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Abstract. In this paper, we consider a SEIS model type compartmental model to explore the evolution of the

Influenza epidemic in Morocco. To consider a more realistic model we consider the seasonality of parameters,

by considering time-dependent infection rate, time-dependent recovery rate, and time-dependent intervention rate.

The next-generation matrix method is used to compute the threshold of equilibria’s stability R0. Based on real data

of Influenza epidemic A infections in Morocco from the month of December 2018 to the month of March 2019

published by the Influenza Laboratory Surveillance Information system, we estimate the model parameters. In

order to identify the most influential parameter in the proposed model, we carry out the local sensitivity analysis.

We calculate sensitivity indices based on the estimated parameters which identify the most influential parameters.

We perform also the uncertainty analysis to determine the relationship between the different parameters of the

model.
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1. INTRODUCTION

Influenza is an infectious disease of birds and mammals caused by RNA viruses of the family

the influenza viruses. The most common symptoms are chills, fever, runny nose, sore throat,

muscle pain, headache (often severe), coughing, weakness, and general discomfort. Although it

is often confused with other influenza-like illnesses, especially colds, flu is an even more severe

disease. Influenza may cause nausea and vomiting, especially in children [1].

Usually, the flu is transmitted through the air by coughing or sneezing, which creates aerosols

that contain the virus. Influenza can also be transmitted through direct contact with bird droppings

or nasal secretions, or by contact with contaminated surfaces. Airborne aerosols are believed to

cause most infections, although the most important transportation is not entirely clear. Influenza

is a seasonal epidemic disease, which appears every year due to a lack of awareness of basic

knowledge [1].

Seasonal influenza (or “flu”) is most often caused by type A or B influenza viruses. Influenza

A viruses are further classified into subtypes according to the combinations of the hemagglutinin

(HA) and the neuraminidase (NA), the proteins on the surface of the virus. Currently circulating

in humans are subtype A(H1N1) and A(H3N2) influenza viruses. The A(H1N1) is also written

as A(H1N1)pdm09 as it caused the pandemic in 2009 and subsequently replaced the seasonal

influenza A(H1N1) virus which had circulated prior to 2009. Only influenza type A viruses are

known to have caused pandemics [2].

Influenza A (H1N1) virus is a highly contagious and pathogenic fatal disease. A novel

virus named influenza A (H1N1) virus was identified in Mexico and the USA in April 2009

and the world health organization (WHO) declared it as a pandemic on June 11, 2009 [3].

After the World Health Organization announced the epidemiological level 6 of this new strain,

the Ministry of Health in Morocco launched case-based surveillance for influenza A (H1N1)

infection, in addition to the Influenza Laboratory Surveillance Information.

For new infectious diseases, setting epidemiological parameters can help in decision-making.

The main parameter of a new infectious disease is the primary reproductive number (R0), which

is defined as the average number of secondary cases resulting from one primary state throughout

the entire infection period in a fully susceptible population [4].
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Epidemiological models are useful for comparing the effects of prevention or control measures.

One of the most important concerns about any infectious disease is its ability to invade the

population. Many epidemiological models have a disease-free equilibrium (DFE) where the

population remains in the absence of disease. R0 directly determines the epidemic growth

rate and the final number of infected people and is a dominant factor that must be taken into

account in optimal policymaking. In fact, most models typically consider R0 as a threshold

parameter, so that if R0 < 1, DFE is locally asymptotically stable, and disease cannot invade the

population, but if R0 > 1, DFE is unstable and invasion is always possible, Thus, the stability

of epidemiological models can be analyzed with the help of R0 [4]. There are a few methods

available to estimate R0. For determination of the basic reproductive number, one of the best

approaches is the Next Generation Matrix method [4, 5, 6].

Mathematical models play an important role in the investigation and the control of different

phenomena [7, 8], such as the propagation of human infectious diseases, which allowing health

policy-makers to predict the impact of particular vaccine and treatment programs or to derive

more efficient strategies based on different mathematical methods.

In [10], Kermack and McKendrick devised the Susceptible-Infected-Removed (SIR) model

which has presented an interesting contribution to the mathematical theory of epidemics. The

mathematical SIR model is in the form of three compartments: susceptible, infected, or removed.

Susceptible populations are healthy and do not carry the epidemic but can contract it from

infected individuals which carry the infection and can pass it to susceptible hosts, while the

removed people are no longer infected and acquire immunity from future contagion.

