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Abstract. Alcoholism has continually posed health challenges in many communities for decades. In this paper,

a more realistic model for health related risks associated with alcoholism is formulated. It considers a population

proportion that has social cultural protection from alcohol consumption. In the context of this paper, such protec-

tion emanates from religious beliefs. The Next Generation Matrix (NGM) approach is used to compute the basic

risk reproduction number. The risk free equilibrium point is proved to be globally asymptotically stable whenever

the basic risk reproduction is less than unity and unstable otherwise. The sensitivity analysis of the basic risk

reproduction number and numerical simulation results reveal that for effective control of the health risk problem in

the community, the deliberate intervention strategies and policies should focus on discouraging alcoholic behaviors

on its onset during initiation stage than focusing other population proportions already at risk.

Keywords: health risks; alcoholism; cultural beliefs; religious beliefs; mathematical models.

∗Corresponding author

E-mail address: maranyam@nm-aist.ac.tz

Received June 22, 2020
1



2 MAYENGO, KGOSIMORE, CHAKRAVERTY, SESHAIYER, CAISEDA, SHIRIMA

2010 AMS Subject Classification: 92C50, 93A30.

1. INTRODUCTION

Alcoholic beverages are an integral part of cultures across the globe with wide use in rituals,

societal artifacts and festivals [1, 2]. In essence alcoholic beverages are important for both social

and economic reasons. Precisely, alcohol beverages are a source of income for the livelihood of

the rural community and have health benefits such as prevention of thrombosis when consumed

at desired levels [3]. However, despite the aforementioned health and economic benefits of

alcoholic beverages; when taken to undesired level it can accelerate to alcoholism, a behavior

which poses serious health challenges to consumers. Alcoholism may be defined as the state of

addiction to the consumption of alcoholic drinks which eventually turns into the state of alcohol

dependency. This is a condition in which a person has a physical or psychological dependence

on drinks that contain alcohol. It is a precursor to injury and violence and its negative impacts

can spread throughout a community or a country, and beyond, influencing levels and patterns

of alcohol consumption across borders [4].

The common symptoms of alcoholism include, but not limited to: strong compulsion to

drink; inability to limit ones drinking in any given time; physical dependence; increased uptake

of alcohol for optimum effects; and problems associated with alcoholism − injuries, receives

multiple drunken driving citations, frequent arguments and poor relationships in families.

The drinking limits or threshold to be referred to as an alcoholic is estimated to a maximum of

21 standard bottles per week for men and 14 drinks per week for women [2, 3, 5]. This quantity

defines the health tolerable amount of alcohol consumption at which an individual attains the

most vulnerable state of exposure to alcohol associated health risks.

According to the World Health Organization report, at least three (3) million deaths and 132.6

disabilities due to harmful use of alcohol reported annually. Comparatively, over-consumption

of alcohol causes more harm to human health than tuberculosis, HIV/AIDS and diabetes [6].

Further, alcoholism is linked to liver cirrhosis [2, 7] and accounts for 10% of the total disease

burden attributable to harmful use of alcohol [8]. Owing to the available literature, it was

observed that alcohol consumption increases risks of cancer infections, which is attributable to
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20% of alcohol related deaths. Common types of cancers related to alcohol overconsumption

are cancers of the mouth, oropharynx, esophagus, colorectal, liver, and breast [7, 8, 9].

Some cultural practices have promoted positive drinking with the aim of reducing health and

socio-economic risks. Part of renown active cultural practices are religious beliefs which have

strong influence in people’s lives. It plays an important role in promoting the health and molding

individual’s behaviors [10, 11]. By the fact that religious communities at least discourages

irresponsible alcohol drinking by pronouncing it a sinful behavior. It is therefore important to

focus on the impacts of religious communities when dealing with the dynamics of health related

risks associated with alcoholism because they provide social protection to a proportion of the

population from alcohol consumption or alcohol abuse.

In quest to provide insights on effects and the spread of alcoholism, different mathematical

alcohol epidemic models have been formulated and analyzed for the purpose of understanding

the effects of alcohol consumption on health and socio-economic aspects of the society. In [12],

for example, a link between drug addiction and infectious disease is considered and the impor-

tance of using dynamic models to predict trends and generate estimates is emphasized especially

where data are sparse. Mundt and collaborators in [13] fitted a stochastic actor − based model

to Add Health data of 7th through 11th grade U.S students enrolled between 1995 and 1996.

The study sought to determine factors that influence the dynamic interplay between adolescent

friendships and substance abuse and revealed that peer selection and friendship making has a

greater role to play in alcoholic behavior among adolescent. Similarly, [14] presented SAT Q−

type alcoholic model with two control strategies. Two objective functions for alcohol quitting

and cost of controlling alcohol were proposed and analyzed with the help of Pontryagin’s Maxi-

mum Principle approach. Numerical simulations results recommended reduction in the number

of alcoholics and the increase in the number of susceptible as the better control option.

