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Abstract. In this paper, we consider a fractional order SIR epidemic model with double epidemic hypothesis and

specific functional response, where the fractional derivative is defined in the Caputo sense. The nonnegativity and

boundedness of solutions in this system are proved. The basic reproduction number is obtained. Qualitative results

show that the model has four equilibria: one disease-free equilibrium and three endemic equilibrium points. Local

and global stability analysis of the equilibria are established.
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1. INTRODUCTION

Fractional calculus is the field of mathematical analysis aiming at the investigation of inte-

grals and derivatives of arbitrary (non integer) orders. In recent years, with the continuous de-

velopment of fractional calculus theory, fractional differential equations are increasingly used

∗Corresponding author

E-mail address: naimmouhcine2013@gmail.com

Received May 4, 2020
1



2 MOUHCINE NAIM, FOUAD LAHMIDI, ABDELWAHED NAMIR

to modeling many phenomena in different fields see, e.g., [1, 2, 3, 4]. The importance of model-

ing real phenomena using the fractional differential equations is due to these fractional systems

naturally include both memory and nonlocality effects [5]. These effects are quite relevant to

epidemic spread. Therefore, large numbers of researchers have started to study the epidemic

models using the fractional differential equations, see, e.g., [6, 7, 8, 9, 10, 11]. Mouaouine et al.

[10] proposed the following fractional order SIR epidemic model with nonlinear incidence rate

(1)



DαS(t) = Λ−µS(t)− βS(t)I(t)
1+α1S(t)+α2I(t)+α3S(t)I(t) , t ≥ 0,

Dα I(t) = βS(t)I(t)
1+α1S(t)+α2I(t)+α3S(t)I(t) − (µ +d + r)I(t),

DαR(t) = rI(t)−µR(t),

where Dα is the Caputo fractional derivative of order α ∈ (0,1] defined for a function f ∈

C1(R+,R) as follows [12]

Dα f (t) =
1

Γ(1−α)

∫ t

0
(t− s)−α f ′(s)ds,

where Γ is the Gamma function defined by the integral

Γ(α) =
∫

∞

0
tα−1e−tdt.

In system (1), S(t), I(t), and R(t) represent the numbers of susceptible, infective, and recov-

ered individuals at time t, respectively. Λ is the recruitment rate of the population, µ is the

natural death rate, d is the death rate due to disease and r is the recovery rate of the infective

individuals. The incidence rate of disease in model (1) is modeled by the specific functional

response βSI/(1+α1S+α2I +α3SI), where β is the infection rate and α1,α2,α3 are satura-

tion factors measuring the psychological or inhibitory effect. This specific functional response

was introduced by Hattaf et al. [13], and here it becomes to be, a bilinear incidence rate if

α1 = α2 = α3 = 0, a saturated incidence rate if α1 = α3 = 0 or α2 = α3 = 0, a Beddington-

DeAngelis functional response [14, 15] if α3 = 0, and a Crowley-Martin functional response

[16] if α1α2 = α3. According to the theory in [10], the basic reproduction number of model (1)

is R0 = βΛ� [(µ +α1Λ)(µ +d + r)]. Moreover, if R0 ≤ 1, model (1) has only the disease-free
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equilibrium E0 = (Λ

µ
,0,0) which is globally asymptotical stable, and if R0 > 1, E0 becomes

unstable and system (1) has an endemic equilibrium which is globally asymptotically stable.

In classical epidemic models, there exists only one epidemic disease caused by one virus.

