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Abstract. This paper studies the dynamics of the Guillain-Barre syndrome model (GB’s) with Holling type II

functional responses. Autoimmune disorders occur when the immune system is damaged where the immune

system attacks tissues and organs. It was reported that a viral infection can be related to GB’s. A mathematical

model about the mechanism of autoimmunity in GB’s was studied. The immune response used is assumed to follow

the Holling Type II functional response. The dynamics of the model are analyzed to see system behavior. The

GB’s model has three equilibrium points in its conditions. The equilibrium represents health, autoimmune disease,

and complications. The local stability for each equilibrium point is analyzed with certain stability conditions.

Numerical simulations are also performed to observe the dynamic behavior of the model. The results of the model

analysis show the factors that determine the outcome of the disease.
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1. INTRODUCTION

The immune system is a convoluted structure of cells and organs that defend the body. The

main chore of the immune system is to identify and respond to foreign agents to protect the
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body against infection. Most of the immune cells are eliminated giving a self-tolerant immune

system that reacts to self-tissues [18]. This mechanism is carried out to protect the body it-

self. When this control mechanism is inadequate, an impaired immune function can threaten

the body [17]. Recently, a scientist has proven that autoimmunity is a natural phenomenon that

appears in every normal individual, with self-reactive antibodies and autoimmune cells. Previ-

ously, the problem of the immune system reactivity to autoimmunity antigens was considered

a distorted response. The anti-self response that results in the process of generating an antigen

response to a way to save a damaged self, but autoimmune disease only occurs if autoimmu-

nity persists [12]. According to Rose, there are around 80 types of autoimmune diseases in the

world. Autoimmune affects any site in the body so that clinical explanations vary [17]. Genetic

and environmental factors become to trigger the spread of autoimmune diseases. The autoim-

mune diseases are not common, because they are the third most common disease category in

industrialized countries, after the first and second are cardiovascular disease and cancer [13].

Guillain-Barre Syndrome (GB’s) is a type of autoimmune disease that occurs when the body’s

immune system mistakenly attacks parts of the nervous system. According to the CDC [20],

GB’s can also be caused by the Zika virus which attacks humans of a certain age. This dis-

ease can also induce nerve inflammation which causes tingling, muscle weakness, paralysis,

and other symptoms. It often starts with tingling and weakness starting in the legs and feet

and spread to the upper body and arms (US Medical Library, 2017). People with GB’s will

experience the most significant weakness usually within two or four weeks after symptoms be-

gin. GB’s occur in several forms with the main types being inflammatory acute inflammatory

poly radiculo neuropathy (AIDP) inflammation, Miller Fisher’s syndrome (MFS), acute motor

axonal neuropathy (AMAN), and acute motor-sensory axon neuropathy (AMSAN) [16].

GB’s is not exactly known why, but are generally triggered by infection depending on the

infection outbreak. Several events have been reported that could potentially trigger GB’s.

Relationships with infections include cytomegalovirus, Epstein-Barr virus, influenza A, My-

coplasma pneumonia, Hemophilus influenza, hepatitis (A, B, and E) and Zika virus (ZIKV)

[21]. It has also been reported that ZIKV infection develops into neurological diseases such as

microcephaly in infants and Guillain-Barre syndrome (GB’s) in adults [3]. Based on Arnaud
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Fontanet’s study there is a possible relationship between the Zika virus and Guillain-Barre syn-

drome. At present, there has been a proven incidence of GB’s in 24 cases per 100,000 people

infected with the Zika virus [19].

Recently an important discussion which gave rise to the hypothesis that ”molecular mimicry”

as a causative cause of GB’s. Molecular mimicry is the concept of antigens from microorgan-

isms that are very similar to self-antigens so that the compilation of infections occurs autoim-

munity is also induced [12]. Observation in GB’s patients, in response to molecular mimicry

that shows received antibodies. Molecular mimicry can be associated with GB’s related to Zika

virus because antibodies are found in 31% of patients [7].

The problem of population dynamics in autoimmune diseases has been in great demand.

Iwami et al. [14] describe the dynamics of autoimmune diseases that are affected by the

transition, flare, and dormancy, through mathematical modeling. In 2009, Iwami et al. [14]

researched that viruses with molecular mimicry can be beneficial and also dangerous for au-

toimmune diseases. Elettreby et al. [11] also introduced a simple mathematical model for the

stability of the Guillain-Barre Syndrome (GB’s) model. The dynamics of the disease due to

autoimmune are described in 4 cases. In the first two cases, the immune response is assumed to

be linear, whereas in the other two cases it is assumed to be in the form of Holling type III.