Susceptible-Infected-Susceptible (SIS) [15] epidemic models have been applied to situations

in which it is supposed that an infected population could move immediately to the susceptible

compartment after being recovered from an infection due to the lack of immunization. Susceptible-

Exposed-Infected-Susceptible (SEIS) epidemic models have been applied to situations in which

it is supposed that there is a period of incubation of the infection and after that, an infected

individual could move to the susceptible compartment again after being recovered from an

infection due to the lack of immunization like the case of the seasonal Influenza. This kind
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of compartmental model is also useful to model the evolution of many phenomena in different

situations, see as examples, subjects treated in [17, 18, 19, 20, 21].

The first work that generalizes the compartments-based models which describe and control

the evolution of pandemics and epidemics within a geographical area, is done by Zakary et al in

[11, 12], where the authors developed a new modeling approach to describe the Spatio-temporal

spread of diseases and suggested several strategies of control by adopting different generalized

models in discrete and continuous-time [13, 14, 16, 22, 23, 24, 9].

People infected with A (H1N1) passes through an incubation period where they are not

infectious and do not show any symptoms. The period of incubation for A (H1N1) virus is

1 to 4 days and the infectious period case is defined as 1 day prior to the onset of symptoms

to 7 days after onset [25]. Therefore, and based on all these considerations, we consider in

this paper a compartments-based mathematical SEIS model to describe the evolution of the

Influenza pandemic in Morocco. First, we present the different parameters of the model and

the interactions between its states. We introduce the seasonality of this disease by considering

time-dependent parameters such as the infection rate, the recovery rate, and the control policy.

Second, we perform the stability analysis of the equilibria based on values of the threshold

R0 which is calculated with the help of the next-generation matrix method. To validate the

model we propose here, our study is based on real data of Influenza A viruses in Morocco

[28]. Then we estimate the model’s parameters by matching the model’s outputs with the

actual data. Next, we perform a sensitivity analysis to show the most important parameter

in changing the basic reproductive number R0 and to determine the most influential parameter

taking into account the seasonality of parameters, so we define seasonal sensitivity indicators to

show that the parameters have an impact period which makes the disease more severe in some

months. Finally, we implement the model uncertainty to check and verify the performance of

the parameters’ estimation.

2. THE MODEL

We formulate the transmission dynamics model for a single outbreak of the Influenza epidemic

in a homogeneously mixing population in Morocco. We divide the population into three main

epidemiological classes, susceptible (S), Exposed (E), infected (I). These classes are further
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interact with each other, different susceptibilities, and infectiousness based on the seasonality

of the infection and immunity and control. We take into account the differences in infectivity

for diseases such as the Influenza, i.e., latent or incubation period (E), and symptomatic or

infectious period (I). We apply the model to the case of Morocco, and assume that the course

of the outbreak is short compared with the life of an individual, therefore, births, and natural

deaths are equal.

In the SEIS model, it is assumed that the population consists of susceptible (S), exposed

(E), infected and infectious (I) individuals. A characteristic feature of the seasonal Influenza is

that immunity after infection is temporary, so that the infected individuals become susceptible

again. The model depends on several parameters: The parameter µ , which denotes the birth rate,

assumed equal to the mortality rate; and α , which is the rate of loss of infectiousness, thus, an

infected individuals become susceptible again at a rate αI. The parameter γ denotes the average

incubation period, thus , exposed individuals become infectious at a rate γE. Since health

authorities and institutions usually interfere in such a situation of pandemics and epidemics to

save lives, we thus incorporate the control intervention into the model as a parameter u, thus the

treated individuals become susceptible at a rate uI.

The disease transmission is modeled using the standard incidence, given by

β IS
N

Then, the SEIS model for The Influenza epidemic is given by the following system of ordinary

differential equations:

dS
dt

= µN − β IS
N

−µS+αI +uI(1)

dE
dt

=
β IS
N

−µE − γE(2)

dI
dt

= γE − (µ +α +u) I(3)

Where S (0) ≥ 0, I (0) ≥ 0 and E (0) ≥ 0, and N = S+E + I. Moreover, the influence of

the seasonality on the transmission and control parameters is modeled by the cosine and sine
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functions and given by

β (t) = b0

(
1+b1 sin

(
2πb2t
7200

− b3π

200

))

γ (t) = a0

(
1+a1 sin

(
2πa2t
7200

− a3π

200

))

u = cos
(

2πc
365

)
Note that b0 and a0 are the averages of the transmission parameters, b1 and a1 are the amplitudes

of the seasonal fluctuation in the transmission parameters β and γ , respectively, while b2, b3, a2

and a3 are angle parameters that will be chosen later in agreement with the real data for I(t).

3. STABILITY ANALYSIS

In this section, we find the basic reproduction number and stability of the model. We prove

that our model is locally and stable for both disease-free-equilibrium and endemic equilibrium

points.

