)

I (t)

C (t)

H (t)

R(t)


and ϕ (X) =



dS(t)
dt

dIW (t)
dt

dI(t)
dt

dC(t)
dt

dH(t)
dt

dR(t)
dt


so the system (7) can be rewritten in the following form:

(8) ϕ(X) = AX +B(X)

where

A =



−µ 0 −0 0 0 0

0 −( µ +α1 +α2) 0 0 0 0

0 α1 −(α3 +θ1 +µ) 0 0 0

0 α2 α3 −(θ2 +µ +δ1) 0 0

0 0 θ1 θ2 −(µ +σ +δ2) 0

0 0 0 0 σ −µ


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and

B(X) =



Λ1−β1
S(t)IW (t)

N −β2
S(t)I(t)

N

Λ2 +β1
S(t)IW (t)

N +β2
S(t)I(t)

N

Λ3

0

0

0


The second term on the right-hand side of (8) satisfies

|B(X1)−B(X2)|= 2
∣∣∣β1

S1(t)IW.1(t)
N +β2

S1(t)I1(t)
N −β1

S2(t)IW.2(t)
N −β2

S2(t)I2(t)
N

∣∣∣
= 2

∣∣∣∣∣∣ β1
S1(t)IW.1(t)

N +β1
S1(t)IW.2(t)

N −β1
S1(t)IW.2(t)

N −β2
S1(t)I1(t)

N

+β2
S1(t)I2(t)

N −β2
S1(t)I2(t)

N −β1
S2(t)IW.2(t)

N +β2
S2(t)I2(t)

N

∣∣∣∣∣∣
≤ 2

 ∣∣∣β1S1(t)
N

∣∣∣ |IW.1(t)− IW.2(t)|+
∣∣∣β1IW.2(t)

N

∣∣∣ |S1(t)−S2(t)|

+
∣∣∣β2S1(t)

N

∣∣∣ |I1(t)− I2(t)|+
∣∣∣β2I2(t)

N

∣∣∣ |S1(t)−S2(t)|


≤ 2 Z

µ

 ∣∣∣β1
N

∣∣∣ |IW.1(t)− IW.2(t)|+
∣∣∣β1

N

∣∣∣ |S1(t)−S2(t)|

+
∣∣∣β2

N

∣∣∣ |I1(t)− I2(t)|+
∣∣∣β2

N

∣∣∣ |S1(t)−S2(t)|


≤M (|X1(t)−X2(t)|)

Where M = 2 Z
µ

(∣∣∣β1
N

∣∣∣+ ∣∣∣β2
N

∣∣∣ ; ∣∣∣β1
N

∣∣∣+ ∣∣∣β2
N

∣∣∣)
then

‖ϕ(X1)−ϕ(X2)‖ ≤V.‖X1−X2‖

Where V = max(M,‖A‖)< ∞.

Thus, it follows that the function ϕ is uniformly Lipschitz continuous, and the restriction on

S (t) ≥ 0, IW (t) ≥ 0 , I (t) ≥ 0, C (t) ≥ 0, H (t) ≥ 0 and R(t) ≥ 0, we see that a solution of the

system exists[18]. �

3. THE OPTIMAL CONTROL PROBLEM

As of today 30 March 2020, there is no cure or vaccine for the virus, so we suggest the

following strategies: there are three controls u(t), v(t) and w(t) for t ∈ [0,T ]. The first control

can be interpreted as the proportion to be subjected to sensitation and prevention. So, we note

that u is the awerness program to susceptible people at time t. The second control can be

interpreted as quarantine and health monitoring, so, we note that v(I(t)+C(t)) is the proportion
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of quarantine and health monitoring of people with the virus and its complications. The third

control can be interpreted as the proportion to be subjected to diagonosis and monitoring, so,

we note that wIW (t) is the proportion diagnosis and monitoring of all persons arriving from

areas spread the pandemic at time t.