Xiang and collaborators, [15] studied the effects of public health educational campaigns on

drinking dynamics. The study explored the use of Lyapunov functional to establish the global

stability of the model equilibria. Numerical simulations result proved that public health edu-

cation campaigns of drinking individuals can slow down the drinking dynamics. In [16] a non

− linear SHT R mathematical model for drinking epidemics is presented and analyzed. In this
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model, the drinking population were placed in heavy drinkers (H) and drinkers in treatment (T )

compartments assuming that after treatment a treated heavy drinker will only become a heavy

drinker again after passing through a recovery and susceptible compartments in respective or-

der. The analytical results revealed that drinking epidemic can be controlled by the combined

efforts of reducing the contact rate between the non-drinkers and heavy drinkers to refrain from

drinking; and increasing the number of drinkers that go into treatment.

In [7], an SIRS alcoholism models with relapse on a weighted networks was formulated to

study the impact of the fixed weight and adaptive weight on the spread of alcoholism. The

study results established that, if the proportion of recuperator to accept treatment is equal to

that of susceptible people to refuse alcohol drinking, then preventing the susceptible people

from alcohol drinking become more effective. In [9], a deterministic model to study the spread

of alcoholism was formulated by dividing the alcohol drinking population into moderate and

alcoholic population. The comparison of alcohol control approaches targeting different alco-

hol drinking populations revealed that encouraging and supporting moderate drinkers to quit

alcoholic consumption produces better results than targeting the alcoholic group only.

Mushanyu and Nyabadza in [17] presented a risk − structured model and used it to under-

stand the phenomenon of the spread of drug abuse with in-patients treatment programs. Analy-

sis of the risk abuse and numerical simulations suggested that education and skills to deal with

risky situation may better equip individuals to stand against initiating into drug abuse.

Mayengo and collaborators in [18] suggested that for alcohol related health risks modeling to

be more relevant, two aspects of the model formulation are proposed: the influence of external

motivations with positive and negative influential effects, and a clearly defined alcohol drinking

population compartments have to be included. The crisp model developed in [19] have definitely

answered this concerns where the fuzzy logic analysis of the model is carried out.

2. MATHEMATICAL MODEL

2.1. Model formulation. Adopting the framework of Mayengo et al. [19], we present an

analysis of health risk model associated with alcoholism of a population divided into six (6)

distinct classes based on the individual’s risk level defined by their drinking habits. The dis-

tinct classes are: (i) Susceptible, S(t) - comprising individuals at risk of engaging in alcohol
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drinking, (ii) Protected class, P(t) - individuals who have virtually gained protection from al-

cohol drinking through cultural practices, (iii) Low risk drinkers, L(t) - individuals who drink

alcoholic drinks responsibly on occasional basis, (iv) Moderate risk drinkers, M(t) - individuals

who consume alcoholic drinks regularly, (v) High risk drinkers or Alcohol addicts, A(t) - indi-

viduals who have developed high dependence in alcohol, and (vi) Recovered, R(t) - comprising

of individuals who have voluntarily quit drinking on health related challenges. New recruits

enter the population at a constant rate π . A proportion φ ∈ (0,1) of the new recruits are sub-

jected to cultural or religious beliefs and enter a Protected class, while the remaining 1−φ enter

a susceptible class. The susceptible class is further increased by individuals backsliding from

their religious beliefs at a constant rate γ2, and recovered individuals at a constant rate ω . The

susceptible class is decreased at the rate λ , and cultural (religious) conversion at the rate of γ1.

A non-drinker acquire alcohol drinking habits through social contacts [9, 19, 20] at the force of

peer influence

(1) λ = cβ

(
L+θ1M+θ2A

N

)

where β is the probability of initiation to alcohol drinking, θ1 and θ2 are the modification pa-

rameters (θ1 ≤ θ2), c is the effective contact to influence one into alcohol drinking, and N is the

total population. The protected class is increased by conversion to cultural and religious beliefs

of the susceptible, low risk drinkers, moderate risk drinkers and alcoholics. It is decreased by

backsliding at constant rate γ2. Low and moderate risk drinkers are increased by initiation to

alcohol drinking of the susceptible class. Low risk drinkers progress to moderate drinkers at

a constant rate σ . Moderate risk drinkers progress to alcohol addiction at a constant rate δ ,

recover at a constant rate ξ and are protected at a constant rate τ . Alcohol addicts either recover

at the rate η or get protected at the rate ψ . The recovered class become susceptible again at the

rate ω . All the classes are subjected to reduction due to natural causes at a constant rate µ .