In fact, there might be two epidemic diseases caused by two different viruses. Recently, many

authors studied the epidemic models with double epidemic hypothesis, see, e.g., [17, 18, 19, 20,

21, 22, 23, 24, 25, 26]. In this paper, we propose the fractional epidemic model (1) with double

epidemic hypothesis written as follows

(2)



DαS(t) = Λ−µS(t)− β1S(t)I1(t)
1+α1S(t)+γ1I1(t)+ρ1S(t)I1(t)

− β2S(t)I2(t)
1+α2S(t)+γ2I2(t)+ρ2S(t)I2(t)

,

Dα I1(t) =
β1S(t)I1(t)

1+α1S(t)+γ1I1(t)+ρ1S(t)I1(t)
− (µ + r1 +λ1)I1(t),

Dα I2(t) =
β2S(t)I2(t)

1+α2S(t)+γ2I2(t)+ρ2S(t)I2(t)
− (µ + r2 +λ2)I2(t),

DαR(t) = λ1I1(t)+λ2I2(t)−µR(t),

where S(t) is the number of susceptible individuals at time t, I1(t) and I2(t) are the numbers

of infected individuals with virus V1 and V2 at time t, respectively, and R(t) is the number of

individuals who have recovered, βi is the transmission coefficients between S and Ii, i = 1,2.

αi, γi and ρi are saturation factors, ri is the disease related death rate caused by virus Vi, λi is the

recovery rate of the disease caused by virus Vi. As in model (1), α ∈ (0,1] is the order of the

fractional derivative, Λ is the recruitment rate of susceptible individuals, µ is the natural death

rate of the population. All parameters in model (2) are positive constants.

Since the three first equations in system (2) are independent of the four equation, system (2)

can be reduced to the following equivalent system

(3)



DαS(t) = Λ−µS(t)− β1S(t)I1(t)
1+α1S(t)+γ1I1(t)+ρ1S(t)I1(t)

− β2S(t)I2(t)
1+α2S(t)+γ2I2(t)+ρ2S(t)I2(t)

,

Dα I1(t) =
β1S(t)I1(t)

1+α1S(t)+γ1I1(t)+ρ1S(t)I1(t)
− (µ + r1 +λ1)I1(t),

Dα I2(t) =
β2S(t)I2(t)

1+α2S(t)+γ2I2(t)+ρ2S(t)I2(t)
− (µ + r2 +λ2)I2(t).
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The rest of this paper is organized as follows. In the next section, the existence of equilibria

and the well-posedness of the model including existence, nonnegativity and boundedness of

the solutions are established. In Section 3, we discuss the local stability of the equilibria of

model (3). By constructing suitable Lyapunov functionals, the global stability of the equilibria

is investigated in Section 4. A conclusion is given in Section 5.

2. WELL-POSEDNESS AND EQUILIBRIA

Theorem 2.1. For any nonnegative initial condition, system (3) has a unique solution. More-

over, this solution remains nonnegative and bounded.

Proof. By using Theorem 3.1 and Remark 3.2 in [27], it is easy to prove that system (3) has a

unique solution (S, I1, I2) with any nonnegative initial condition. Now, we show the nonnegativ-

ity of this solution. From (3), one has
DαS|S=0 = Λ > 0 for all I1, I2 ≥ 0,

Dα I1|I1=0 = 0 for all S, I2 ≥ 0,

Dα I2|I2=0 = 0 for all S, I1 ≥ 0.

By Lemma 2.1 and Corollary 2.1 in [28], one can deduce that the solution of the fractional

order system (3) is nonnegative. Next, we prove the boundedness of solution. Summing all the

equations of system (3) we find that the total population size N (t) = S (t)+ I1 (t)+ I2 (t) satisfies

the inequality

DαN (t) = Λ−µN (t)− (r1 +λ1)I1(t)− (r2 +λ2)I1(t)≤ Λ−µN (t) .

By Lemma 3 in [29], we have

N (t)≤
(

N (0)− Λ

µ

)
Eα (−µtα)+

Λ

µ
.

where Eα(z) =
∞

∑
k=0

zk

Γ(αk+1) is the Mittag-Leffler function of parameter α [30]. Therefore,

limsup
t→∞

N(t)≤ Λ

µ
,

which implies that S(t), I1(t) and I2(t) are bounded.