(9)

dS(t)
dt = Λ1−µ S(t)−β1(1−u(t))S(t)IW (t)

N −β2(1−u(t))S(t)I(t)
N

dIW (t)
dt = Λ2 +β1(1−u(t))S(t)IW (t)

N +β2(1−u(t))S(t)I(t)
N − ( µ +α1 +α2)IW (t)−w(t)IW (t)

dI(t)
dt = Λ3 +α1IW (t)− (α3 +θ1 +µ)I(t)− v(t)I(t)

dC(t)
dt = α2IW (t)+α3I(t)− (θ2 +µ +δ1)C(t)− v(t)C(t)

dH(t)
dt = θ1I(t)+θ2C(t)− (µ +σ +δ2)H(t)+w(t)IW (t)+ v(t)(I(t)+C(t))

dR(t)
dt = σH(t)−µR(t)

The problem is to minimize the objective functional

(10)

J(u,v,w) = I(T )+C(T )+ IW (T )+

T̂

0

[
I(t)+C(t)+ IW (t)+

A
2

u2(t)+
B
2

v2(t)+
G
2

w2(t)
]

dt

Where A ≥ 0, B ≥ 0 and G ≥ 0 are the cost coefficients. They are selected to weigh the

relative importance of u(t), v(t) and w(t) at time t, T is the final time.

In other words, we seek the optimal controls u∗,v∗ and w∗ such that

(11) J(u∗,v∗,w∗) = min
u,v,w∈U

J(u,v,w)

Where U is the set of admissible controls defined by

(12) U =

 u,v,w/0≤ umin ≤ u(t)≤ umax ≤ 1 ,0≤ vmin ≤ v(t)≤ vmax ≤ 1

and 0≤ wmin ≤ w(t)≤ wmax ≤ 1, t ∈ [0,T ]


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4. THE OPTIMAL CONTROL: EXISTENCE AND CHARACTERIZATION

We first show the existence of solutions of the system (9), thereafter we will prove the exis-

tence of optimal control([12]).

4.1. Existence of an Optimal Control.

Theorem 4. Consider the control problem with system (9) .

There exists an optimal control (u∗,v∗,w∗) ∈U3 such that J(u∗,v∗,w∗) = min
u,v,w∈U

J(u,v,w)

Proof. The existence of the optimal control can be obtained using a result by Fleming and

Rishel [12], checking the following steps :

• It follows that the set of controls and corresponding state variables is nonempty. Using

Boyce and DiPrima [15]

To prove that the set of controls and the corresponding state variables

is nonempty, we will use a simplified version of an existence result [15]. Let X ′i =

FXi(t;X1,X2, · · · ,X6) with i = 1; · · · ;6 where (X1,X2, · · · ,X6) = (S, IW , I,C,H,R) where

X1, · · · ,X5 and X6 form the right-hand side of the system of equations (9). Let u,v

and w for some constants and since all parameters are constants and X1, · · · ,X5 and X6

are continuous, then FS,FIW ,FI;FC;FH and FR are also continuous. Additionally, the

partial derivatives
∂FXi
∂Xi

with i = 1; · · · ;6 are all continuous. therefore, there exists a

unique solution (S, IW , I,C,H,R) that satisfies the initial conditions. therefore, the set of

controls and the corresponding state variables is nonempty and condition 1 is satisfied.

• J(u,v,w) = I(T )+C(T )+ IW (T )+
T́

0

[
I(t)+C(t)+ IW (t)+ A

2 u2(t)+ B
2 v2(t)+ G

2 w2(t)
]

dt is convex in U.

Take any controls u,v ∈U and λ ∈ [0,1]. then 0 ≤ λu+(1−λ )v Additionally, we

observe that λu ≤ λ and (1− λ )v ≤ (1− λ ), then λu+(1− λ )v ≤ λ +(1− λ ) = 1

Hence, 0≤ λu+(1−λ )v≤ 1, for all u,v ∈U and λ ∈ [0,1].