The proportion ρ ∈ (0,1) of susceptible individuals are recruited via peer influence into low

risk drinking class, while the remaining proportion, (1− ρ) enters the moderate risk class.

Based on the dynamics on the model compartment in Fig. 1, the following set of equations are



6 MAYENGO, KGOSIMORE, CHAKRAVERTY, SESHAIYER, CAISEDA, SHIRIMA

FIGURE 1. The structure of the dynamics of health related risks model

formulated.

(2)



Ṡ = −(µ + γ1 +λ )S+ γ2P+ωR+(1−φ)πN

Ṗ = γ1S− (µ + γ2)P+νL+ τM+ψA+φπN

L̇ = λρS− (ν +µ +σ)L

Ṁ = λ (1−ρ)S+σL− (τ +µ +δ +ξ )M

Ȧ = δM− (µ +α +η +ψ)A

Ṙ = ξ M+ηA− (ω +µ)R

where S≥ 0,P≥ 0,L≥ 0,M ≥ 0,A≥ 0 and R≥ 0.

Let N be the total population size given by;

(3) N = S+P+L+M+A+R
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Then the equation describing changes in the total population is given by,

(4)
dN
dt

= (π−µ)N−αA

2.2. Basic properties of the model solution. In this section, the basic results of solutions for

model system (2) is discussed. These properties lay down a foundation of proofs of stability

analysis results of the model. Following [21], let x ∈ Rn
+ denote the set of state variables

x = (x1,x2, . . . ,xn) with the positive components, the following results may be established.

Lemma 1. Let f : Rn
+→ Rn, f (x) = ( f1(x), f2(x), . . . , fn(x)) with x ∈ Rn

+, be continuous and

there exist a continuous partial derivatives
∂ f j

∂xi
in Rn

+ for i, j = 1,2, . . . ,n. Then f is locally

Lipschitz continuous in Rn
+.

Theorem 2.1. Let f : Rn
+→ Rn be a locally Lipschitz continuous and for each i = 1,2, . . . ,n

satisfy fi(x)≥ 0 whenever x∈Rn
+, xi = 0. Then, for every x0 ∈Rn

+, there exist a unique solution

of ẋ = f (x), x(0) = x0 with values in Rn
+ defined in some intervals such that 0 < x0 ≤ b with

0 < b≤ ∞. If b < ∞, then sup∑
n
i=1 xi(t) = ∞.

Theorem 2.2. For all S(0),P(0),L(0),M(0),A(0),R(0)> 0, there exist S,P,L,M,A,R : (0,∞)→

(0,∞) which solve the model system (2) with initial conditions S= S(0),P=P(0),L=L(0),M =

M(0),A = A(0), and R = R(0).

Proof. Applying Theorem 2.1, we define f1(x) = Ṡ, f2(x) = Ṗ, f3(x) = L̇, f4(x) = Ṁ, f5(x) = Ȧ,

and f6(x) = Ṙ where x = (S,P,L,M,A,R). By the properties of continuity over operations, we

have continuity of fi for all i = 1,2, ...,6. Furthermore,

(5)
∂ f j

∂x
=

∂ f j

∂x1
+

∂ f j

∂x2
+ · · ·+

∂ f j

∂x6
, ∀ j ∈ {1,2, . . . ,6}

where the derivatives are continuous. Thus we have,

(6)
∂ f1

∂x
= (6λ − cβ (1+θ1 +θ2))

S
N
− (µ + γ1 +λ )+6(1−φ)π + γ2 +ω

By Lemma 1, we know that f is locally Lipschitz continuous. Let x1 = S = 0 with xi6=1 > 0.

Then

(7)
∂ f1

∂x
=−(µ + γ1 +λ1)+6(1−φ)π + γ2 +ω > 0
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where N1 = P+L+M+A+R and λ1 = cβ

(
L+θ1M+θ2A

N1

)
. Similarly, repeating the proce-

dures for the rest of state variables, the following conditions are established

(8)
∂ f2

∂x
= 6φπ + γ1− (µ + γ2)+ν + τ +ψ > 0

(9)
∂ f3

∂x
= ρλ3

(
1−6

S
N3

)
+ cβρ (1+θ1 +θ2)

S
N3
− (µ +ν +σ)> 0

(10)
∂ f4

∂x
= (1−ρ)

(
1−6

S
N4

)
λ4 + cβ (1−ρ)(1+θ1 +θ2)

S
N4

+σ − (τ +µ +δ +ξ )> 0

(11)
∂ f5

∂x
= δ − (µ +α +η +ψ)> 0

(12)
∂ f6

∂x
= ξ +η− (µ +ω)> 0

where N3 = S+P+M+A+R, N4 = S+P+L+A+R, consequently λ3 = cβ

(
θ1M+θ2A

N3

)
,

and λ4 = cβ

(
L+θ2A

N4

)
. By Theorem 2.2, for every x(0) ∈ R6

+ defined in some intervals such

that 0 < x0 ≤ b with 0 < b≤∞, there exist a unique solution of ẋ = f (x). If b < ∞ then we have

sup
0≤t≤b

[N] = ∞

2.3. Invariant region. Since the above model in (2) represents human population, it is as-

sumed that all the state variables and parameters of the model are non-negative for all t ≥ 0.