It is obvious that model (3) always has a disease-free equilibrium E0 = (S0,0,0), where

S0 =
Λ

µ
, that is, there is no infection present in the population and all individuals are susceptible.
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By applying the next generation matrix approach provided by van den Driessche and Watmough

[31], the basic reproduction number of model (3) is defined as follows

R0 = max{R01,R02} ,

where

R01 =
β1Λ

(µ +α1Λ)(µ + r1 +λ1)
and R02 =

β2Λ

(µ +α2Λ)(µ + r2 +λ2)
.

Now, if R01 > 1, then system (3) has the endemic equilibrium E∗1 = (S∗1, I
∗
1 ,0), where

S∗1 =
Λ−ϖ1I∗1

µ
,

I∗1 =
2(µ +α1Λ)(R01−1)

β1−α1ϖ1 + γ1µ +ρ1Λ+
√

∆1
,

with ϖ1 = µ + r1 +λ1 and

∆1 = [β1−α1ϖ1 + γ1µ +ρ1Λ]2−4ρ1 [β1Λ− (µ +α1Λ)ϖ1]

= [β1−α1ϖ1 + γ1µ−ρ1Λ]2 +4ρ1µ(ϖ1 + γ1Λ).

Further, if R02 > 1, then system (3) has the endemic equilibrium E∗2 = (S∗2,0, I
∗
2 ), where

S∗2 =
Λ−ϖ2I∗2

µ
,

I∗2 =
2(µ +α2Λ)(R02−1)

β2−α2ϖ2 + γ2µ +ρ2Λ+
√

∆2
,

with ϖ2 = µ + r2 +λ2 and

∆2 = [β2−α2ϖ2 + γ2µ +ρ2Λ]2−4ρ2 [β2Λ− (µ +α2Λ)ϖ2]

= [β2−α2ϖ2 + γ2µ−ρ2Λ]2 +4ρ2µ(ϖ2 + γ2Λ).

Now, we investigate the existence of the positive endemic equilibrium E∗ = (S∗, I1
∗ , I

2
∗ ). For

this, we rearranged system (3) to get I∗1 and I∗2 as follows

I1
∗ =

(
µ

Λ
R01 +α1(R01−1)

)
S∗−1

γ1 +ρ1S∗
,

I2
∗ =

(
µ

Λ
R02 +α2(R02−1)

)
S∗−1

γ2 +ρ2S∗
.
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In addition, S∗ is given by the following cubic equation

(4) C0S3
∗+C1S2

∗+C2S∗−C3 = 0,

where

C0 = µρ1ρ2 > 0,

C1 = µ (γ1ρ2 + γ2ρ1)−Λρ1ρ2 +ρ1(β2−α2ϖ2)+ρ2(β1−α1ϖ1),

C2 = µγ1γ2−Λ(γ1ρ2 + γ2ρ1)+ γ1(β2−α2ϖ2)−ρ1ϖ2 + γ2(β1−α1ϖ1)−ρ2ϖ1,

C3 = Λγ1γ2 + γ1ϖ2 + γ2ϖ1 > 0.

With the help of Descartes’ rule of signs [32], Eq. (4) has a unique positive real root S∗ if any

one of the following holds

(i) C1 > 0, C2 > 0.

(ii) C1 > 0, C2 < 0.

(iii) C1 < 0, C2 < 0.

Hence the positive endemic equilibrium E∗ exists when R01 > 1, R02 > 1, one of the condi-

tions (i), (ii) and (iii) hold true and S∗ > max
i=1,2

{
Λ

µR0i+αiΛ(R0i−1)

}
.

3. LOCAL STABILITY

In this section, we discuss the local stability of the equilibria of system (3).

Lemma 3.1. [33]. Consider the fractional order system

Dαx(t) = f (x(t)), x(0) = x0,

where α ∈ (0,1], x(t) ∈ Rn and f : Rn 7→ Rn is a nonlinear function. An equilibrium point

of the above system is locally asymptotically stable if all the eigenvalues ξ j ( j = 1,2, . . . ,n) of

the Jacobian matrix J = ∂ f
∂x evaluated at the equilibrium satisfy

∣∣arg(ξ j)
∣∣> απ

2 , and unstable if

there exist an eigenvalue ξ j such that
∣∣arg(ξ j)

∣∣< απ

2 .
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The Jacobian matrix of system (3) at the equilibrium E0 is as follows

JE0 =


−µ

−β1Λ

µ+α1Λ

−β2Λ

µ+α2Λ

0 β1Λ

µ+α1Λ
− (µ + r1 +λ1) 0

0 0 β2Λ

µ+α2Λ
− (µ + r2 +λ2)

 .