• The control space U = {(u,v,w)/(u,v,w) is measurable, 0 ≤ umin ≤ u(t) ≤ umax ≤

1 ,0 ≤ vmin ≤ v(t) ≤ vmax ≤ 1 and 0 ≤ wmin ≤ w(t) ≤ wmax ≤ 1, t ∈ [0,T ]}. is con-

vex and closed by definition.
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• All the right hand sides of equations of system are continuous, bounded above by a sum

of bounded control and state, and can be written as a linear function of u,v and w with

coefficients depending on time and state.

From the system of differential equations (9),

dN
dt

= Λ−µN

lim
t→∞

supN(t)≤ Λ

µ

Therefore, all solutions of the model (9) are bounded. So, there exist positive con-

stants Z1, Z2, Z3, Z4, Z5 and Z6 such that ∀t ∈ [0,T ]:

S (t)≤ Z1, IW (t)≤ Z2 , I (t)≤ Z3,C (t)≤ Z4,H (t)≤ Z5 and R(t)≤ Z6

We consider

FS =
.
S(t)≤ Λ1

FIW =
.

IW (t)≤ Λ2

FI =
.
I(t)≤ Λ3

FC =
.

C(t)≤ α2IW (t)+α3I(t)− v(t)Z4

FH =
.

H(t)≤ θ1I(t)+θ2C(t)+w(t)IW (t)+ v(t)(Z3 +Z4)

FR =
.
R(t)≤ σH(t)

So, we can rewrite system (9) in matrix form as

F(t;S, IW , I,C,H,R)≤ Λ+AX(t)−BU(t)

where

F(t;S, IW , I,C,H,R) =
[

FS FIW FI FC FH FR

]T

Λ =
[

Λ1 Λ2 Λ3 0 0 0
]T

X(t) =
[

S IW I C H R
]T

U(t) =
[

u v w
]T
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A =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 α2 α3 0 0 0

0 0 θ1 θ2 0 0

0 0 0 0 σ 0



B =



−β1
SIW
N −β2

SI
N 0 0

β1
SIW
N +β2

SI
N 0 IW

0 I 0

0 C 0

0 I +C IW

0 0 0


It gives a linear function of control vector and state variable vector. therefore, we can

write

F(t;S, IW , I,C,H,R) ≤ ‖Λ‖+‖A‖‖X(t)‖+‖B‖‖U(t)‖

≤ ϕ +ψ(‖X(t)‖+‖U(t)‖)

where ϕ ≤ ‖Λ‖ and ψ = max(‖A‖,‖B‖).

Hence, we see the right-hand side is bounded by a sum of state and control vectors.

• The integrand in the objective functional I(t)+C(t)+ IW (t)+ A
2 u2(t)+ B

2 v2(t)+ G
2 w2(t)

is clearly convex on U

• It rest to show that there exists constants ζ1,ζ2,ζ3,ζ4 > 0,

and ζ such that I(t)+C(t)+ IW (t)+ A
2 u2(t)+ B

2 v2(t)+ G
2 w2(t)

satisfies I(t) +C(t) + IW (t) + A
2 u2(t) + B

2 v2(t) + G
2 w2(t) ≥ ζ1 + ζ2 |u|ζ + ζ3 |v|ζ +

ζ4 |w|ζ .

The state variables being bounded, let ζ1 = inf
t∈[0,T ]

(I(t)+C(t)+ IW (t)) ,ζ2 =
A
2 , ζ3 =

B
2 , ζ5 =

G
2 and ζ = 2 then it follows that: I(t)+C(t)+S(t)+ IW (t)+ A

2 u2(t)+ B
2 v2(t)+

G
2 w2(t)≥ ζ1 +ζ2 |u|ζ +ζ3 |v|ζ +ζ4 |w|ζ .