This paper discusses the modification of the GB’s model with cross-reactive immunity as an

effort to overcome molecular mimicry as a change in virus-induced autoimmunity in GB’s. In

the model, we modified using the Holling type II [14] response function. We show the impact

of molecular mimicry on the disease, taking into account the development of GB’s.

2. MATHEMATICAL MODEL

In this article, we consider the GB’s model presented by [11]. The GB’s model is a nonlinear

differential equation with two variables, which are, target cells (healthy cells) (x) and immune

cells (y).

(1)

dx(t)
dt

= G(x(t))−β1x(t)y(t)
dy(t)

dt
= F(x(t),y(t))−µ2y(t).
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where G(x(t)) is the growth function of the target cell population and F(x(t),y(t)) is the per-

sonal immune response function. Parameter β1 are the efficiency of the injury process and

contains the rates of immune cells to find target cells and immune cells succeed in attacking

target cells. Thus β1 x(t)y(t) represents the damage that occurred in the target cells due to their

interaction with the immune system. Parameter µ2 describes the death rate of the immune cells.

In model (1), the growth rate of the target cell is assumed to be a linear growth function and

logistic growth function as follows.

(2) G1(x(t)) = a−µ1x(t)

(3) G2(x(t)) = a−µ1x(t)+ px(t)(1− x(t)
L

)

where a is the rate of producing new cells of the target cells, µ1 is the natural death rate of

the target cells, p is the maximum proliferation rate of the target cells and L is the target cell

population density at which proliferation shuts off. The personal immune response function in

the model (2) is given by the following function.

(4) F1(x(t),y(t)) = rx(t)y(t)

(5) F2(x(t),y(t)) =
kx(t)2y(t)2

m2 + x(t)2y(t)2

where r is the average magnitude of the immune activation response per-time, k is the maxi-

mum proliferation rate of immune cells created by antigen-presenting cells (APCs), and m is the

number of broken cells at which the proliferation of immune cells is half of the maximum k. In

ecology term, function (4) and (5) is called functional response, more precisely function (4) and

(5) is called the Holling type I and III functional response respectively. In this model, the defin-

ing two types of functional response is based on the assumption that different people may have

different immune response function. It depends on the personal’s condition. Immunologically,

antigen-presenting cells (APCs) hardly induce immune cells when only a few antigens exist. In

general, the proliferation ability of immune cells is saturated for a sufficiently large amount of

antigens [4] [5] [6] [1]. By considering the molecular mimicry mechanism, this implies that the

proliferation of immune response is dependent on the total number of self and viral antigens.
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As in one of the models in [15], the personal immune response function is regarded respectively

as functional response Holling types II as follows.

(6) F(D(t),V (t)) =
k(D(t)+V (t))

m+(D(t)+V (t))
,

where D and V signify the number of broken cells caused by the concentration of self-antigen,

and viral agent with mimicries molecular.

The molecular mimicry mechanism has not been included in the model (1). Therefore, we

propose the following model.

(7)

dx(t)
dt

= a−µ1x(t)+ px(t)(1− x(t)
L

−β1x(t)y(t))
dy(t)

dt
=

k(x(t)+ z(t))y(t)
m+(x(t)+ z(t))y(t)

−µ2y(t)

dz(t)
dt

= (h−µ3 −β2y(t))z(t).

In this model, we assume the viral agent (z) grow with Malthusian growth rate h, decay at

a rate µ3 and is eliminated by the immune response at a rate β2 as considered in [14]. The

immune response function is assumed following the Holling types II functional response. These

assumptions are dictated by our goal to simplify the mathematical analysis of the model to get

some insight into the immune system and molecular mimicry mechanism in the progression of

the disease symptoms.

3. MATHEMATICAL ANALYSIS

The model (7) has three possible equilibria that represent the healthy state, the GB’s state,

and the GB’s(autoimmune) complication state. The stability of equilibria is observed by the

eigenvalues of the Jacobian matrix of the system (7) at the equilibrium point, J(x∗,y∗,z∗). The

eigenvalues are found by solving the characteristic equation of the matrix.

(8) J(x∗,y∗,z∗) =


J1 −β1x∗ 0

J2 J3 J2

0 −β2y∗ h−µ3 −β2y∗


where,

J1 =−µ1 + p(1− x∗/L)− px∗/L−β1y∗,
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J2 =
ky∗

m+(x∗+ z∗)y∗
− k(x∗+ z∗)y∗2

(m+(x∗+ z∗)y∗)2 ,

J3 =
k(x∗+ z∗)

m+(x∗+ z∗)y∗
− k(x∗+ z∗)y∗2

(m+(x∗+ z∗)y∗)2 .