To work in term of proportions we take s = S
N , e = E

N and i = I
N , then we have the following

reduced system

ds
dt

= µ −β si−µs+αi+ui(4)

de
dt

= β si−µe− γe(5)

di
dt

= γe− (µ +α +u) i(6)

This system has two equilibria, the disease-free equilibrium e0 = (1,0,0) and the endemic

equilibrium

e∗ =
(

γ +µ

β
,−(α +µ +u) (γ −β +µ)

β (α + γ +µ +u)
,− γ (γ −β +µ)

β (α + γ +µ +u)

)
In epidemiology, the basic reproduction number R0 is the average number of secondary

infectious cases produced by a single infection in total susceptible population. Based on the
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next-generation matrix method [4] we compute the basic reproductive number R0, which is

given by

R0 =
β

γ +µ

Note that also the basic reproductive number R0 is a function of time, since the parameters β

and γ are seasonal parameters.

Proposition 1. The disease-free equilibrium e0 is stable if R0 < 1, otherwise it is unstable.

Proof. By computing the Jacobian matrix associated with the system (4)-(6) at the disease-free

equilibrium, we have

J (e0) =


−µ −β α +u

0 β − γ −µ 0

0 γ −α −µ −u


Its eigenvalues are

−µ

β − γ −µ

−α −µ −u

It is clear that the eigenvalues of J (e0) are negatives if and only if β − γ − µ < 0 which

means, if and only if R0 < 1, which completes the proof. �

Proposition 2. The endemic equilibrium e∗ is locally asymptotically stable if R0 > 1.

Proof. By computing the Jacobian matrix associated with the system (4)-(6) at the endemic

equilibrium, we have

J (e∗) =


−α β−α γ+β µ+β u−γ u

α+γ+µ+u −γ −µ α +u

− (α+µ+u)(γ−β+µ)
α+γ+µ+u 0 0

0 γ −α −µ −u


Where the characteristic polynomial of J (e∗) is

λ
3 + c1λ

2 + c2λ + c3
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Where

c1 =
α β +2α µ +β µ + γ µ +2α u+β u+2 µ u+α2 +µ2 +u2

α + γ +µ +u

c2 =−
(α +µ +u)

(
α γ −α β −β γ −2β µ +2γ µ −β u+ γ u+ γ2 +µ2)

α + γ +µ +u

c3 =−µ (α +µ +u) (γ −β +µ)

It is clear that c1 > 0. The fact R0 > 1 implies that γ −β +µ < 0, which means that c3 > 0.

Let c2 =− (α+µ+u)U
α+γ+µ+u

where

U = α γ −α β −β γ −2β µ +2γ µ −β u+ γ u+ γ
2 +µ

2

Let

V = (γ −β +µ) (α + γ +µ +u)

and

W = α µ +β µ +µ u

One can easily verify that

U =V −W

It is clear that W > 0 and by R0 > 1 we get also V < 0, thus U < 0, and then c2 > 0. Using the

Routh-Hurwitz stability criterion, we conclude that the equilibrium point e∗ is locally

asymptotically stable. �

4. PARAMETERS ESTIMATION

To verify the reality of the model we propose here, we use nonlinear least-squares regression

to fit the model to actual observations for the situation of the Influenza A epidemic in Morocco

given [28] from 2018-12-10 to 2019-03-24 and presented in Table 1. Therefore, the following

process has been followed for parameters estimation:

In this section we present the process of the parameters’ estimation [29]. Using MATLAB

ode45 routine, the system of ordinary differential equations is solved numerically, with initial

chosen values for parameters and state variables. Model outcomes are compared with the field

data and the Levenberg–Marquardt optimization algorithm determines a new set of parameters
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TABLE 1. Data of the influenza epidemic in morocco from 2018-12-10 to 2019-

03-24 [28]

From To Number of infected individuals

2018-12-10 2018-12-16 1

2018-12-17 2018-12-23 1

2018-12-24 2018-12-30 5

2018-12-31 2019-01-06 4

2019-01-07 2019-01-13 32

2019-01-14 2019-01-20 54

2019-01-21 2019-01-27 42

2019-01-28 2019-02-03 182

2019-02-04 2019-02-10 251

2019-02-11 2019-02-17 99

2019-02-18 2019-02-24 30

2019-02-25 2019-03-03 16

2019-03-04 2019-03-10 17

2019-03-11 2019-03-17 4

2019-03-18 2019-03-24 2

0 2 4 6 8 10 12 14

0

50

100

150

200

250

300
Data 

Data

values with the model outcomes in a better fit to the field data [30, 31]. After new parameters

values are determined by this optimizer, the system of ordinary differential equations is solved

numerically using these new parameters value and the model outcomes are compared again

with the field data. This iteration process between parameter updating and numerical solutions

of the system of ordinary differential equations using Runge–Kutta method [32, 33] continue

till convergence criteria for the parameters are met. In this process of estimating parameters,
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TABLE 2. Estimated parameters values

b0 b1 b2 α µ a0 c b3 a1 a2 a3

6.3290 0.9991 579.4704 0.9000 0.0200 0.8049 0.0073 388.2570 0.9601 709.2605 225.8000

about one thousand values are chosen using a random process for each of the parameters to be

estimated. Estimated parameters values for Model (1)-(3) are given in Table 2. Fig. 1 depicts the

effectiveness of the parameters’ estimation, where we can see that the SEIS model we propose

here fits correctly the real data.