Now, from the equation (4) we have,
dN
dt
≤ (π−µ)N which upon integration yields

(13) N ≤ N0e(π−µ)t

where N0 is the initial population obtained by evaluating equation (3) at the initial conditions of

the respective state variables. It follows that, for µ < π as t → ∞,N0 ≤ N ≤ ∞, therefore N(t)

is bounded, posing contradictions to Theorem 2.2. As a result, b = ∞, suggesting that feasible

solutions of components of system (2) are positive and are defined on the interval 0< b<∞. �

The region governing the solutions of the model is positively-invariant under the flow induced

by system (2). Following the boundedness of the model solutions, the following theorem is

established
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Theorem 2.3. All solutions of model system (2) are bounded and the components of system

enter the region Ω such that Ω =
{
(S,P,L,M,A,R) ∈ R6

+, N0 ≤ N ≤ ∞
}
.

Hence, the region Ω is positively-invariant under the flow induced by system (2), that it

is well posed mathematically and epidemiologically, sufficiently for the dynamics of the flow

generated by system (2) to be considered in Ω.

2.4. Steady state solutions. To obtain the equilibrium point, we solve a non-linear equations.

(14).

(14)



0 = (1−φ)πN∗+ωR∗+ γ2P∗−κ1S∗−λ ∗S∗

0 = φπN∗+ γ1S∗+νL∗+ τM∗+ψA∗−κ2P∗

0 = λ ∗ρS∗−κ3L∗

0 = λ ∗(1−ρ)S∗+σL∗−κ4M∗

0 = δM∗−κ5A∗

0 = ξ M∗+ηA∗−κ6R∗

where

(15) λ
∗ = cβ

(
L∗+θ1M∗+θ2A∗

N∗

)
We observe that L∗ = Q0λ ∗S∗, M∗ = Q1λ ∗S∗, and A∗ = Q2λ ∗S∗,

where Q0 =
ρ

κ3
, Q1 =

(1−ρ)κ3 +ρσ

κ3κ4
, and Q2 =

((1−ρ)κ3 +ρσ)δ

κ3κ4κ5
.

Substituting for L∗, M∗, and A∗ in the equation (15), we obtain

(16) (N∗−RHS∗)λ
∗ = 0

giving

(17) λ
∗ = 0 or N∗−RHS∗ = 0

where

(18) RH = cβ

(
ρκ4κ5 +(θ1κ5 +θ2δ )((1−ρ)κ3 +ρσ)

κ3κ4κ5

)
.
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2.4.1. Risk free equilibrium. The solution λ ∗ = 0 from equation (17) leads to the risk free

equilibrium

(19) E0 = (S∗0,P
∗
0 ,L
∗
0,M

∗
0 ,A
∗
0,R
∗
0) =

(
π (γ2 +µ (1−φ))N∗0

µ (µ + γ1 + γ2)
,

π (φ µ + γ1)N∗0
µ (µ + γ1 + γ2)

,0,0,0,0
)
.

2.4.2. Risk endemic state. The solution N∗−RHS∗ = 0 from equation (17) leads to endemic

state. From system (14) we note that

R∗ = Q3λ
∗S∗

with Q3 =
(ξ κ5 +ηδ )((1−ρ)κ3 +ρσ)

κ3κ4κ5κ6
. The total population is given by

(20) N∗ = S∗+P∗+Qλ
∗S∗

where Q = ∑
3
i=0 Qi. Substituting for N∗, we obtain

P∗ = ((RH−1)−Qλ
∗)S∗

Re-writing the first two equations of the model system (2) in terms of λ ∗ and S∗ with appro-

priate substitution of other state variables. Eliminating S∗ from the subsystem, equation (21) is

established with an implication of forward bifurcation.