Then from Fleming and Rishel [12] we conclude that there exists an optimal control.
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�

4.2. Characterization of the optimal control. In order to derive the necessary conditions for

the optimal control, we apply Pontryagin’s maximum [11]

principle to the Hamiltonian
∧
H at time t defined by

(13)
∧
H(t) = I(t)+C(t)+ IW (t)+

A
2

u2(t)+
B
2

v2(t)+
G
2

w2(t)+
6

∑
i=1

λi (t) fi(S, IW , I,C,H,R)

where fi, is the right side of the difference equation of the ith state variable.

Theorem 5. Given the optimal controls (u∗,v∗,w∗) and the solutions S∗, IW ∗ , I∗,C∗,H∗ and

R∗ of the corresponding state system (9), there exists adjoint variables λ1,λ2 ,λ3,λ4,λ5 and λ6

satisfying:

λ
′
1 = λ1( µ +β1(1−u(t))

IW (t)
N

+β2(1−u(t))
I(t)
N

)−λ2

(
β1(1−u(t))

IW (t)
N

+β2(1−u(t))
I(t)
N

)

λ
′
2 =−1+λ1β1 (1−u(t))

S(t)
N
−λ2

(
β1(1−u(t))

S(t)
N
−µ −α1−α2−w(t)

)
−λ3α1−λ4α2−λ5w(t)

λ
′
3 =−1+λ1β2(1−u(t))

S(t)
N
−λ2β2(1−u(t))

S(t)
N

+λ3(α3 +θ1 +µ + v(t))−λ4α3−λ5 (θ1 + v(t))

λ
′
4 =−1−λ4 (θ2 +µ +δ1 + v(t))−λ5 (θ2 + v(t))

λ
′
5 = λ5 (µ +σ +δ2)−λ6σ

λ
′
6 = λ6µ

With the transversality conditions at time Tf : λ1
(
Tf
)
= 0, λ2

(
Tf
)
= −1, λ3

(
Tf
)
= −1,

λ4
(
Tf
)
=−1, λ5

(
Tf
)
= 0 and λ6

(
Tf
)
= 0.

Furthermore, for t ∈ [0,T ], the optimal controls u∗,v∗ and w∗ are given by

(14) u∗ = min
(

1,max
(

0,
(λ2−λ1)

A

(
β1

S(t)IW (t)
N

+β2
S(t)I(t)

N

)))

(15) v∗ = min
(

1,max
(

0,
(λ3I(t)+λ4C(t)−λ5(I(t)+C(t))

B

))

(16) w∗ = min
(

1,max
(

0,
(λ2−λ5)

G
× IW (t)

))
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Proof. The Hamiltonian
∧
H is defined as follows:

∧
H(t) = I(t)+C(t)+S(t)+ IW (t)+ A

2 u2(t)+ B
2 v2(t)+ G

2 w2(t)+
6
∑

i=1
λi (t) fi(S, IW , I,C,H,R)

where :

f1(S, IW , I,C,H,R) = Λ1−µS(t)−β1(1−u(t))S(t)IW (t)
N −β2(1−u(t))S(t)I(t)

N

f2(S, IW , I,C,H,R) = Λ2 + β1(1 − u(t))S(t)IW (t)
N + β2(1 − u(t))S(t)I(t)

N − (µ + α1 + α2 −

w(t))IW (t)

f3(S, IW , I,C,H,R) = Λ3 +α1IW (t)− (α3 +θ1 +µ)I(t)− v(t)I(t)

f4(S, IW , I,C,H,R) = α2IW (t)+α3I(t)− (θ2 +µ +δ1)C(t)− v(t)C(t)

f5(S, IW , I,C,H,R) = θ1I(t)+θ2C(t)− (µ +σ +δ2)H(t)+w(t)IW (t)+ v(t)(I(t)+C(t))

f6(S, IW , I,C,H,R) = σH(t)−µR(t)

For t ∈ [0,T ] , the adjoint equations and transversality conditions can be obtained by using

Pontryagin’s maximum principle[5,10] such that

λ
′
1 =−

∂
∧
H

∂S
= λ1( µ +β1(1−u(t))

IW (t)
N

+β2(1−u(t))
I(t)
N

)−λ2

(
β1(1−u(t))