Fig.2 depicts the validity of the estimated parameters, where in the left sub-figure we can see

the different values of the residuals of the estimation of parameters, and in the right sub-figure

we check the normality of residuals. This means that the estimated parameters are reliable and

the model that we propose here is valid.

Based on the estimated parameters given the Table 2, we simulate the seasonal basic reproductive

number R0 in the Fig.3. Where we can see that R0 rise continuously to exceed 240 by about four

weeks, and then it starts to decrease towards 0 by the 7th week. It can be seen from that figure

that this first wave of R0 is followed by an increasing of the infections, which can be interpreted

by the incubation period of the Influenza epidemic. When R0 exceeds 1, the infections will

increase after a while by approximately 3 weeks. Again we can see in this figure that R0 starts

to increase up to 200 and then decrease. This means that a second wave of infection is possible.

Notwithstanding this rise in the basic reproductive number, it is fortunate that Morocco did not

record any second wave.

5. SENSITIVITY ANALYSIS

Sensitivity analysis is measured using the sensitivity index. Sensitivity indices allow us

to measure the relative change in a state variable when a parameter changes while the other

parameters are retained fixed at constant values. The normalized forward sensitivity index of a

variable to a parameter is the ratio of the relative change in the variable to the relative change

in the parameter. When the variable is a differentiable function of the parameter, the sensitivity

index may be alternatively defined using partial derivatives.
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FIGURE 1. Comparison of the number of infective individuals registered in

Morocco [28] with the ones predicted by the SEIS model (1)-(3) with the

estimated parameter values given in Table 2.
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FIGURE 2. Residuals of the estimation of the parameters. Left: Residuals.

Right: Normality of residuals.
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FIGURE 3. The seasonal basic reproductive number R0 as a function of time.
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We carried out local sensitivity indices of R0 to the model parameters. A sensitivity index of

1 indicates that a variation of 10% of the parameter causes a variation of 10% of the final value

of R0. Indices less than 0 show a negative fluctuation, while those greater than 0 show a positive

variation.
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At a fixed instant t, the threshold R0 is a function of eight parameters b0, b1, b2, b3, a0, a1,

a2, a3, and µ where

R0 =
β

γ +µ
=

b0

(
1+b1 sin

(
2πb2t
7200 − b3π

200

))
a0

(
1+a1 sin

(
2πa2t
7200 − a3π

200

))
+µ

A small perturbation δx to a parameter x and the corresponding change in R0 as δR0 is given

by

δR0 = R0 (x+δx)−R0 (x)

=
R0 (x+δx)−R0 (x)

δx
δx

∼= δx
∂R0

∂x

Thus, the normalized sensitivity index φx is defined as

φx =
∂R0

R0
/

∂x
x

=
x

R0
.
∂R0

∂x

Therefore normalized sensitivity indices for the 8 parameters are obtained as

φb0 = 1

φb1 =
b1 sin

(
π (18b3−b2 t)

3600

)
b1 sin

(
π (18b3−b2 t)

3600

)
−1

φb2 =−
π b1 b2 t cos

(
π (18b3−b2 t)

3600

)
3600

(
b1 sin

(
π (18b3−b2 t)

3600

)
−1
)

φb3 =
π b1 b3 cos

(
π (18b3−b2 t)

3600

)
200

(
b1 sin

(
π (18b3−b2 t)

3600

)
−1
)

φa0 =
a0

(
a1 sin

(
π (18a3−a2 t)

3600

)
−1
)

a0 +µ −a0 a1 sin
(

π (18a3−a2 t)
3600

)
φa1 =

a0 a1 sin
(

π (18a3−a2 t)
3600

)
a0 +µ −a0 a1 sin

(
π (18a3−a2 t)

3600

)
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φa2 =−
π a0 a1 a2 t cos

(
π (18a3−a2 t)

3600

)
3600

(
a0 +µ −a0 a1 sin

(
π (18a3−a2 t)

3600

))
φa3 =

π a0 a1 a3 cos
(

π (18a3−a2 t)
3600

)
200

(
a0 +µ −a0 a1 sin

(
π (18a3−a2 t)

3600

))
φµ =− µ

a0 +µ −a0 a1 sin
(

π (18a3−a2 t)
3600

)
If φx = 0.01, thus, increasing (or decreasing) x by 10% increases (or decreases) R0 by 0.1%.