(21) λ
∗ =

(1−RH)((1−φ)µ + γ2)− (φ µ + γ1)

(µ (1−φ)+ γ2)Q+(1−φ)(νQ0 + τQ1 +ψQ2)−ωQ3φ

It follows the establishment of a non-trivial solution E1 for the risk endemic as

(22) E1 = (S∗,((RH−1)−Qλ
∗)S∗,Q0λ

∗S∗,Q1λ
∗S∗,Q2λ

∗S∗,Q3λ
∗S∗)

2.5. Basic risk reproduction number. In this section, we compute the basic risk reproduc-

tion number of the model using Next Generation Matrix (NGM) method by [19, 23, 24]. The

basic risk reproduction number, denoted as R0, may be defined as an average number of sec-

ondary risk individuals produced by a single risk individual in an entirely susceptible population

during his/her risk duration. It serves as an indicator used to predict the possibility of the oc-

currence of risk epidemic. Based on [24], the basic risk reproduction number is given as the

dominant eigenvalue or spectral radius of the next generation matrix. Considering the system of
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equations (2), this system has three risky states at different risk levels, L(t),M(t) and A(t); and

three non-risky states, S(t),P(t) and R(t). Compositing system (2), we state the risk system as

(23) g(X ,Z) =


L̇ = λρS−κ3L

Ṁ = λ (1−ρ)S+σL−κ4M

Ȧ = δM−κ5A

and non-risky system as

(24) f (X ,Z) =


Ṡ = −(κ1 +λ )S+ γ2P+ωR+(1−φ)πN

Ṗ = γ1S−κ2P+νL+ τM+ψA+φπN

Ṙ = ξ M+ηA−κ6R

Following [23], we distinguish new risk cases from all other changes in population. Let Fi

be the rate of appearance of new risk cases in compartment i, V +
i be the rate of transfer of indi-

viduals into compartment i by all other means, and V −i be the rate of transfer of individuals out

of compartment i. Assuming that each function is continuously differentiable at least twice in

each variable. The risk transmission model consists of non-negative initial conditions together

with the following system of equations:

(25) Ż = F (Z)−V (Z) =


λρS

λ (1−ρ)S

0

−


κ3L

−σL+κ4M

−δM+κ5A


where V (Z) = V −(Z)−V +(Z), X = {S,P,R}T ∈R3, Z = {L,M,A}T ∈R3 and (·)T denotes

transpose.

The matrix F corresponds to ”transmissions” and the matrix V to ”transitions” of risks

factors through different states with different risk levels. Following [23, 24], referring to the

risk states with indices i and j, with i, j ∈ {1,2,3}, the entry Fi j is the rate at which individuals

in a risk state j give rise to individuals in risk state i, in the linearlized system. Thus, Fi j = 0

occurs only when there are no new cases in risk state i can be produced by an individual in risk

state j. All epidemiological events that lead to new risks are incorporated in the model via F ,

and all other events via V .
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The linearlization of risk system (23) at the risk free state E0 yields the following F and V

matrices,

(26) F =
S∗0
N∗0


βcρ βcθ1ρ βcθ2ρ

βc(1−ρ) βcθ1(1−ρ) βcθ2(1−ρ)

0 0 0

and V =


κ3 0 0

−σ κ4 0

0 −δ κ5


where S∗0 =

π (γ2 +µ (1−φ))N∗0
µ (µ + γ1 + γ2)

. Thus by direct computation, we have

(27) V−1 =


1
κ3

0 0

σ

κ3κ4

1
κ4

0

σδ

κ3κ4κ5

δ

κ4κ5

1
κ5


In epidemiological sense, the interpretation of the entry V−1

i j describes the expected time that an

individual with risk state j will spend in a risk state i for the rest of his/her life. For instance, in

a matrix V−1 above, individuals who are presently in state L will spend, on average, an amount

of time
1
κ3

in that state. Similarly, the same individuals will spend on average an amount of

time
σ

κ3κ4
in state M, where

σ

κ3
is the probability that an individual actually changes its state

from L to M, instead of leaving state L by either dying or changing behavior under the influence

of religion, and
1
κ4

is the average amount of time an individual who enters state M spends in

state M. The individuals in state M will spend no time at all in state L leading to zeros for the

appropriate elements [24]. Now, we have the following Next Generation Matrix

(28)

FV−1 =
S∗0
N∗0



cβρ

κ3

(
1+

θ1σ

κ4
+

θ2δ σ

κ4κ5

)
cβρ

κ4

(
θ1 +

θ2δ

κ5

)
cβθ2ρ

κ5

cβ (1−ρ)

κ3

(
1+

θ1σ

κ4
+

θ2δ σ

κ4κ5

)
cβ (1−ρ)

κ4

(
θ1 +

θ2δ

κ5

)
cβθ2 (1−ρ)

κ5

0 0 0


To interpret the entries of the Next Generation Matrix FV−1 and develop a meaningful defi-

nition of R0 we note that the entry FV−1
i j is the expected number of secondary risk individuals
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in compartment i produced by individuals initially in compartment j assuming that the drinking

environment shared by the individuals remain homogeneous [25]. The basic risk reproduction

number, R0, is given by the dominant eigenvalue of matrix FV−1. Therefore,

(29) R0 = cβ

(
ρκ4κ5 +(θ1κ5 +θ2δ )((1−ρ)κ3 +ρσ)

κ3κ4κ5

)(
S∗0
N∗0

)
It is important to note that

(30) R0 =

(
S∗0
N∗0

)
RH < RH

3. MODEL ANALYSIS

3.1. Stability analysis.

3.1.1. Local stability. For the differential equations presented in (2), following [21, 26] the

following theorem can be established.