The three eigenvalues of JE0 are ξ1 = −µ < 0, ξ2 = (µ + r1 +λ1)(R01−1) and ξ3 = (µ +

r2 +λ2)(R02−1) . So that all eigenvalues ξ j ( j = 1,2,3) of JE0 satisfy
∣∣arg(ξ j)

∣∣= π > απ

2 for

all α ∈ (0,1] if R0 < 1. Further, |arg(ξ2)|= 0 < απ

2 for all α ∈ (0,1] if R01 > 1 and |arg(ξ3)|=

0 < απ

2 for all α ∈ (0,1] if R02 > 1. Consequently, by Lemma 3.1, we have the following result.

Theorem 3.1. If R0 < 1, then the disease-free equilibrium E0 is locally asymptotically stable.

E0 unstable if R0 > 1.

The Jacobian matrix of system (3) at the equilibrium E∗1 is determined by

JE∗1 =


−m1 −m2 −m3

m4 m2−m5 0

0 0 m3−m6

 ,

where

m1 = µ +
β1I∗1 (1+ γ1I∗1 )

(1+α1S∗1 + γ1I∗1 +ρ1S∗1I∗1 )
2 ,

m2 =
β1S∗1(1+α1S∗1)

(1+α1S∗1 + γ1I∗1 +ρ1S∗1I∗1 )
2 ,

m3 =
β2S∗1

1+α2S∗1
,

m4 =
β1I∗1 (1+ γ1I∗1 )

(1+α1S∗1 + γ1I∗1 +ρ1S∗1I∗1 )
2 ,

m5 = µ + r1 +λ1,

m6 = µ + r2 +λ2.

Clearly, ξ1 =
β2S∗1

1+α2S∗1
−(µ + r2 +λ2) is an eigenvalue of JE∗1 . Since S∗1 <

Λ

µ
because Λ−µS∗1 =

ϖ1I∗1 > 0 and the function g : x ∈ R+ 7→ β2x
1+α2x is increasing, then ξ1 ≤ g(A

µ
)− (µ + r2 +λ2) =

β2Λ

µ+α2Λ
− (µ + r2 +λ2) = (µ + r2 +λ2)(R02−1). Hence ξ1 < 0 if R02 < 1, then |arg(ξ1)| =

π > απ

2 for all α ∈ (0,1] if R02 < 1. The other two eigenvalues of JE∗1 are determined by the
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following equation

ξ
2 +P1ξ +P0 = 0,

where

P1 = m1 +m5−m2,

P0 = m1 (m5−m2)+m2m4.

Since

m5−m2 =
β1S∗1I∗1 (γ1 +ρ1S∗1)

(1+α1S∗1 + γ1I∗1 +ρ1S∗1I∗1 )
2 > 0,

then P1 > 0 and P0 > 0. Thus the eigenvalues ξ j ( j = 2,3) of JE∗1 have negative real part, so that∣∣arg(ξ j)
∣∣> π

2 ≥
απ

2 for all α ∈ (0,1] if R01 > 1. Hence, we have the following theorem.

Theorem 3.2. If R02 < 1 < R01, then the equilibrium E∗1 is locally asymptotically stable.

As in the stability analysis of previous case E∗1 we have following result.

Theorem 3.3. If R01 < 1 < R02, then the equilibrium E∗2 is locally asymptotically stable.