IW (t)
N

+β2(1−u(t))
I(t)
N

)

λ
′
2 =−

∂
∧
H

∂ IW
=−1+λ1β1 (1−u(t))

S(t)
N
−λ2

(
β1(1−u(t))

S(t)
N
− µ −α1−α2−w(t)

)
−λ3α1−λ4α2−λ5w(t)

λ
′
3 =−

∂
∧
H

∂ I
=−1+λ1β2(1−u(t))

S(t)
N
−λ2β2(1−u(t))

S(t)
N

+λ3(α3 +θ1 +µ + v(t))−λ4α3−λ5 (θ1 + v(t))

λ
′
4 =−

∂
∧
H

∂C
=−1−λ4 (θ2 +µ +δ1 + v(t))−λ5 (θ2 + v(t))

λ
′
5 =−

∂
∧
H

∂H
= λ5 (µ +σ +δ2)−λ6σ

λ
′
6 =−

∂
∧
H

∂R
= λ6µ

For t ∈ [0,T ] , the optimal controls u∗,v∗ and w∗ can be solved from the optimality condition,

∂
∧
H

∂u
= 0

∂
∧
H

∂v
= 0

∂
∧
H

∂w
= 0

That are
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−∂
∧
H

∂u
= −Au(t)+(λ2−λ1)

(
β1

S(t)IW (t)
N

+β2
S(t)I(t)

N

)
= 0

−∂
∧
H

∂v
= −Bv(t)+λ3I(t)+λ4C(t)−λ5(I(t)+C(t)) = 0

−∂
∧
H

∂w
= −Gw(t)+(λ2−λ5)IW (t) = 0

we have

u(t) =
(λ2−λ1)

A

(
β1

S(t)IW (t)
N

+β2
S(t)I(t)

N

)

v(t) =
(λ3I(t)+λ4C(t)−λ5(I(t)+C(t))

B

w(t) =
(λ2−λ5)

G
× IW (t)

By the bounds in U of the controls, it is easy to obtain u∗,v∗ and w∗ are given in (14,15, 16)

the form of system(9). �

5. NUMERICAL SIMULATION

In this section, we present the results obtained by numerically solving the optimality system.

In our control problem, we have initial conditions for the state variables and terminal conditions

for the adjoints. That is, the optimality system is a two-point boundary value problem with

separated boundary conditions at times step i = 0 and i = T . We solve the optimality system by

an iterative method with forward solving of the state system followed by backward solving of

the adjoint system. We start with an initial guess for the controls at the first iteration and then

before the next iteration, we update the controls by using the characterization. We continue until

convergence of successive iterates is achieved. A code is written and compiled in MATLAB

using the following data.

Different simulations can be carried out using various values of parameters. In the present

numerical approach, we use the following parameters values:
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Paramter Description value in d−1

µ Natural mortality 0.02

β1 The rate of people who were infected by contact with infected without sympt 0.2

β2 The rate of people who were infected by contact with infected with sympt 0.1

α1 The rate of people become normaly infected with symptoms 0.8

α2 The rate of people have developed a rapid development of the virus 0.4

α3 The rate of People have severe complications such as pulmonary failure. 0.2

θ1 The rate of people with symptoms of mild virus who have been quarantined. 0.1

θ2 The rate of people with serious complications who have been quarantined 0.2

δ1 Mortality rate due to complications and also decreasing. 0.3

δ2 The rate of people who died under quarantine in hospitals. 0.08

σ The rate of people who recovered from the virus and decreasing 0.08

Λ1 Denote the incidence of susceptible. 2000000

Λ2 Denote the incidence of Immigrants and carriers of the virus without sympt 2000

Λ3 Denote the incidence of Immigrants and carriers of the virus with sympt. 500

Table1: Parameter values used in numerical simulation

Since control and state functions are on different scales, the weight constant value is chosen as

follows: A= 105, B= 105, and G= 105, with intial value S(0) = 300000000, IW (0) = 2500000,

I(0) = 600000, C(0) = 5000, H(0) = 1000000, R(0) = 400000,

From table 1 and figure 2, we note the number of infected with symptoms increased, as

well as the increase in the number of infected with serious complications, as a result of the

transmission of infection from one person to another through several methods including contact

with an infected person or through respiratory secretions, such as sneezing and others, or by

traveling, migrant workers, or families and relatives of the infected persons.