Theorem 3.1. The risk-free equilibrium E0 is locally asymptotically stable (L.A.S) for R0 < 0

and unstable otherwise.
Proof. Consider the Jacobian matrix evaluated at the risk free equilibrium point bellow

J(E0) =



−κ1 +(1−φ)π γ2 +(1−φ)π −cβ
S∗0
N∗0

+(1−φ)π −cβθ1
S∗0
N∗0

+(1−φ)π −cβ θ2
S∗0
N∗0

+(1−φ)π ω +(1−φ)π

γ1 +φπ −κ2 +φπ ν +φπ τ +φπ ψ +φπ φπ

0 0 cβρ
S∗0
N∗0
−κ3 cβθ1ρ

S∗0
N∗0

cβθ2ρ
S∗0
N∗0

0

0 0 cβ (1−ρ)
S∗0
N∗0

+σ cβθ1 (1−ρ)
S∗0
N∗0
−κ4 cβθ2 (1−ρ)

S∗0
N∗0

0

0 0 0 δ −κ5 0

0 0 0 ξ η −κ6


It follows that the trace and determinant of J(E0) are respectively, given by

Tr(J(E0)) = π + cβ ((1−ρ)θ1 +ρ)
S∗0
N∗0
−

6

∑
i=1

κi

and

Det(J(E0))= κ3κ4κ5κ6

(
1− cβ

(
(1−ρ)(δ θ2 +κ5 θ1)κ3 +((σ θ1 +κ4)κ5 +δ σ θ2)ρ

κ3κ4κ5

)
S∗0
N∗0

)
(π−µ)(µ + γ1 + γ2)

which upon simplification we get

(31) Det(J(E0)) = (1−R0)(π−µ)(µ + γ1 + γ2)κ3κ4κ5κ6
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Using trace determinant approach, the risk free equilibrium point E0 is locally stable if and only

if Tr(J(E0))< 0 and Det(J(E0))> 0. Since µ < π , it follows that, E0 is asymptotically stable

whenever R0 < 1 and unstable when R0 > 1 provided that

πN∗0 + cβ ((1−ρ)θ1 +ρ)S∗0
N∗0
(
∑

6
i=1 κi

) < 1

�

3.1.2. Global stability conditions for the risk-free equilibrium. The roles R0 in global stabil-

ity analysis can be traced back from [26, 27] who established two axioms ((H1) and (H2)), that

need to be satisfied to guarantee the global asymptotic stability of the risk free state. Following

[26] we present system (2) in the form:

(32)

dX
dt

= f (X ,Z)
dZ
dt

= g(X ,Z), g(X ,0) = 0

where X = (S,P,R)T ∈ R3 whose components denote the number of individuals at risk free

(non alcoholic individuals) and Z = (L,M,A)T ∈ R3 whose components denote the number of

alcoholic individuals at different risk levels. The coordinate (X∗0 ,0) ∈ R6 denotes the risk free

equilibrium for the model and (·)T denotes a vector transpose. Now with the system (2) in terms

of X and Z, the following axioms combined guarantee globally asymptotically stability.

(H1) For
dX
dt

= f (X ,0), X∗0 is globally asymptotically stable (G.A.S).

(H2) g(X ,Z) = BZ− g̃(X ,Z); g̃(X ,Z)≥ 0, ∀X ,Z ∈Ω

we define B = DZg(X∗0 ,0) as a Metzler matrix and Ω is the region where model (2) makes

biological sense. The following theorem hold true provided that the system (2) satisfies the

above two conditions (H1) and (H2).

Theorem 3.2. The risk free equilibrium E0 of the model (2) is globally asymptotically stable

(g.a.s) of the system (2) provided that axioms (H1) and (H2) are satisfied.
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Proof. We re-write the model equation (2) into f (X ,Z) and g(X ,Z) such that X = (S,P,R) , Z =

(L,M,A). We have

(33) f (X ,Z) =


Ṡ = −(κ1 +λ )S+ γ2P+ωR+(1−φ)πN

Ṗ = γ1S−κ2P+νL+ τM+ψA+φπN

Ṙ = ξ M+ηA−κ6R

(34) g(X ,Z) =


L̇ = λρS−κ3L

Ṁ = λ (1−ρ)S+σL−κ4M

Ȧ = δM−κ5A

Evaluating the subsystem (33) at
(
X∗0 ,0

)
we get

f (X∗0 ,0) =


−κ1S∗0 + γ2P∗0 +(1−φ)πN∗0

γ1S∗0−κ2P∗0 +φπN∗0

0


which satisfies axiom (H1). Now, from the susbsystem (34) we re-write g(x,z) such that

g(X ,Z) = BZ− g̃(X ,Z)

such that

B=



−κ3 +
cβρ

N
cβθ1ρ

N
cβθ2ρ

N

σ +
cβ (1−ρ)