The Jacobian matrix of system (3) at the positive equilibrium E∗ is determined by

JE∗ =


−p1 −p2 −p3

p4 p2− p5 0

p6 0 p3− p7

 ,

where

p1 = µ +
β1I1
∗ (1+ γ1I1

∗ )

(1+α1S∗+ γ1I1
∗ +ρ1S∗I1

∗ )
2 +

β2I2
∗ (1+ γ2I2

∗ )

(1+α2S∗+ γ2I2
∗ +ρ2S∗I2

∗ )
2 ,

p2 =
β1S∗(1+α1S∗)

(1+α1S∗+ γ1I1
∗ +ρ1S∗I1

∗ )
2 ,

p3 =
β2S∗(1+α2S∗)

(1+α2S∗+ γ2I2
∗ +ρ2S∗I2

∗ )
2 ,

p4 =
β1I1
∗ (1+ γ1I1

∗ )

(1+α1S∗+ γ1I1
∗ +ρ1S∗I1

∗ )
2 ,

p5 = µ + r1 +λ1,

p6 =
β2I2
∗ (1+ γ2I2

∗ )

(1+α2S∗+ γ2I2
∗ +ρ2S∗I2

∗ )
2 ,

p7 = µ + r2 +λ2.

Theorem 3.4. The positive endemic equilibrium E∗ is locally asymptotically stable if it is exists.
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Proof. The characteristic equation of Jacobian matrix JE∗ can be given as

(5) ξ
3 +Q2ξ

2 +Q1ξ +Q0 = 0,

where

Q2 = p1 +(p5− p2)+(p7− p3),

Q1 = p1(p5− p2 + p7− p3)+(p5− p2)(p7− p3)+ p2 p4 + p3 p6,

Q0 = p1(p5− p2)(p7− p3)+ p2 p4(p7− p3)+ p3 p6(p5− p2).

Note that

p5− p2 =
β1S∗I1

∗ (γ1 +µ1S∗)
(1+α1S∗+ γ1I1

∗ +ρ1S∗I1
∗ )

2 > 0,

p7− p3 =
β2S∗I2

∗ (γ2 +µ2S∗)
(1+α2S∗+ γ2I2

∗ +ρ2S∗I2
∗ )

2 > 0,

then it is easy to show that Q2 > 0, Q1 > 0, Q0 > 0 and Q2Q1 > Q0. Thus by the Routh-Hurwitz

criterion, all roots ξi (i = 1,2,3), of (5) have negative real part. Therefore, the equilibrium E∗

of the system (3) is asymptotically stable.

4. GLOBAL STABILITY

In this section, we investigate the global stability of the four equilibria.

Theorem 4.1. If R0 ≤ 1, then the disease-free equilibrium E0 is globally asymptotically stable.

Proof. Let U0 be the Lyapunov functional defined as

U0(t) =
S0

(1+α1S0)(1+α2S0)
g
(

S
S0

)
+

1
1+α2S0

I1 +
1

1+α1S0
I2,

where g(x) = x−1− lnx, x > 0. According to Lemma 3.1 in [34], one gets

DαU0 ≤ 1
(1+α1S0)(1+α2S0)

(
1− S0

S

)
DαS+

1
1+α2S0

Dα I1 +
1

1+α1S0
Dα I2

= − µ

(1+α1S0)(1+α2S0)

(S−S0)
2

S
− 1

(1+α1S0)(1+α2S0)

(
1− S0

S

)
β1SI1

1+α1S+ γ1I1 +ρ1SI1

− 1
(1+α1S0)(1+α2S0)

(
1− S0

S

)
β2SI2

1+α2S+ γ2I2 +ρ2SI2
+

1
1+α2S0

β1SI1

1+α1S+ γ1I1 +ρ1SI1

−µ + r1 +λ1

1+α2S0
I1 +

1
1+α1S0

β2SI2

1+α2S+ γ2I2 +ρ2SI2
− µ + r2 +λ2

1+α1S0
I2
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= − µ

(1+α1S0)(1+α2S0)

(S−S0)
2

S
+

µ + r1 +λ1

1+α2S0

(
R01

1+α1S
1+α1S+ γ1I1 +ρ1SI1

−1
)

I1

+
µ + r2 +λ2

1+α1S0

(
R02

1+α2S
1+α2S+ γ2I2 +ρ2SI2

−1
)

I2

DαU0 ≤ − µ

(1+α1S0)(1+α2S0)

(S−S0)
2

S
+

µ + r1 +λ1

1+α2S0
(R01−1) I1 +

µ + r2 +λ2

1+α1S0
(R02−1) I2.