For instance, since φb0 = 1, thus, decreasing (or increasing) b0 by 10% decreases (or increases)

R0 by 10%. Sensitivity indices for seasonal parameters b1, b2, b3, a0, a1, a2, a3 and µ are

depicted in Fig.4 and Fig.5.

6. MODEL UNCERTAINTY

A covariance matrix estimates variability of the model parameters and hence random disturbances

in the output. Thus covariance matrices contain information about the uncertainties in model

output. All covariance matrices are symmetrical. The absolute value giving accuracy information

is contained in the diagonal elements of covariance matrix. All other elements in covariance

matrices can be used to study the inter-relationships. If the covariance between any two coefficients

is positive, then the coefficients values tend to vary in a positive way. On the other hand, if

the covariance between any two coefficients is negative, then the coefficients values tend to

move in opposite directions. Also, covariance matrix provides uncertainties on the parameters

estimation that captures relations in the measurement uncertainties. The following matrix ∑

represents the covariance matrix for the SIS model (1)-(3) with the Influenza epidemic data.

∑ =



b1 α µ b0 b2 a0 c b3 a1 a2 a3

b1 32.91892692 −292.5837047 −15.08406254 121.1848362 −657.7578808 −110.2557322 −62441829.61 −2184.745992 9.678075924 1598.256547 −549.469777

α −292.5837047 6633.365446 −576.9665502 5007.38661 −27754.77938 332.095068 774969222.3 3225.039213 −155.1540823 −10268.93009 26832.33515

µ −15.08406254 −576.9665502 165.31921 −824.0192106 3401.740605 142.5170879 −2605277.311 2351.197787 4.899621654 −3476.409762 −5120.483078

b0 121.1848362 5007.38661 −824.0192106 12696.75039 −82272.9447 −1613.131627 142290177.2 −47878.86104 −96.79270756 −8466.06034 16972.64475

b2 −657.7578808 −27754.77938 3401.740605 −82272.9447 603787.0139 9773.493432 −926675088.8 339362.8778 632.6632044 168124.9463 −19474.48129

a0 −110.2557322 332.095068 142.5170879 −1613.131627 9773.493432 490.7760545 171495980.4 11067.65766 −19.20291607 −4567.238846 −695.7726308

c −62441829.61 774969222.3 −2605277.311 142290177.2 −926675088.8 171495980.4 1.35691951014 3061640840.0 −22438312.45 −3216903050.0 1856155140.0

b3 −2184.745992 3225.039213 2351.197787 −47878.86104 339362.8778 11067.65766 3061640840.0 293849.2148 −236.0941501 −4196.665356 26749.69035

a1 9.678075924 −155.1540823 4.899621654 −96.79270756 632.6632044 −19.20291607 −22438312.45 −236.0941501 4.428921428 605.2780479 −400.2002854

a2 1598.256547 −10268.93009 −3476.409762 −8466.06034 168124.9463 −4567.238846 −3216903050.0 −4196.665356 605.2780479 347648.0746 166517.8713

a3 −549.469777 26832.33515 −5120.483078 16972.64475 −19474.48129 −695.7726308 1856155140.0 26749.69035 −400.2002854 166517.8713 248357.8034


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FIGURE 4. Sensitivity indices for the seasonal parameters b1 , b2, b3 and µ .(a)

φb1 (t). (b) φb2 (t). (c) φb3 (t). (d) φµ (t).
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FIGURE 5. Sensitivity indices for the seasonal parameters a0, a1, a2 and a3.(a)

φa0 (t). (b) φa1 (t). (c) φa2 (t). (d) φa3 (t).
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The variance of each parameters is shown in the leading diagonal elements of the covariance

matrix ∑. The parameter c has the largest variance (1.35691951014) followed by the parameter

b2 (603787.0139), the parameter a2 (347648.0746), the parameter b3 (293849.2148), the parameter

a3 (248357.8034), the parameter b0 (12696.75039), the parameter α (6633.365446), the parameter

a0 (490.7760545), the parameter µ (165.31921), the parameter b1 (32.91892692), and the

parameter a1 (4.428921428).

The covariance matrix ∑ contains negative and positive elements, negative covariance means

that the parameters values on those parameters tend to move in opposite directions which means

that if one parameter’s value increases then other parameter’s value start decreasing. While

positive covariances mean that these parameters values tend to vary in a positive way which

means that if one parameter’s value increases then other parameter’s value also increases.