N
−κ4 +

cβθ1 (1−ρ)

N
cβθ2 (1−ρ)

N

0 δ −κ5


and g̃(X ,Z)=


λρ (S−1)

λ (1−ρ)(S−1)

0

 .

Since B is a Metzler matrix and g̃(X ,Z)≥ 0 provided that S(t)≥ 1 and ρ ≤ 1, then axioms (H1)

and (H2) are satisfied. It is clear that the equilibrium point E0 is a globally asymptotically stable

equilibrium. Hence, by the above theorem E0 is globally asymptotically stable. �
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TABLE 1. Description of parameters for model (2) and their sensitivity indices on R0

S/N Parameters (y) Value Source Sensitivity Index ϒ
R0
yi

1 π 0.0310yr−1 - +1.0000

2 µ 0.02yr−1 [9] −1.6901

3 α 0.0350yr−1 [9] −0.0456

4 δ 0.0075yr−1 [9] −0.1325

5 σ 0.0100yr−1 [28] −0.0041

6 ν 0.0020yr−1 - −0.0048

7 τ 0.0016yr−1 - −0.0477

8 ψ 0.0100yr−1 - −0.0130

9 ξ 0.0025yr−1 [9] −0.0746

10 η 0.0050yr−1 [9] −0.0065

11 ω 0.0010yr−1 [28] −

12 γ1 0.1300yr−1 [29] −0.3333

13 γ2 0.2400yr−1 [29] +0.3524

14 θ1 1.0002 - +0.8515

15 θ2 1.0005 [9] +0.0913

16 φ 0.6000 - −0.0484

17 ρ 0.06500 - +0.0131

18 β 0.2500 [9] +1.0000

19 c 24yr−1 - +1.0000

3.2. Sensitivity analysis. To determine the best solution in reduction of health risks and mor-

tality associated to alcoholism, it is important to understand the relative importance of the dif-

ferent parameters responsible for risk transmission dynamics and prevalence [30]. We perform

sensitivity analysis of sensitive parameters in order to determine the input parameters with the

most contribution to the output variability of R0 [7, 31, 32]. We do this based on understanding
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that, the initial spread of health risk associated to alcoholism in the model presented in (2) is

directly related to the basic risk reproduction number R0 [30].

Using normalized forward sensitivity index method - a partial differential technique - we

calculate the sensitivity coefficients, ϒ
R0
yi , for each of the input parameters yi ∈ y for R0 in

equation (29) to the output variable R0 [31, 30]. We therefore have a vector y given as a set of

parameters in which some of them serve as independent input for the corresponding dependent

output R0. The sensitivity coefficients, defined as the measure of the relative change in the

dependent variable when the independent variables change one at a time [30, 31, 32], explain the

impact of each parameter value in the health risk transmission threshold. Researchers conduct

sensitivity analyses for a number of reasons in an attempt to answer their research questions.

However, the robustness of the model predictions to parameter values is the main impetus of

performing sensitivity analysis to many modelers [30, 32].

Consider an explicit formula for R0 given in equation (29), to each of the input parameters

we derive an analytical expression for the sensitivity coefficient of R0, with respect to the

parameter yi as

(35) ϒ
R0
yi

=
∂R0

∂yi
× yi

R0

where yi is the ith parameter as shown in Table 1. For example, the sensitivity index of R0 with

respect to β is given by

ϒ
R0
β

=
∂R0

∂β
× β

R0
=+1.0000

Following the similar procedures we calculate the sensitivity coefficients of the rest of parame-

ters and presents their results in Table 1.

Learning from the sensitivity coefficients in Table 1 we know that the most sensitive parame-

ters in making significant changes in R0 include: the natural mortality rate, µ; recruitment rate,

π; measure of influence of risky individuals, β ; and the necessary contact rate between a sus-

ceptible member and a drinker required to convince the susceptible member to drink, c. The rest

of the parameters have smaller sensitivity indices which may not require as much attention to

estimate since small perturbation in those parameters lead to insignificant changes in the output

variable [32].
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FIGURE 2. Simulation for the effects of β , and c on R0, using the other param-

eter values in Table 1

The sensitivity coefficients ϒ
R0
µ = −1.6901, and ϒ

R0
π = ϒ

R0
β

= ϒ
R0
c = +1.0000 imply that,

µ is negatively correlated with R0 while π, c, and β are positively correlated with R0. If we

increase (or decrease) µ by 10%, the resultant R0 is also expected to decrease (or increase)

by 16.901% of its original value. Similarly, if we increase (or decrease) either π, β or c by

10%, the value of R0 also increases (or decreases) by 10%. However, despite the significant

sensitivity coefficient of π , and µ , they may not be the suitable decision variables in this case.