Therefore, R0 ≤ 1 ensures that DαU0 ≤ 0. Furthermore, it is easy to verify that the singleton

{E0} is the largest compact invariant set in
{
(S, I1, I2) ∈ R3

+ : DαU0 = 0
}

. By Lemma 4.6 in

[35], which generalized the integer order LaSalle’s invariance principle to fractional order

system, we conclude that E0 is globally asymptotically stable if R0 ≤ 1.

Theorem 4.2. If R02 ≤ 1 < R01, then the equilibrium E∗1 is globally asymptotically stable.

Proof. Let U1 be the Lyapunov functional defined as

U1(t) =
1

1+α2S0

f1(0, I∗1 )
f1(S∗1, I

∗
1 )

S∗1g
(

S
S∗1

)
+

1
1+α2S0

I∗1 g
(

I1

I∗1

)
+

f1(0, I∗1 )
f1(S∗1, I

∗
1 )

I2,

where f1(S, I1) = 1+α1S+ γ1I1 +ρ1SI1. We have

DαU1 ≤
1

1+α2S0

f1(0, I∗1 )
f1(S∗1, I

∗
1 )

(
1−

S∗1
S

)
DαS+

1
1+α2S0

(
1−

I∗1
I1

)
Dα I1 +

f1(0, I∗1 )
f1(S∗1, I

∗
1 )

Dα I2.

Using

Λ = µS∗1 +
β1S∗1I∗1

f1(S∗1, I
∗
1 )

,
β1S∗1I∗1

f1(S∗1, I
∗
1 )

= (µ + r1 +λ1)I∗1 ,

and
f1(0, I∗1 )
f1(S∗1, I

∗
1 )

(
1−

S∗1
S

)
=

(
1−

S∗1 f1(S, I∗1 )
S f1(S∗1, I

∗
1 )

)
,

we obtain

DαU1 ≤ −µ0

1+α2S0

f1(0, I∗1 )
f1(S∗1, I

∗
1 )

(S−S∗1)
2

S
+

1
1+α2S0

(µ + r1 +λ1)I∗1

(
1− S∗1 f1(S, I∗1 )

S f1(S∗1, I
∗
1 )

)(
1− SI1 f1(S∗1, I

∗
1 )

S∗1I∗1 f1(S, I1)

)
− 1

1+α2S0

f1(0, I∗1 )
f1(S∗1, I

∗
1 )

(
1− S∗1

S

)
β2SI2

1+α2S+ γ2I2 +ρ2SI2

+
1

1+α2S0
(µ + r1 +λ1)I∗1

(
1− I∗1

I1

)(
SI1 f1(S∗1, I

∗
1 )

S∗1I∗1 f1(S, I1)
− I1

I∗1

)
+

f1(0, I∗1 )
f1(S∗1, I

∗
1 )

β2SI2

1+α2S+ γ2I2 +ρ2SI2
− f1(0, I∗1 )

f1(S∗1, I
∗
1 )

(µ + r2 +λ2) I2
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=
−µ

1+α2S0

f1(0, I∗1 )
f1(S∗1, I

∗
1 )

(S−S∗1)
2

S
+

1
1+α2S0

(µ + r1 +λ1)I∗1

(
2− S∗1 f1(S, I∗1 )

S f1(S∗1, I
∗
1 )
− S f1(S∗1, I

∗
1 )

S∗1 f1(S, I∗1 )

)
+

f1(0, I∗1 )
f1(S∗1, I

∗
1 )

β2I2

1+α2S0

S∗1 +α2SS0

1+α2S+ γ2I2 +ρ2SI2
− f1(0, I∗1 )

f1(S∗1, I
∗
1 )

(µ + r2 +λ2) I2.