3.1. Healthy State Equilibria (Eh). The healthy state equilibria of system (7) describes con-

dition where the immune cells and virus population are extinct. The system always has healthy

state equilibria of the form Eh = (Λ1,0,0) where

(9) Λ1 =
1
2

L(p−µ1)+
√

L2(p−µ1)2 +4paL
p

.

The characteristic equation of Jacobian matrix at Eh is

(10) P(λ ) =
(−λm−µ2m+ kΛ1)(−λ +h+µ3)(−λL−2pΛ1 + pL−µ1L)

mL

By solving equation (10), we have eigenvalues of J(Eh) are

λ1 =
kΛ1 −µ2m

m
,(11)

λ2 = h−µ3,(12)

λ3 =−2pΛ1 − pL+µ1L
L

(13)

Then the healthy state equilibria Eh is locally asymptotically stable under this following con-

ditions.

kΛ1 −µ2m < 0,(14)

h−µ3 < 0,(15)

2pΛ1 − pL+µ1L > 0.(16)

The simple calculation shows that the condition 2pΛ1 − pL+ µ1L > is always met. Hence,

Eh is locally asymptotically stable if satisfy the conditions kΛ1 −µ2m < 0 and h−µ3 < 0.

3.2. GBS (Autoimmune) State Equilibria (Ea). The GB’s (autoimmune) state of system (7)

represent the condition where the virus population is extinct while the immune cells remain

exist in the body. It shows persistent autoimmunity. The GB’s (autoimmune) state equilibria is
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given below,

(17) Ea = (Λ3,
kΛ3 −µ2m

µ2Λ3
,0),

where,

(18)

Λ3 =−1
2

1
pµ2

[L(−pµ2 +β1k+µ1µ2)−
√

L2(−pµ2 +β1k+µ1µ2)2 +4paLµ2
2 +4pmLµ2β1].

The equilibrium point Ea exist if only if kΛ3 −µ2m > 0.

The characteristic equation of Jacobian matrix at Ea is

(19) λ
3 +B1λ

2 +B2λ +B3 = 0

where,

B1 =
(q3)q4

kΛ3
+

Lq1(k(β1 +β2)+µ2
2 )+µ2q2q4

kΛ3µ2L
,

B2 =− 1
kΛ2

3µ2
2
(µ2q4(q2q5 +L(2pq1β2 +µ2q1β1))+Lq1

2(µ2
2 + kβ1)+µ3

2 Λ3) ,

B3 =
q1q5(µ2q2 +β1kL)

Λ3
2
µ2kL

,

with,

q1 = kΛ3 −µ2m,

q2 = 2pΛ3 − pL+µ1L,

q3 =−(h−µ3),

q4 = µ2m+q1,

q5 = Λ3µ2q3 +β2q1..

Using Routh-Hurwitz criterion, we found that Ea is locally asymptotically stable if only if

B1 > 0,B3 > 0, and B1B2 −B3 > 0. This condition is satisfied if only if q1 > 0,q2 > 0, and

q3 > 0.

3.3. GB’s Complication State Equilibria Ec. The GB’s complication state depicts the con-

dition where the immune cells and virus population exist in the body. This situation indicate

persistent autoimmunity and infection. The GB’s complication state equilibrium is

(20) Ec =

(
Λ2,

h−µ3

β2
,

mµ2β2

kβ2 −µ2(h−µ3)
−Λ2

)
.
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where,

(21)

Λ2 =− 1
2pβ2

[
L(µ1β2 − pβ2 +hβ1 −µ3β1)−

√
L2(µ1β2 − pβ2 +hβ1 −µ3β1)2 +4paLβ2

]
.

The equilibrium point Ec exist if only if

h−µ3 > 0(22)

kβ2 −µ2(h−µ3)> 0(23)

mµ2β2

kβ2 −µ2(h−µ3)
−Λ2 > 0(24)

The characteristic equation of Jacobian matrix at Ec is

(25) λ
3 +A1λ

2 +A2λ +A3 = 0

where,

A1 =
kg2β2 +Lg1(kβ1 +µ2

2 )

kLβ2
,

A2 =
g1(mg2β 2

2 µ2
2 +(β1 −β2)g2

3LΛ2 +L(mg1β1β2µ2
2 +mg3β 2

2 µ2))

kmLβ 3
2

,

A3 =
g1g3(g4β2 +g1Λ2µ2)(g2β2 +g1Lβ1)

kmLβ 3
2

.