The proposed control strategy in this work helps to achieve several objectives.

5.1. Strategy A: Sensitization and prevention. We use only the optimal control u(t)

This strategy aims to increase the number of people protected from virus, through figure (2)

note that after applying different strategic as awarness program and protected, which reduces

the high number of infected without symptoms.
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FIGURE 2. The evolution of the infected with and without complications

without controls

FIGURE 3. The evolution of the number of infected people with and without

symptoms with control u(t)
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Without and with control u(t) after 100 Days Without control With control Percentage of decreasing

Infected without symptoms 1.11×107 2.18×106 80.35%

Infected with symptoms 2.36×107 4.72×106 80%

Infected with complication 3.58×106 6.95×105 80.6%

Table 2: Percentage of decreasing of number of infected with its types.

According to Figure 3 and table 2, the strategy of sensitization and prevention has been

adopted, through awareness-raising campaigns for all citizens to inform them to the seriousness

of the virus, through the mass media, and to take prevention measures by avoiding infected

people, washing hands regularly, especially after sneezing, and wearing face masks, as well as

reducing the spread of the virus.

Note: Up to the time limit, there is no vaccine or treatment for this virus.

5.2. Strategy B: Quarantine. We use only the optimal control v(t)

FIGURE 4. The evolution of the number of infected and infected with serious

complications with control v(t)

Without and with control v(t) after 100 Days Without control With control Percentage of decreasing

Infected with symptoms 2.36×107 9.3×105 96%

Infected with complication 3.58×106 2.96×105 92%

Table 3: Percentage of decreasing of number of infected with its types.

Based on figure 4 and table 3, the quarantine strategy was adopted for all people with symp-

toms, as well as those with serious complications inside hospitals, in addition to preventing
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entry and exit to and from the areas of the outbreak of the Coronavirus Emerging Virus 2019,

this measure adopted by more countries were quarantined.

This is explained by figure 4, by the decrease in the number of people with symptoms and

infected with complications after quarantine.

5.3. Strategy D: Diagnosis and monitoring. We use only the optimal control w(t)

FIGURE 5. The evolution of the number of infected without symptoms and

hospitalization with control w(t)

Without and with control u(t) after 100 Days Without control With control Percentage of decreasing

Infected without symptoms 1.11×107 7.06×105 93.6%

Infected with symptoms 2.36×107 1.67×106 92.2%

Infected with complication 3.58×106 2.22×105 93.4%

Table 4: Percentage of decreasing of number of infected with its types.

Starting from figure 5 and table 4, the strategy of diagnosis and monitoring was adopted, this

appears in the diagnosis of all cases of people likely to be infected with the virus, especially

the family, relatives and neighbors of the person who was diagnosed, in addition to preventive

precautions such as monitoring in all transport means such as metro, trains and airports and
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sending all arrivals from pandemic areas to quarantine. The main objective of this procedure is

to limit the spread of virus to other countries.

Remark: We can also merge multiple assemblies as (u(t),v(t)) and (u(t),v(t),w(t)) thus get

a variety of results.

6. CONCLUSION

In this paper, we introduced a matematical model of Novel Coronavirus (COVID-19), sus-

ceptible and infected by different step of developing of virus and guarantine and recovered, in

order to minimize the number of infected and infected with several complications. We also

introduced three controls which, respectively, represent sensitization and prevention, quaran-

tine, diagnosis and monitoring. We applied the results of the control theory and we managed to

obtain the characterizations of the optimal controls. The numerical simulation of the obtained

results showed the effectiveness of the proposed control strategies.
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