Since S∗1 ≤ S0 because Λ−µS∗1 =
β1S∗1I∗1

f1(S∗1,I
∗
1 )

, then

DαU1 ≤ −µ

1+α2S0

f1(0, I∗1 )
f1(S∗1, I

∗
1 )

(S−S∗1)
2

S
+

1
1+α2S0

(µ + r1 +λ1)I∗1

(
2− S∗1 f1(S, I∗1 )

S f1(S∗1, I
∗
1 )
− S f1(S∗1, I

∗
1 )

S∗1 f1(S, I∗1 )

)
+

f1(0, I∗1 )
f1(S∗1, I

∗
1 )

(µ + r2 +λ2)

(
R02

1+α2S
1+α2S+ γ2I2 +ρ2SI2

−1
)

I2

≤ −µ

1+α2S0

f1(0, I∗1 )
f1(S∗1, I

∗
1 )

(S−S∗1)
2

S
+

1
1+α2S0

(µ + r1 +λ1)I∗1

(
2− S∗1 f1(S, I∗1 )

S f1(S∗1, I
∗
1 )
− S f1(S∗1, I

∗
1 )

S∗1 f1(S, I∗1 )

)
+

f1(0, I∗1 )
f1(S∗1, I

∗
1 )

(µ + r2 +λ2)(R02−1) I2.

Using the arithmetic-geometric inequality, we have

2−
S∗1 f1(S, I∗1 )
S f1(S∗1, I

∗
1 )
−

S f1(S∗1, I
∗
1 )

S∗1 f1(S, I∗1 )
≤ 0.

Therefore, R01 > 1 and R02 ≤ 1 ensures that DαU1 ≤ 0. Furthermore, it is easy to verify

that the singleton {E∗1} is the largest compact invariant set in
{
(S, I1, I2) ∈ R3

+ : DαU1 = 0
}

.

By applying the LaSalle’s invariance principle, we conclude that E∗1 is globally asymptotically

stable if R02 ≤ 1 < R01.

Theorem 4.3. If R01 ≤ 1 < R02, then the equilibrium E∗2 is globally asymptotically stable.

Proof. It is analogue to the previous proof.

Theorem 4.4. The endemic equilibrium E∗ is globally asymptotically stable if it is exists.

Proof. Consider the Lyapunov functional

V (t) =
f1(0, I1

∗ ) f2(0, I2
∗ )

f1(S∗, I1
∗ ) f2(S∗, I2

∗ )
S∗g
(

S
S∗

)
+

f2(0, I2
∗ )

f2(S∗, I2
∗ )

I1
∗g
(

I1

I1
∗

)
+

f1(0, I1
∗ )

f1(S∗, I1
∗ )

I2
∗g
(

I2

I2
∗

)
,

where f2(S, I2) = 1+α2S+ γ2I2 +ρ2SI2. By Lemma 3.1 in [34], we have

DαV ≤ f1(0, I1
∗ ) f2(0, I2

∗ )

f1(S∗, I1
∗ ) f2(S∗, I2

∗ )

(
1− S∗

S

)
DαS+

f2(0, I2
∗ )

f2(S∗, I2
∗ )

(
1− I1

∗
I1

)
Dα I1 +

f1(0, I1
∗ )

f1(S∗, I1
∗ )

(
1− I2

∗
I2

)
Dα I2.
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Using

Λ = µS∗+
β1S∗I1

∗
f1(S∗, I1

∗ )
+

β2S∗I2
∗

f2(S∗, I2
∗ )

,
β1S∗I1

∗
f1(S∗, I1

∗ )
= (µ + r1 +λ1)I1

∗ ,
β2S∗I2

∗
f2(S∗, I2

∗ )
= (µ + r2 +λ2) I2

∗ ,

and

f1(0, I1
∗ )

f1(S∗, I1
∗ )