As shown in the covariance matrix ∑, the covariance between the coefficients b1 and α

is negative (−292.5837047), the covariance between the coefficients b1 and µ is negative

(−15.08406254), the covariance between the coefficients b1 and b2 is negative (−657.7578808),

the covariance between the coefficients b1 and a0 is negative (−110.2557322), the covariance

between the coefficients b1 and c is negative (−62441829.61), the covariance between the

coefficients b1 and b3 is negative (−2184.745992), the covariance between the coefficients b1

and a3 is negative (−549.469777).

The covariance between the coefficients α and µ is negative (−576.9665502), the covariance

between the coefficients α and b2 is negative (−27754.77938), the covariance between the

coefficients α and a1 is negative (−155.1540823), the covariance between the coefficients α and

a2 is negative (−10268.93009). The covariance between the coefficients µ and b0 is negative

(−824.0192106), the covariance between the coefficients µ and c is negative (−2605277.311),

the covariance between the coefficients µ and a2 is negative (−3476.409762), the covariance

between the coefficients µ and a3 is negative (−5120.483078). The covariance between the

coefficients b0 and b2 is negative (−82272.9447), the covariance between the coefficients b0

and a0 is negative (−1613.131627), the covariance between the coefficients b0 and b3 is negative

(−47878.86104), the covariance between the coefficients b0 and a1 is negative (−96.79270756),

the covariance between the coefficients b0 and a2 is negative (−8466.06034). The covariance
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between the coefficients b2 and c is negative (−926675088.8), the covariance between the

coefficients b2 and a3 is negative (−19474.48129). The covariance between the coefficients a0

and a1 is negative (−19.20291607), the covariance between the coefficients a0 and a2 is negative

(−4567.238846), the covariance between the coefficients a0 and a3 is negative (−695.7726308).

The covariance between the coefficients c and a1 is negative (−22438312.45), the covariance

between the coefficients c and a2 is negative (−3216903050.0). The covariance between the

coefficients b3 and a1 is negative (−236.0941501), the covariance between the coefficients

b3 and a2 is negative (−4196.665356). The covariance between the coefficients a1 and a3 is

negative (−400.2002854). This reflect that these parameters values tend to vary in a negative

way.

The covariance between the coefficients b1 and the b0 is positive (121.1848362), the covariance

between the coefficients b1 and the a1 is positive (9.678075924), the covariance between the

coefficients b1 and the a2 is positive (1598.256547). The covariance between the coefficients

α and the b0 is positive (5007.38661), the covariance between the coefficients α and the

a0 is positive (332.095068), the covariance between the coefficients α and the c is positive

(774969222.3), the covariance between the coefficients α and the b3 is positive (3225.039213),

the covariance between the coefficients α and the a3 is positive (26832.33515). The covariance

between the coefficients µ and the b2 is positive (3401.740605), the covariance between the

coefficients µ and the a0 is positive (142.5170879), the covariance between the coefficients

µ and the b3 is positive (2351.197787), the covariance between the coefficients µ and the a1

is positive (4.899621654). The covariance between the coefficients b0 and the c is positive

(142290177.2), the covariance between the coefficients b0 and the a3 is positive (16972.64475).

The covariance between the coefficients b2 and the a0 is positive (9773.493432), the covariance

between the coefficients b2 and the b3 is positive (339362.8778), the covariance between the

coefficients b2 and the a1 is positive (632.6632044), the covariance between the coefficients

b2 and the a2 is positive (168124.9463). The covariance between the coefficients a0 and the

c is positive (171495980.4), the covariance between the coefficients a0 and the b3 is positive

(11067.65766). The covariance between the coefficients c and the b3 is positive (3061640840.0),

the covariance between the coefficients c and the a3 is positive (1856155140.0). The covariance
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TABLE 3. Summary of covariance.

Covariance Direction Covariance Direction Covariance Direction Covariance Direction Covariance Direction

Cb1,α −ve Cα,b0 +ve Cµ,c −ve Cb0,a3 +ve Ca0,a3 −ve

Cb1,µ −ve Cµ,b2 −ve Cµ,b3 +ve Cb2,a0 +ve Cc,b3 +ve

Cb1,b0 +ve Cµ,a0 +ve Cµ,a1 +ve Cb2,c −ve Cc,a1 −ve

Cb1,b2 −ve Cµ,c +ve Cµ,a2 −ve Cb2,b3 +ve Cc,a2 −ve

Cb1,a0 −ve Cµ,b3 +ve Cµ,a3 −ve Cb2,a1 +ve Cc,a3 +ve

Cb1,c −ve Cµ,a1 −ve Cb0,b2 −ve Cb2,a2 +ve Cb3,a1 −ve

Cb1,b3 −ve Cµ,22 −ve Cb0,a0 −ve Cb2,a3 −ve Cb3,a2 +ve

Cb1,a1 +ve Cµ,a3 +ve Cb0,c +ve Ca0,c +ve Cb3,a3 −ve

Cb1,a2 +ve Cµ,b0 −ve Cb0,b3 −ve Ca0,b3 +ve Ca1,a2 +ve

Cb1,a3 −ve Cµ,b2 +ve Cb0,a1 −ve Ca0,a1 −ve Ca1,a3 −ve

Cα,µ −ve Cµ,a0 +ve Cb0,a2 −ve Ca0,a2 −ve Ca2,a3 +ve

between the coefficients c and the a3 is positive (26749.69035). The covariance between the