With,

g1 = h−µ3,

g2 = 2pΛ2 − pL+Lµ1,

g3 = kβ2 −g1µ2,

g4 =−(kΛ2 −mµ2).

Using Routh-Hurwitz criteria, we found that Ec is locally asymptotically stable if only if

A1 > 0,A3 > 0, and A1A2 −A3 > 0. This condition is satisfied if only if g1 > 0,g2 > 0,g3 >

0,g4 > 0 and β1 −β2 > 0.

In general, it can be compiled the sufficient conditions to guarantee the existence and stability

of each equilibrium point in Table (1).
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TABLE 1. Existence and Local Stability Condition of the Equilibrium

Eq.Point Existence Stability

Eh always exists h−µ3 < 0

kΛ1 −mµ2 < 0

Ea kΛ3 −mµ2 > 0 h−µ3 < 0

2Λ3 −L > 0

Ec h−µ3 > 0 2pΛ2 − pL+Lµ1 > 0

kβ2 −µ2(h−µ3)> 0 kΛ2 −mµ2 < 0
mβ2µ2

kβ2µ2(h−µ3)
−Λ2 > 0 β1 −β2 > 0

4. RESULTS AND DISCUSSION

In order to study the immune system and molecular mimicry mechanism in the progression

of the disease symptoms, we analyze how the maximum value of proliferation rate of the target

cells (k) and the rates of immune cells find target cells and the rate of immune cells which

success attack the target cells (β1) affect the model dynamical behavior [2]. The analysis is done

by numerical simulation. Numerical simulations are performed using Maple. There are seven

initial values used: (i) For normal condition IV1, (x(0) = 1,y(0) = 0,z(0) = 0), (ii) for mild

infection IV2, (x(0) = 1.2,y(0) = 0,z(0) = 1), (iii) for severe infection IV3, (x(0) = 0,y(0) =

0,z(0) = 0.8), (iv) for mild autoimmune IV4, (x(0) = 0.5,y(0) = 0.7,z(0) = 0), (v) for severe

autoimmune IV5, (x(0) = 0,y(0) = 1.11,z(0) = 0), (vi) for mild complication IV6, (x(0) =

0.3,y(0) = 0.6,z(0) = 0.2),(vii) for severe complication IV7, (x(0) = 0,y(0) = 0.4,z(0) = 1.3).

There are two cases observed, (i) when the virus cannot maintain its replication (h−µ3 < 0)

and (ii) when the virus can maintain its replication (h−µ3 > 0). Under condition (h−µ3 < 0),

we found a critical rate of immune cells’s proliferation (k∗), which above the endemic equilibria

E(a) is exists, when the other endemic equilibria is not exist.

(26) k∗ =
2mpµ −2

L(−µ1 + p)+
√

L2(−µ1 + p)2 +4paL
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Using fixed value for parameter a,µ1, p,L,m,µ2,β1,β2,h,µ3 and different value for k, the nu-

merical simulation results are shown in Figure (1).

(A) k = 0.1 (B) k = k∗ = 0.186

(C) k = 0.186, Ea = (96.7;1.10−10;0) (D) k = 0.5,Ea = (81.24;0.46;0)

FIGURE 1. Simulation with a = 0.1; µ1 = 0.1;p = 3;L = 100;m = 30;µ2 =

0.6;β2 = 1.5;β1 = 1;h = 0.5;µ3 = 1.3, Eh = (96.70;0;0).

Figure (1a) dan (1b) presents the tolerance of the immune response of equilibrium point Eh is

locally asymptotically stable. When a healthy cell (target cell) attacked the key effector cell, the

immune cells cannot be activated and the patient does not develop autoimmune disease. Based

on Figure (1c) dan (1d) we can see that the maximum proliferation rate of immune cells (k)

is higher than k∗, which is results in the development of autoimmune disease symptoms. If an

effector cell’s key is attacks a healthy cell (target cell), then the immune cells will be activated,

and the end of the autoimmune disease is developed by patients. However, this depends on
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the patient’s initial condition. Patients with an autoimmune disease with or without viral in-

fection will develop the autoimmune symptom, while others can maintain the immune tolerant

condition.

When the virus persists in the host (h− µ3 > 0), we have one more equilibrium Ec which

represents complication state. It results in the more complex population dynamics are obtained.