Any deliberate efforts to increase the natural death rate or decrease the recruitment rate in order

to reduce the intensity of the spread of the health risks in the community defeats the ethical

requirements. We therefore remove π and µ from the list of targeted parameters.

According to the sensitivity analysis results for input parameters for R0, intervention strate-

gies focusing on discouraging the drinking behaviors at its initiation stage is more effective than
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targeting the population proportions at any risky stages. This can be effectively done when we

focus on reducing β , and c values to desired level. Reduction of β value implies that lowering

down the influence level of the risky population over the susceptible individuals. From social

psychology point of view, the influencing capacity of an individual depends on his/her social

status in the community. Reduction of β value can be effectively done when influential people

in the community are involved in campaigning against unhealthy alcohol drinking habits. Simi-

larly, it is observed that, if the number of times in which risky and non-risky individuals interact

socially in an organized setting, c, especially in the events with mixed population spending time

together at drinking venues or at social events where alcoholic beverages are freely served is

reduced, R0 will be reduced significantly. However, reduction of c greatly depends on both

individual’s willingness and desire to change, and the personal efforts dedicated towards the de-

sirable change. Fig. 2 presents the effects of variation of β , and c values on R0 using parameter

values in Table 1 where the particular parameter is not considered as independent variable of

R0.

3.3. Numerical analysis. Where necessary and for the purpose of simulation we use param-

eter values in Table 1 and initial conditions of state variables, S(0) = 350, P(0) = 80, L(0) =

20, M(0) = 100, A(0) = 30 and R(0) = 0 to simulate the risky population proportions for sys-

tem (2) against time in years. For avoidance of the danger of confusion, it is important to note

that when one parameter takes a variable nature for simulation purposes, the rest of parameters

are considered constant with the value as indicated in Table 1.

Figure 3 shows the effects of variation of β , and c values to the risky classes. The values of

β was set to increase from 0.1 to 0.9 allowing the increase of step size of 0.1 while c was set

to increase from c = 5 to c = 25 with the step size of 10. The increase in β values translates

into the increase of the influencing level of the risky individuals over non risky individuals.

Consequently, it increases the recruitment of susceptible population proportion into low risk

compartment (see Fig. 3). The variation of β shows no significant effects on the medium risk

population compartment, so is the variation of c.

Since alcohol related risks is a staged process depending on the patterns and frequencies of

alcohol consumption among others factors, as β increases it is expected that the population size
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FIGURE 3. Simulation for the effects of varying β and c on risky populations

using the other parameter values in Table 1.

of L(t) will increase quantitatively. However, at higher values of β the population proportion

of the low risk class converges to a common value within the period of one year. Similarly,

we observe that the number of high risk drinkers decreases with the increase of β values for

the first three years and later it increases with the increase of β . The effects of variation of the

contact rates between risky and non risky individuals giving easy access to alcohol beverages

follows similar patterns as that of β variation with β being more efficient in terms of time. That

is to say, β based decisions will yield the desired results inn considerably shorter time than is

the case for c based decisions.
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4. CONCLUSION

This paper studies the dynamics of health risks associated with alcoholism in a community

in which a proportion of susceptible population receives a social cultural protection acquired

from the religious beliefs. Except for occasional drinkers, this work considers that some people

voluntarily quit alcoholic consumption as their personal efforts to change their drinking status

or upon medical grounds. The equilibria of the model system are found and their stability are

analyzed. The basic risk reproduction number of the model is computed and the sensitivity

analysis for its input parameters is established. The sensitivity analysis of R0 suggested that

discouraging alcohol drinking behavior at its initiation stage is more effective in the control and

reduction of the health related risks associated with alcoholism than targeting other populations

already at risk.

Numerical simulations are performed to illustrate the effects of the most sensitive parameters

to various risky classes. The numerical simulations results are used to confirm the sensitivity

analysis findings. For effective control of the health related risks associated with alcoholism

in the community, public educational campaigns would do a better job. When the influential

characters are involved in the public education campaign, better results are expected since so-

cietal influence is the key factor recruiting people into the behavior. Since alcohol drinking

compromises the quality of decision making to its consumers, it can be closely associated with

other irresponsible behaviors such as irresponsible sexual behaviors, the combination of alcohol

related risks and the risk of contacting sexually transmitted diseases in one model will make an

interesting study.
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