coefficients a1 and the a2 is positive (605.2780479). The covariance between the coefficients a2

and the a3 is positive (166517.8713). This means that these parameters values vary in a positive

way.

Table 3 shows the summary of covariance of the Influenza epidemic model parameters.

7. CONCLUSION

In this paper, a SEIS model type compartmental model has been considered to explore the

evolution of the Influenza epidemic in Morocco. To consider a more realistic model we consider

the seasonality of parameters, by considering time-dependent infection rate, time-dependent

recovery rate, and time-dependent intervention rate. The next-generation matrix method is

used to compute the threshold of equilibria’s stability R0. A real data of Influenza epidemic

A infections in Morocco from the Influenza Laboratory Surveillance Information system is

used to estimate the model parameters. In order to identify the most influential parameter in

the proposed model, sensitivity analysis is carried out. We calculated sensitivity indices based

on the estimated parameters to identify the most influential parameters. We found that the

seasonal parameters a0, a1, a2, and a3 are most influential in the first four weeks and the last

two weeks. While the parameters b1, b2, and b3 are the most influential parameters of the eighth

and ninth weeks. Finally, the moderate influence of the µ parameter during the first and last
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weeks. Uncertainty analysis is carried out to determine the relationship between the different

parameters of the model.

CONFLICT OF INTERESTS

The author(s) declare that there is no conflict of interests.

REFERENCES

[1] How can I avoid getting the flu?

https://www.who.int/news-room/q-a-detail/how-can-i-avoid-getting-the-flu

[2] Influenza (Seasonal).

https://www.who.int/en/news-room/fact-sheets/detail/influenza-(seasonal)

[3] WHO: Influenza pandemic alert raised to level 6.

https://www.who.int/pmnch/media/news/2009/20090611_who/en/

[4] P. van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic

equilibria for compartmental models of disease transmission, Math. Biosci. 180 (2002),

29-48.

[5] C. Castillo-Chavez, Z. Feng, and W. Huang. On the computation of R0 and its role

on global stability. Mathematical Approaches for Emerging and Re-Emerging Infection

Diseases: An Introduction. The IMA Volumes in Mathematics and Its Applications 125

(2002), 31-65.

[6] J.M. Heffernan, R.J. Smith, L.M. Wahl, Perspectives on the basic Reproduction ratio, J. R.

Soc. Interface, 2 (2005), 281-293.

[7] S. Bidah, O. Zakary, M. Rachik, Stability and Global Sensitivity Analysis for an Agree-

Disagree Model: Partial Rank Correlation Coefficient and Latin Hypercube Sampling

Methods, International Journal of Differential Equations. 2020 (2020), 5051248.

[8] H. Boutayeb, S. Bidah, O. Zakary, M. Rachik, A New Simple Epidemic Discrete-

Time Model Describing the Dissemination of Information with Optimal Control Strategy,

Discrete Dynamics in Nature and Society. 2020 (2020), 7465761.



20 SARA, OMAR, ABDESSAMAD, MOSTAFA, HANANE

[9] H. Boutayeb, M. Lhous, O. Zakary, M. Rachik, System (GIS) and the mathematical

modeling of epidemics to estimate and control the spatio-temporal severity of infection

in the most attractive regions, Commun. Math. Biol. Neurosci. 2020 (2020), Article ID 18.

[10] W.O. Kermack, A.G. McKendrick, A contribution to the mathematical theory of

epidemics, Proc. R. Soc. Lond. A. 115 (1927), 700-721.

[11] O. Zakary, M. Rachik, I. Elmouki, On the analysis of a multi-regions discrete SIR epidemic

model: an optimal control approach, Int. J. Dynam. Control. 5 (2017), 917-930.

[12] O. Zakary, M. Rachik, I. Elmouki, A new analysis of infection dynamics: multi-regions

discrete epidemic model with an extended optimal control approach, Int. J. Dynam.

Control. 5 (2017), 1010-1019.

[13] F. Kihal, M. Rachik, O. Zakary, I. Elmouki, A multi-regions SEIRS discrete epidemic

model with a travel-blocking vicinity optimal control approach on cells. Int. J. Adv. Appl.