Figure (2) shows patients with a higher k tend to have more severe disease symptoms. Figure

(2b) indicates that if the maximum proliferation rate of immune cells (k) is relatively small

then autoimmune complications associated with a viral infection will occur (Ec). On the other

hand, in Figure (2d) if k is large enough then the autoimmunity occurs without viral infection

(Ea). In addition, the number of viral agents can blast under h− µ3 > 0. The dynamics of

model (7) converges to the infection state Einf, for initial value 2 and 3. This describes patient

with an infection will develop the more serious infectious disease, but it will not progress to

autoimmunity or complication state. Hence as in the previous simulation, the patient’s state

affects the development of the disease’s symptoms.

Then the simulation in case 3 are defined at the following : Simulation with various value

of β1 in Figure (3) shows strong immune affinities with self antigen, with the increasing rates

at which immune cells find target cells and immune cells succeed in attacking target cells, will

reduce the population of target cells as well as the population of immune cells and increase

the virus population. Therefore, it engender the development of autoimmune disease with viral

infection, but also reduces autoimmune disease progression.

5. CONCLUSION

According to the whole analysis, we can conclude that in the system of autoimmune (GB’s)

disease the role of the maximum proliferation rate of immune cells caused by the antigen-

presenting cells (APC’s) and immune affinities with self-antigen. The parameter value of the

symptoms of autoimmune disease and the mathematical form effectively changes. This im-

plies that to understand the mechanism of autoimmune disease, it is important to interpret the

phenomena associated with the parameter.
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(A) k = 0.05
(B) k = 0.08;Ec =

(32.62;0.67;417.38)

(C) k = 0.186, Ea =

(96.7;1.10−10;0)

(D) k = 0.11,Ec =

(32.62;0.67;105.84),Ea =

(59.66;0.09;0)

(E) k = 0.2,Ec =

(32.62;0.67;12.38),Ea =

(40.10;0.05;0)

(F) k = 0.26,Ea =

(31.445;0.69;0).

FIGURE 2. Simulation with a = 0.9; µ1 = 0.3; p = 0.8;L = 100;m = 60; µ2 =

0.1;β2 = 0.3;β1 = 0.4;h = 0.4; µ3 = 0.2.;E∞ = (x̂;0;∞);Eh = (64.25;0;0).

When the virus cannot control its reproduction, then the system has two possible steady-state,

they are a healthy state and autoimmune state. There is a critical proliferation rate of immune

cells which functions as a threshold for the existence and stability of the autoimmune steady

state. In different circumstances, if the virus controls its replication in the host, then there is

one more steady-state which represents a complication of autoimmune disease with the viral

infection.

The rate of maximum proliferation of immune cells caused by antigen-presenting cells (APC’s)

k influence the symptoms of autoimmune disease. If k is small, then there is tolerance regard-

less of the number of antigens and the disease is inactive. However, if k is relatively large then

immune cells are activated regardless of the number of antigens and disease develops. A certain

range value of k gives a result in autoimmune disease with the viral infection.
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(A) k = 0.05
(B) k = 0.08;Ec =

(32.62;0.67;417.38)

(C) k = 0.186, Ea =

(96.7;1.10−10;0)

(D) k = 0.11,Ec =

(32.62;0.67;105.84),Ea =

(59.66;0.09;0)

(E) k = 0.2,Ec =

(32.62;0.67;12.38),Ea =

(40.10;0.05;0)

(F) k = 0.26,Ea =

(31.445;0.69;0).

FIGURE 3. Simulation with a = 0.9; µ1 = 0.3; p = 0.8;L = 100;m = 60; µ2 =

0.1;β2 = 0.3;h = 0.4; µ3 = 0.2;Eh = (64.25;0;0),E∞ = (x̂;0;∞).

The strong immune affinities with self-antigen β1 induce the development of autoimmune

disease with a viral infection but reduce autoimmune disease progression. Therefore, there

should be an investigation about the appropriate value of the immune affinity with self-antigen

so delay autoimmune disease progression.

The progression of autoimmune disease can include autoimmunity without persistent infec-

tion, depending on the patient’s state in which it related to the initial number of the antigen

(target cell and virus population). When we choose a small initial number of antigens, then

the autoimmune disease symptoms are tolerance, although the maximum proliferation rate of

immune cells, k, is large. Nevertheless, when the initial value of antigens is high, then immune

cells are activated. Finally, the patient develops the autoimmune disease although the disease

progression includes the viral infection.
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