(
1− S∗

S

)
=

(
1− S∗ f1(S, I1

∗ )

S f1(S∗, I1
∗ )

)
,

f2(0, I2
∗ )

f2(S∗, I2
∗ )

(
1− S∗

S

)
=

(
1− S∗ f2(S, I2

∗ )

S f2(S∗, I2
∗ )

)
,

we obtain

DαV ≤ −µ
f1(0, I1

∗ ) f2(0, I2
∗ )

f1(S∗, I1
∗ ) f2(S∗, I2

∗ )

(S−S∗)
2

S

+
f2(0, I2

∗ )

f2(S∗, I2
∗ )
(µ + r1 +λ1)I1

∗

(
1− S∗ f1(S, I1

∗ )

S f1(S∗, I1
∗ )

)(
1− SI1 f1(S∗, I1

∗ )

S∗I1
∗ f1(S, I1)

)
+

f1(0, I1
∗ )

f1(S∗, I1
∗ )

(µ + r2 +λ2) I2
∗

(
1− S∗ f2(S, I2

∗ )

S f2(S∗, I2
∗ )

)(
1− SI2 f2(S∗, I2

∗ )

S∗I2
∗ f2(S, I2)

)
+

f2(0, I2
∗ )

f2(S∗, I2
∗ )
(µ + r1 +λ1)I1

∗

(
1− I1

∗
I1

)(
SI1 f1(S∗, I1

∗ )

S∗I1
∗ f1(S, I1)

− I1

I1
∗

)
+

f1(0, I1
∗ )

f1(S∗, I1
∗ )

(µ + r2 +λ2) I2
∗

(
1− I2

∗
I2

)(
SI2 f2(S∗, I2

∗ )

S∗I2
∗ f2(S, I2)

− I2

I2
∗

)
= −µ

f1(0, I1
∗ ) f2(0, I2

∗ )

f1(S∗, I1
∗ ) f2(S∗, I2

∗ )

(S−S∗)
2

S
+

f2(0, I2
∗ )

f2(S∗, I2
∗ )
(µ + r1 +λ1)I1

∗

(
2− S∗ f1(S, I1

∗ )

S f1(S∗, I1
∗ )
− S f1(S∗, I1

∗ )

S∗ f1(S, I1
∗ )

)
+

f1(0, I1
∗ )

f1(S∗, I1
∗ )

(µ + r2 +λ2) I2
∗

(
2− S∗ f2(S, I2

∗ )

S f2(S∗, I2
∗ )
− S f2(S∗, I2

∗ )

S∗ f2(S, I2
∗ )

)
.

Using the arithmetic-geometric inequality, we have

2− S∗ f1(S, I1
∗ )

S f1(S∗, I1
∗ )
− S f1(S∗, I1

∗ )

S∗ f1(S, I1
∗ )
≤ 0,

2− S∗ f2(S, I2
∗ )

S f2(S∗, I2
∗ )
− S f2(S∗, I2

∗ )

S∗ f2(S, I2
∗ )
≤ 0.

Hence, DαV ≤ 0. Further, the largest invariant set of
{
(S, I1, I2) ∈ R3

+ : DαV = 0
}

is the

singleton {E∗}. By applying the LaSalle’s invariance principle, we can obtain that the endemic

equilibrium E∗ of model (3) is globally asymptotically stable.

5. CONCLUSION

This paper presents a mathematical study on the dynamical behavior of a fractional order SIR

epidemic model with double epidemic hypothesis and specific functional response. First, we
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have proved the existence, nonnegativity and boundedness of the solution for any nonnegative

initial value. It also identified four equilibria, viz, an disease-free equilibrium-free E0, disease-

free equilibrium for I2, E∗1 , disease-free equilibrium for I1, E∗2 and both-endemic equilibrium E∗.

We have derived sufficient conditions for local asymptotic stability of the equilibria. Next, we

have established the global asymptotic stability of the equilibria. Finally, from our theoretical

analysis, it can be concluded that the fractional order parameter α has no effect on the stability

of the equilibria.
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