Math. Mech. 4 (3) (2017), 60-71.

[14] I. Abouelkheir, F. Kihal, M. Rachik, O. Zakary, I. Elmouki, A Multi-Regions SIRS

Discrete Epidemic Model With a Travel-Blocking Vicinity Optimal Control Approach on

Cells. J. Adv. Math. Comput. Sci. 20 (4) (2017), 1-16.

[15] B. Hamza, B. Sara, Z. Omar, E. Ilias, F. Hanane, R. Mostafa, SIS multi-regions discrete

Influenza pandemic model and travel-blocking vicinity optimal control strategy on two

forms of patch, Commun. Math. Biol. Neurosci. 2020 (2020), Article ID 29.

[16] I. Abouelkheir, M. Rachik, O. Zakary, I. Elmouki, A multi-regions SIS discrete influenza

pandemic model with a travel-blocking vicinity optimal control approach on cells. Amer.

J. Comput. Appl. Math. 7 (2) (2017), 37-45.

[17] M. Safan, F.A. Rihan, Mathematical analysis of an SIS model with imperfect vaccination

and backward bifurcation, Math. Comput. Simul. 96 (2014), 195-206.

[18] K. Kandhway, J. Kuri, How to run a campaign: Optimal control of SIS and SIR

information epidemics, Appl. Math. Comput. 231 (2014), 79-92.

[19] Q. Wu, Y. Lou, W. Zhu, Epidemic outbreak for an SIS model in multiplex networks with

immunization, Math. Biosci. 277 (2016), 38-46.



PARAMETERS’ ESTIMATION 21

[20] W. Xu, Z. Zhang, Z. Xu, Asympotic Analysis of SEIS Model with General Saturated

Contact Rate, J. Biomath. 3 (2005), 297-302.

[21] M. Lopez, A. Peinado, A. Ortiz, A SEIS Model for Propagation of Random Jamming

Attacks in Wireless Sensor Networks, in: M. Grana, J.M. Lopez-Guede, O. Etxaniz,

A. Herrero, H. Quintian, E. Corchado (Eds.), International Joint Conference SOCO?16-

CISIS?16-ICEUTE?16, Springer International Publishing, Cham, 2017: pp. 668?677.

[22] O. Zakary, M. Rachik, I. Elmouki, A new epidemic modeling approach: Multi-regions

discrete-time model with travel-blocking vicinity optimal control strategy, Infect. Dis.

Model. 2 (2017), 304?322.

[23] O. Zakary, M. Rachik, I. Elmouki, A multi-regional epidemic model for controlling the

spread of Ebola: awareness, treatment, and travel-blocking optimal control approaches,

Math. Meth. Appl. Sci. 40 (2017), 1265?1279.

[24] O. Zakary, A. Larrache, M. Rachik, I. Elmouki, Effect of awareness programs and travel-

blocking operations in the control of HIV/AIDS outbreaks: a multi-domains SIR model,

Adv. Differ. Equ. 2016 (2016), 169.

[25] Y. Gu, Pandemic (H1N1) 2009 Transmission during Presymptomatic Phase, Japan, Emerg.

Infect. Dis. 17 (2011), 1737?1739.

[26] A.M. Lyapunov, The general problem of the stability of motion, Int. J. Control. 55 (1992),

531?534.

[27] S.M. O?Regan, T.C. Kelly, A. Korobeinikov, M.J.A. O?Callaghan, A.V. Pokrovskii,

Lyapunov functions for SIR and SIRS epidemic models, Appl. Math. Lett. 23 (2010),

446?448.

[28] http://apps.who.int/flumart/Default

[29] [1]S. Bidah, O. Zakary, M. Rachik, H. Ferjouchia, Mathematical Modeling of Public

Opinions: Parameter Estimation, Sensitivity Analysis, and Model Uncertainty Using an

Agree-Disagree Opinion Model, Abstr. Appl. Anal. 2020 (2020), 1837364.

[30] M.R. Kristensen, Parameter estimation in nonlinear dynamical systems, Master’s Thesis,

Department of Chemical Engineering, Technical University of Denmark, 2004.



22 SARA, OMAR, ABDESSAMAD, MOSTAFA, HANANE

[31] A.R. Conn, N.I.M. Gould, P.L. Toint, Trust-region methods, Society for Industrial and

Applied Mathematics, Philadelphia, PA, 2000.

[32] J.R. Dormand, P.J. Prince, A family of embedded Runge-Kutta formulae, J. Comput. Appl.

Math. 6 (19) (1980), 19-26.

[33] E. Hairer, S. Norsett, W. Wanner, second ed., Solving Ordinary Differential Equations I,

Springer, Berlin, 1992.


